$SL(2, \mathbf{R})$ and the upper half-plane

Assignment due March 5, 2014 (counts for 25 % of the grade)

Let $G = SL(2, \mathbf{R})$ and K = SO(2).

(i) Write $\mathfrak s$ for the 2-dimensional linear space of the symmetric matrices in $\mathfrak s\mathfrak l(2,\mathbf R)$. Let $X\in\mathfrak s$ and assume $X\neq 0$. Show that $\det X<0$ and

$$\exp(X) = \cosh \lambda I + \frac{\sinh \lambda}{\lambda} X$$

where $\lambda = \sqrt{-\det(X)}$. (Hint: one can reduce to the case of a diagonal matrix).

(ii) Write S for the set consisting of the symmetric matrices in $\mathbf{SL}(2,\mathbf{R})$ with positive eigenvalues.

Prove that S is a 2-dimensional submanifold of $\mathbf{SL}(2,\mathbf{R})$ and that $\exp:\mathfrak{s}\to S$ is a diffeomeorphism.

- (iii) Show that $x \mapsto x^2$ is a diffeomorphism of S onto itself.
- (iv) Prove that

$$(x,k) \mapsto xk, \qquad S \times K \to G$$

is a diffeomorphism. (Hint: show $gg^t \in S$ for all $g \in G$.)

Let \mathcal{H} be the upper half-plane, i.e., $\mathcal{H} = \{z \in \mathbf{C} : \operatorname{Im} z > 0\}$ equipped with the topology induced by the usual topology on \mathbf{C} . For $g \in G$, we write $g_{i,j}$ with $1 \leq i, j \leq 2$ for the matrix coefficients of g,

$$g = \left(\begin{array}{cc} g_{1,1} & g_{1,2} \\ g_{2,1} & g_{2,2} \end{array}\right).$$

- (v) Let $g \in G$. Show that $g_{2,1}z + g_{2,2} \neq 0$ for every $z \in \mathcal{H}$.
- (vi) Define $\phi: G \times \mathcal{H} \to \mathbf{C}$ to be the map given by

$$\phi(g,z) = \frac{g_{1,1}z + g_{1,2}}{g_{2,1}z + g_{2,2}} \qquad (g \in G, z \in \mathcal{H}).$$

Show that ϕ maps into \mathcal{H} , and that it gives a smooth left-action of G on \mathcal{H} . We write it as $\phi(g,z)=g\cdot z$.

- (vii) Prove that the action is transitive.
- (viii) Prove that

$$X \mapsto \exp(X) \cdot i, \quad \mathfrak{s} \to \mathcal{H}$$

is a diffeomorphism.