Representations of $\operatorname{SU}(n)$

Assignment due April 13, 2015 (counts for 50% of the grade)

In these exercises, "representation" stands for "continuous representation" everywhere.
Let $n \in \mathbb{N}$ with $n \geq 2$ and consider the connected compact Lie group $G=\operatorname{SU}(n)$ and its real Lie algebra $\mathfrak{g}=\mathfrak{s u}(n) \subset \mathfrak{s l}(n, \mathbb{C})$.

For $1 \leq i, j \leq n$ we denote by $E_{i j}$ the matrix in $\mathfrak{g l}(n, \mathbb{C})$ with matrix elements

$$
\left(E_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}, \quad(k, l=1, \ldots, n)
$$

that is, it has 1 in the entry of row i and column j, and 0 everywhere else.
(i) Show that $\mathfrak{g}+i \mathfrak{g}=\mathfrak{s l}(n, \mathbb{C})$ and $\mathfrak{g} \cap i \mathfrak{g}=\{0\}$, and conclude that the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} is isomorphic to $\mathfrak{s l}(n, \mathbb{C})$.
(ii) Show that the $(n-1)$-dimensional linear space \mathfrak{t} consisting of all diagonal matrices

$$
\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right):=\sum_{k=1}^{n} z_{k} E_{k k}
$$

in \mathfrak{g} is a maximal torus.
(iii) Define for $k=1, \ldots, n$ a linear map by

$$
\epsilon_{k}: \mathfrak{t} \rightarrow \mathbb{R}, \quad \epsilon_{k}\left(\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)\right)=z_{k}
$$

Show that for each pair (i, j) with $i \neq j$ the linear subspace $\mathbb{C} E_{i j}$ is a root space of $\mathfrak{g}_{\mathbb{C}}$ and determine the corresponding root $\alpha_{i j}$ in terms of the ϵ_{k}. Show that

$$
R=\left\{\alpha_{i j} \mid i \neq j\right\}
$$

is the complete set of roots.
(iv) Let $C=\left\{X \in i \mathfrak{t} \mid X=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)\right.$ with $\left.x_{1}>\cdots>x_{n}\right\}$. Show that C is a Weyl chamber, and determine the corresponding sets R^{+}and R^{-}of positive and negative roots. Determine also the subalgebras $\mathfrak{g}_{\mathbb{C}}^{+}$and $\mathfrak{g}_{\mathbb{C}}^{-}$of $\mathfrak{g}_{\mathbb{C}}$.
(v) Let $\mathfrak{n}:=\mathfrak{g}_{\mathbb{C}}^{+}$. For (π, V) a finite dimensional representation of G on a complex vector space V, let

$$
V^{\mathfrak{n}}=\left\{v \in V \mid \pi_{*, \mathbb{C}}(X) v=0, \forall X \in \mathfrak{n}\right\}
$$

be the space of vectors annihilated by \mathfrak{n}.
Show that if $\operatorname{dim} V^{\mathfrak{n}}=1$ then π is irreducible.
(vi) Consider the representation σ of G on $E=\mathbb{C}^{n}$ given by standard matrix multiplication $\sigma(g) v=g v$ for $v \in E$. Show that the representation is irreducible and determine its highest weight.
(vii) Consider the adjoint representation Ad of G on \mathfrak{g} and its complexification $\mathfrak{g}_{\mathbb{C}}$. Show that the representation is irreducible and determine its highest weight.
(viii) Let $M=\mathfrak{g l}(n, \mathbb{C})$ and define $\pi(g) A=g A g^{t}$ for $g \in G$ and $A \in M$. Show that π is a representation of G, and determine the derived representation π_{*} of \mathfrak{g}.
For the rest of these exercises, π will denote the representation just defined.
(ix) Find all non-zero weight spaces M_{λ} for π and the corresponding weights $\lambda \in \mathfrak{t}_{\mathbb{C}}^{*}$ in terms of the ϵ_{k}.
(x) Show that $M^{\mathfrak{n}}=\operatorname{Span}\left\{E_{11}, E_{12}-E_{21}\right\}$. Hint. Show first that a lot of entries in A must be zero if $\pi_{*}\left(E_{1 j}\right)(A)=0$ for $j=2, \ldots, n$.
(xi) Decompose M as the direct sum of the subspace $\operatorname{Sym}(n, \mathbb{C})$ of symmetric matrices and the subspace $\operatorname{Skew}(n, \mathbb{C})$ of anti-symmetric matrices. Show that these subspaces are G-invariant and irreducible, and determine the highest weights of the restrictions $\pi_{\text {Sym }}$ and $\pi_{\text {skew }}$ of π to them.
(xii) Let $m \in \mathbb{N}$ and let \mathcal{P}_{m} denote the space of complex-valued homogeneous polynomials of degree m of n complex variables x_{1}, \ldots, x_{n}. The space is spanned by the polynomials of the form

$$
P_{l}(x)=x_{1}^{l_{1}} \cdots x_{n}^{l_{n}}, \quad x \in \mathbb{R}^{d},
$$

where $l=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}_{0}$ with $l_{1}+\cdots+l_{n}=m$.
For $P \in \mathcal{P}_{m}$ and $g \in G$ we define

$$
\rho_{m}(g) P(x)=P\left(g^{t} x\right)
$$

for $x \in \mathbb{R}^{n}$ (where g^{t} denotes the transpose of g).
Show that ρ_{m} is a representation of G for each m.
(xiii) Define a linear map T from M to \mathcal{P}_{2} by $T A(x)=x^{t} A x$ for $A \in M$. Show that T is equivariant. Determine its kernel and range. We can conclude that two representations are equivalent. Which?
(xiv) Show that ρ_{m} is irreducible for all m.

