Actions on the unit disk

Assignment due March 3, 2015 (counts for 25% of the grade)

Let

$$
G=\left\{g=g_{\alpha, \beta}:=\left(\begin{array}{cc}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right)\left|\alpha, \beta \in \mathbb{C},|\alpha|^{2}-|\beta|^{2}=1\right\}\right.
$$

and $P=\left\{g_{\alpha, \beta} \in G \mid \alpha+\beta \in \mathbb{R}\right\}, A=\left\{g_{\alpha, \beta} \in P \mid \alpha \geq 1\right\}$.
(i) Show that G (with matrix multiplication) is a Lie group, and that P and A are Lie subgroups.
(ii) Determine an element Y in the Lie-algebra of G for which A is the corresponding oneparameter group (hint: express the elements in A by means of $\cosh t$ and $\sinh t$, and then differentiate).
(iii) Let

$$
X=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), V=\left(\begin{array}{cc}
i & -i \\
i & -i
\end{array}\right)
$$

Determine $\exp (s X)$ and $\exp (u V)$ for $s, u \in \mathbb{R}$.
Let \mathbf{D} be the complex unit disk, $\{z \in \mathbb{C}||z|<1\}$, equipped with the smooth structure induced by the usual structure on $\mathbb{C} \simeq \mathbb{R}^{2}$, and let \mathbf{B} denote its boundary, the unit circle. For $g \in G$, we write $g_{i, j}$ with $1 \leq i, j \leq 2$ for the matrix coefficients of g,

$$
g=\left(\begin{array}{ll}
g_{1,1} & g_{1,2} \\
g_{2,1} & g_{2,2}
\end{array}\right)
$$

(iv) Let $z \in \mathbb{C}$. Show that $g_{2,1} z+g_{2,2} \neq 0$ for every $g \in G$ if and only if $z \in \overline{\mathbf{D}}=\mathbf{D} \cup \mathbf{B}$.
(v) Define $\phi: G \times \overline{\mathbf{D}} \rightarrow \mathbb{C}$ to be the map given by

$$
\phi(g, z)=\frac{g_{1,1} z+g_{1,2}}{g_{2,1} z+g_{2,2}} \quad(g \in G, z \in \overline{\mathbf{D}})
$$

Show that ϕ maps \mathbf{D} into \mathbf{D} and \mathbf{B} into \mathbf{B}, and that it gives a smooth left-action of G on each of these spaces. We denote these actions by $g . z=\phi(g, z)$.
(vi) Show that the 1-parameter group $N=\{\exp (u V) \mid u \in \mathbb{R}\}$ has exactly 2 orbits in \mathbf{B}.
(vii) Determine the stabilizer $G_{z}:=\{g \in G \mid g \cdot z=z\}$ of each of the elements $z=0 \in \mathbf{D}$ and $z=1 \in \mathbf{B}$.
(viii) Describe all the orbits of the 1-parameter subgroup $K=\{\exp (s X) \mid s \in \mathbb{R}\}$ in \mathbf{D}, and show that it has only one orbit on \mathbf{B} (it acts transitively).
(ix) Show that G has only one orbit on \mathbf{D} (hint: Determine the A-orbit through 0 , and exploit that every K-orbit passes through it).
(x) Use (vii)-(ix) to show that P has only one orbit on \mathbf{D}.

