
Exercises Week 6

1) For a Lie algebra g one defines a sequence of subspaces by gk = [g, gk−1]. Show that
this is a descending sequence of ideals. The Lie algebra is said to be nilpotent if gk = 0 for
some k. Show as an example that the space of strictly upper triangular real n × n matrices
is a nilpotent Lie algebra.

Let g be nilpotent, and let h be an ideal. Show that g/h is nilpotent.

2) Let g be a nilpotent Lie algebra. Show that g has a basis with respect to which ad(X)
is strictly upper trangular for all X ∈ g. Show that

det

(
1− e−adX

adX

)
= 1.

Let G be a Lie group with nilpotent Lie algebra g, and assume in addition that exp : g→
G is bijective. Show that then exp is a diffeomorphism of g to G.

Verify by explicit calculation that exp is bijective for the Lie group of upper triangular
n× n matrices with 1’s in the diagonal, when n = 2 and n = 3 (in fact this holds for all n).

3) Let G be a connected Lie group, H a closed connected central subgroup, and L =
G/H . Show that if the exponential map of L is surjective, then the exponential map of G is
surjective.

Use this to prove that exp is surjective for all connected Lie groups with a nilpotent Lie
algebra (begin with the same statement for a commutative Lie algebra).

Give an example of a Lie group with nilpotent Lie algebra for which exp is not injective.

4) Let G be a connected Lie group, and let U be a neighborhood of 0 in its Lie algebra
for which the restriction of exp is a diffeomorphism U → exp(U). Show that for a function
f ∈ C(G) with support in U∫

G

f(g) dg =

∫
U

f(expX) det

(
1− e−adX

adX

)
dX

where dg is a left Haar measure on G and dX is a Lebesgue measure on the vector space g
(the formula becomes particularly simple for Lie groups with nilpotent Lie algebra).

5) Let G consist of the 2× 2 real matrices of the form

g(u, v) =

(
u v
0 1

)
where u > 0. Show that G is a non-commutative Lie group. Show that if g = g(a, b), then
the differential of the left multiplication map `g has determinant a2 with respect to the the
coordinates (u, v). Conclude that u−2 du dv is a left Haar measure, where du dv is Lebesgue
measure on the half plane (combine (19) on page 65 with the formula on top of page 64).

6) Determine the modular function | det(Ad(g)| for the group G in the previous exercise,
and find a right Haar measure.



7) Let p > 1 be fixed and let Gp be the subgroup of the group G from the previous two
exercises, consisting of the matrices σ(u, v) for which u = pk for some k ∈ Z. Find the left
and right Haar measures.

8) Let G = GL(n,R) which we regard as usual as an open subet of the set M(n,R) of
all n× n real matrices. Show that a left and right Haar integral is given by∫

G

f(g) dg =

∫
M(n,R)

f(X) | detX|−n dX

where dX denotes a Lebesgue measure on the vector space M(n,R).

9) Let G ⊂ GL(n,R) denote the subgroup of all matrices g for which ggt = cI with a
positive scalar c ∈ R+, and for which det g > 0. Then G = SO(n)D where D is the central
subgroup of all diagonal matrices rI with r > 0. Show that G acts transitively on Rn \ {0}
by matrix multiplication, and determine a left invariant measure on this homogeneous space.

10) Show that the normalized SO(3)-invariant measure on S2 = SO(3)/SO(2) is ob-
tained from the surface integral given by

1

4π

∫ π

0

∫ 2π

0

f(cos θ sinφ, sin θ sinφ, cosφ) sinφ dθ dφ

with respect to spherical coordinates, by relating this measure to Lebesgue measure of R3

(which is known to be rotation invariant) through the standard formula for integration with
respect to spherical and radial coordinates (a formula which is easily derived by the calcula-
tion of a Jacobian determinant).


