The root system of $\mathfrak{s o}(7)$.

Recall that $\mathfrak{s o}(7)$ is the Lie subalgebra of $\operatorname{Mat}(7, \mathbf{R})$ consisting of the anti-symmetric matrices. Let $v: \mathbf{R}^{3} \rightarrow \mathfrak{s o}(7)$ be the map given by

$$
v(x)=\left(\begin{array}{ccccccc}
0 & -x_{1} & & & & & \\
x_{1} & 0 & & & & & \\
& & 0 & -x_{2} & & & \\
& & x_{2} & 0 & & & \\
& & & & 0 & -x_{3} & \\
& & & & x_{3} & 0 & \\
& & & & & & 0
\end{array}\right) \quad\left(x \in \mathbf{R}^{3}\right)
$$

(The entries left blank are to be understood as zero's.)
(i) Prove that $\mathfrak{s o}(7)$ is a compact Lie algebra with trivial center.
(ii) Let $\mathfrak{t}=\left\{v(x): x \in \mathbf{R}^{3}\right\}$. Prove that \mathfrak{t} is a maximal torus of $\mathfrak{s o}(7)$.

We define

$$
\mathfrak{s o}(7 ; \mathbf{C})=\left\{X \in \operatorname{Mat}(7, \mathbf{C}): X^{t}=-X\right\} .
$$

(iii) Prove that $\mathfrak{s o}(7, \mathbf{C})$ is a Lie subalgebra of $\operatorname{Mat}(7, \mathbf{C})$. Show that $\mathfrak{s o}(7 ; \mathbf{C})$ is the complexification of $\mathfrak{s o}(7)$.

For $j=1,2,3$, let $e_{j} \in i \mathfrak{t}^{*}$ be the real linear map $\mathfrak{t} \rightarrow i \mathbf{R}$ given by

$$
e_{j}(v(x))=i x_{j} .
$$

(iv) Prove that the set of roots $R=R(\mathfrak{s o}(7, \mathbf{C}), \mathfrak{t})$ of $\mathfrak{s o}(7, \mathbf{C})$ with respect to \mathfrak{t} is equal to

$$
\left\{ \pm e_{j} \pm e_{k}: 1 \leq j<k \leq 3\right\} \cup\left\{ \pm e_{j}: 1 \leq j \leq 3\right\}
$$

Determine the corresponding root spaces.
(v) Verify explicitly that R is indeed a root system. Determine for every $\alpha \in R$ the reflection s_{α}.
(vi) Show that the Weyl group W of R equals the group of all permutations and sign changes of the set $\left\{e_{j}: 1 \leq j \leq 3\right\}$.
(vii) Determine a fundamental system S for R.
(viii) Prove that the set $\left\{s_{\alpha}: \alpha \in S\right\}$ generates W.
(ix) Determine explicitly a W-invariant inner product on $i t^{*}$.
(x) Determine the Cartan integers associated to S.
(xi) Determine the Dynkin diagram of $\mathfrak{s o}(7)$.

