Quotients of the Heisenberg group

Assignment due March 18, 2015 (counts for 25% of the grade)

Let G denote the Heisenberg group

$$
G=\left\{\left.g_{x, y, z}=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in \mathbf{R}\right\}
$$

Let

$$
X=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad Z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and let \mathfrak{g} be the span of these matrices, with commutator bracket.
(i) Show that \mathfrak{g} is the Lie algebra of G and find all three brackets among X, Y and Z.
(ii) Determine $\exp (s X+t Y)$ and $\exp (u Z)$ for $s, t, u \in \mathbf{R}$ and verify the relation

$$
\exp (s X) \exp (t Y)=\exp (t Y) \exp (s X) \exp (s t Z)
$$

(iii) Determine the center \mathfrak{c} of \mathfrak{g} and the center C of G. Determine the Lie algebra of G / C.
(iv) Let $M=\mathbf{R}^{2}$ and define

$$
\alpha\left(g_{x, y, z},(u, v)\right)=(u+x v+z, v+y)
$$

for $(u, v) \in M$. Show that this gives a transitive left action of G on M, and determine a closed subgroup H of G such that $M \simeq G / H$.
(v) Let

$$
\Gamma=\left\{g_{0,0, n} \mid n \in \mathbf{Z}\right\} .
$$

Show that $L=G / \Gamma$ is a Lie group, and determine its Lie algebra. Show that L has compact center.
(vi) Let (ρ, V) be a finite dimensional complex continuous representation of G, and let ρ_{*} be the derived representation of \mathfrak{g}. Let $\gamma \in \mathbf{C}$ be an eigenvalue for $\rho_{*}(Z)$, and let $V_{\gamma} \subset V$ denote the corresponding eigenspace. Show that V_{γ} is a G-invariant subspace. Determine the action of the one-parameter group $\exp (u Z)$ on V_{γ}.
(vii) Let γ and V_{γ} be as above, and let $v \in V_{\gamma}$ be an eigenvector for $\rho(\exp (X))$, say with eigenvalue $\alpha \in \mathbf{C}$. Can α be zero? Show that for each $t \in \mathbf{R}, \rho(\exp (t Y)) v$ is an eigenvector for $\rho(\exp (X))$ (hint: (ii)). What is the eigenvalue?
(viii) Let γ be as above. Show that $\gamma=0$ (hint: $\operatorname{dim} V<\infty$).
(ix) Show that every finite dimensional continuous representation of the Lie group L is trivial on its center. Deduce that there is no injective Lie homomorphism of L into $\operatorname{GL}(N, \mathbf{R})$ for any $N \in \mathbf{N}$.

