The root system of $\mathfrak{so}(7)$.

Recall that $\mathfrak{so}(7)$ is the Lie subalgebra of $Mat(7, \mathbb{R})$ consisting of the anti-symmetric matrices. Let $v : \mathbb{R}^3 \to \mathfrak{so}(7)$ be the map given by

$$v(x) = \begin{pmatrix} 0 & -x_1 & & & & \\ x_1 & 0 & & & & \\ & & 0 & -x_2 & & & \\ & & x_2 & 0 & & & \\ & & & x_2 & 0 & & \\ & & & & x_3 & 0 & \\ & & & & & & 0 \end{pmatrix} \qquad (x \in \mathbf{R}^3)$$

(The entries left blank are to be understood as zero's.)

- (i) Prove that $\mathfrak{so}(7)$ is a compact Lie algebra with trivial center.
- (ii) Let $\mathfrak{t} = \{v(x) : x \in \mathbb{R}^3\}$. Prove that \mathfrak{t} is a maximal torus of $\mathfrak{so}(7)$.

We define

$$\mathfrak{so}(7; \mathbf{C}) = \{ X \in \operatorname{Mat}(7, \mathbf{C}) : X^t = -X \}$$

(iii) Prove that $\mathfrak{so}(7, \mathbb{C})$ is a Lie subalgebra of $Mat(7, \mathbb{C})$. Show that $\mathfrak{so}(7; \mathbb{C})$ is the complexification of $\mathfrak{so}(7)$.

For j = 1, 2, 3, let $e_j \in i\mathfrak{t}^*$ be the real linear map $\mathfrak{t} \to i\mathbf{R}$ given by

$$e_j\big(v(x)\big) = ix_j$$

(iv) Prove that the set of roots $R = R(\mathfrak{so}(7, \mathbb{C}), \mathfrak{t})$ of $\mathfrak{so}(7, \mathbb{C})$ with respect to \mathfrak{t} is equal to

 $\{\pm e_j \pm e_k : 1 \le j < k \le 3\} \cup \{\pm e_j : 1 \le j \le 3\}.$

Determine the corresponding root spaces.

- (v) Verify explicitly that R is indeed a root system. Determine for every $\alpha \in R$ the reflection s_{α} .
- (vi) Show that the Weyl group W of R equals the group of all permutations and sign changes of the set $\{e_j : 1 \le j \le 3\}$.
- (vii) Determine a fundamental system S for R.
- (viii) Prove that the set $\{s_{\alpha} : \alpha \in S\}$ generates W.
 - (ix) Determine explicitly a W-invariant inner product on $i\mathfrak{t}^*$.
 - (x) Determine the Cartan integers associated to S.
 - (xi) Determine the Dynkin diagram of $\mathfrak{so}(7)$.