Exercises Week 6

1) For a Lie algebra \mathfrak{g} one defines a sequence of subspaces by $\mathfrak{g}^{k}=\left[\mathfrak{g}, \mathfrak{g}^{k-1}\right]$. Show that this is a descending sequence of ideals. The Lie algebra is said to be nilpotent if $\mathfrak{g}^{k}=0$ for some k. Show as an example that the space of strictly upper triangular real $n \times n$ matrices is a nilpotent Lie algebra.

Let \mathfrak{g} be nilpotent, and let \mathfrak{h} be an ideal. Show that $\mathfrak{g} / \mathfrak{h}$ is nilpotent.
2) Let \mathfrak{g} be a nilpotent Lie algebra. Show that \mathfrak{g} has a basis with respect to which $\operatorname{ad}(X)$ is strictly upper trangular for all $X \in \mathfrak{g}$. Show that

$$
\operatorname{det}\left(\frac{1-e^{-\mathrm{ad} X}}{\operatorname{ad} X}\right)=1
$$

Let G be a Lie group with nilpotent Lie algebra \mathfrak{g}, and assume in addition that exp : $\mathfrak{g} \rightarrow$ G is bijective. Show that then exp is a diffeomorphism of \mathfrak{g} to G.

Verify by explicit calculation that exp is bijective for the Lie group of upper triangular $n \times n$ matrices with 1's in the diagonal, when $n=2$ and $n=3$ (in fact this holds for all n).
3) Let G be a connected Lie group, H a closed connected central subgroup, and $L=$ G / H. Show that if the exponential map of L is surjective, then the exponential map of G is surjective.

Use this to prove that exp is surjective for all connected Lie groups with a nilpotent Lie algebra (begin with the same statement for a commutative Lie algebra).

Give an example of a Lie group with nilpotent Lie algebra for which exp is not injective.
4) Let G be a connected Lie group, and let U be a neighborhood of 0 in its Lie algebra for which the restriction of exp is a diffeomorphism $U \rightarrow \exp (U)$. Show that for a function $f \in C(G)$ with support in U

$$
\int_{G} f(g) d g=\int_{U} f(\exp X) \operatorname{det}\left(\frac{1-e^{-\mathrm{ad} X}}{\operatorname{ad} X}\right) d X
$$

where $d g$ is a left Haar measure on G and $d X$ is a Lebesgue measure on the vector space \mathfrak{g} (the formula becomes particularly simple for Lie groups with nilpotent Lie algebra).
5) Let G consist of the 2×2 real matrices of the form

$$
g(u, v)=\left(\begin{array}{ll}
u & v \\
0 & 1
\end{array}\right)
$$

where $u>0$. Show that G is a non-commutative Lie group. Show that if $g=g(a, b)$, then the differential of the left multiplication map ℓ_{g} has determinant a^{2} with respect to the the coordinates (u, v). Conclude that $u^{-2} d u d v$ is a left Haar measure, where $d u d v$ is Lebesgue measure on the half plane (combine (19) on page 65 with the formula on top of page 64).
6) Determine the modular function $\mid \operatorname{det}(\operatorname{Ad}(g) \mid$ for the group G in the previous exercise, and find a right Haar measure.
7) Let $p>1$ be fixed and let G_{p} be the subgroup of the group G from the previous two exercises, consisting of the matrices $\sigma(u, v)$ for which $u=p^{k}$ for some $k \in \mathbf{Z}$. Find the left and right Haar measures.
8) Let $G=\mathbf{G L}(n, \mathbf{R})$ which we regard as usual as an open subet of the set $M(n, \mathbf{R})$ of all $n \times n$ real matrices. Show that a left and right Haar integral is given by

$$
\int_{G} f(g) d g=\int_{M(n, \mathbf{R})} f(X)|\operatorname{det} X|^{-n} d X
$$

where $d X$ denotes a Lebesgue measure on the vector space $M(n, \mathbf{R})$.
9) Let $G \subset \mathbf{G L}(n, \mathbf{R})$ denote the subgroup of all matrices g for which $g g^{t}=c I$ with a positive scalar $c \in \mathbf{R}_{+}$, and for which $\operatorname{det} g>0$. Then $G=\mathbf{S O}(n) D$ where D is the central subgroup of all diagonal matrices $r I$ with $r>0$. Show that G acts transitively on $\mathbf{R}^{n} \backslash\{0\}$ by matrix multiplication, and determine a left invariant measure on this homogeneous space.
10) Show that the normalized $\mathbf{S O}(3)$-invariant measure on $S^{2}=\mathbf{S O}(3) / \mathbf{S O}(2)$ is obtained from the surface integral given by

$$
\frac{1}{4 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} f(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \sin \phi d \theta d \phi
$$

with respect to spherical coordinates, by relating this measure to Lebesgue measure of \mathbf{R}^{3} (which is known to be rotation invariant) through the standard formula for integration with respect to spherical and radial coordinates (a formula which is easily derived by the calculation of a Jacobian determinant).

