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There is a simple formula for the absolute value of the determinant of
the character table of the symmetric group Sn. It equals aP , the product
of all parts of all partitions of n (see [4, Corollary 6.5]). In this paper we
calculate the absolute values of the determinants of certain submatrices of
the character table X of the alternating group An, including that of X itself
(Section 2). We also study explicitly the powers of 2 occurring in these
determinants using generating functions (Section 3).

1 Preliminaries

We fix a positive integer n. We will use the same notation as in [2], which
we recall here.

If µ = (µ1, µ2, . . .) is a partition of n we write µ ∈ P and then zµ denotes
the order of the centralizer of an element of (conjugacy) type µ in Sn. Suppose
µ = (1m1(µ), 2m2(µ), . . .), is written in exponential notation. Then we may
factor zµ = aµbµ, where

aµ =
∏

i≥1

imi(µ), bµ =
∏

i≥1

mi(µ)!

1Partially supported by The Danish National Research Council.

1



Whenever Q ⊆ P we define

aQ =
∏

µ∈Q

aµ, bQ =
∏

µ∈Q

bµ .

We consider the alternating group An. We let P+ denote the even parti-
tions in P, O the partitions into odd parts, and D the partitions into distinct
parts.

The conjugacy classes in An are of two types. The classes labelled by
partitions µ ∈ P+ \ (O ∩ D) are the non-split classes, which contain all Sn-
permutations of this type; we denote a representative by σµ and note that
the corresponding centralizer is then of order z′

µ = zµ/2. For the partitions
µ ∈ D ∩ O, the corresponding Sn-class splits into two conjugacy classes in
An, for which we denote representatives by σ+

µ and σ−
µ ; their centralizers are

of order z′µ = zµ.
We briefly recall some information on the irreducible An-characters (see

[5, sect. 2.5]).
Let µ be a partition of n. For µ 6= µ̃, i.e., µ non-symmetric, [µ] ↓An=

[µ̃] ↓An is irreducible. Let {µ} = {µ̃} denote this irreducible character of An.
For µ = µ̃, i.e., µ symmetric, [µ] ↓An= {µ}+ + {µ}− is a sum of two distinct
irreducible An-characters (which are conjugate in Sn).
This gives all the irreducible complex characters of An, i.e.,

Irr(An) = {{µ}± | µ ` n, µ = µ̃} ∪ {{µ} | µ ` n, µ 6= µ̃} .

The characters {µ}±, for symmetric µ, usually have non-rational values on
the corresponding “critical” classes of cycle type h(µ) = (h1, . . . , hl), where
h1, . . . , hl are the principal hook lengths in µ; note that h(µ) ∈ D∩O, so the

corresponding Sn-class splits. Then we have [µ](σh(µ)) = (−1)
n−l
2 =: εµ and

{µ}+(σ±
h(µ)) =

1

2



εµ ±

√

√

√

√εµ

l
∏

i=1

hi





{µ}−(σ±
h(µ)) =

1

2



εµ ∓

√

√

√

√εµ

l
∏

i=1

hi





All other irreducible An-characters have the same value on these two classes.

For later use, we want to recall the Jacobi minor theorem (see [3, p. 21]).
Let A = (aij) be an n×n matrix. Let Mv be a v-rowed minor of the determi-
nant det A, corresponding to the rows i1, . . . , iv and the columns k1, . . . , kv.
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Then we take the (n − v)-rowed complementary minor for A by deleting all
the rows and columns chosen for Mv before, and define the signed comple-
mentary minor M (v) to Mv by multiplying this complementary minor by the
sign ±1, depending on

∑v
j=1 ij +

∑v
j=1 kj being even or odd, respectively.

(Note that for principal minors the sign is always +.)
Let A′ = (Aij) be the n×n-matrix of cofactors Aij for A, i.e., the adjoint

matrix to A. Let Mv and M ′
v be corresponding v-rowed minors of A and A′,

respectively, then
M ′

v = (det A)v−1M (v) .

2 Determinants of submatrices of the char-

acter table of An

We observe that by the Murnaghan-Nakayama formula we have for any sym-
metric partition µ and any ν ∈ D ∩ O:

{µ}±(σ±
ν ) = 0 for all ν > h(µ) (in lexicographic order)

Hence, if we order the k (say) partitions in D ∩ O in decreasing lexico-
graphic order, and the k symmetric partitions according to their principal
hook lengths, then the corresponding 2k × 2k part of the character table of
An is almost an upper triangular matrix, except that we have 2 × 2 blocks
along the diagonal. We call this matrix Xs.

Knowing the entries of these diagonal blocks explicitly, we can easily
compute their determinant and hence the (absolute value of the) determinant
of this submatrix of the character table. A 2 × 2 block corresponding to the
characters {µ}± on the classes σ±

h(µ) gives a contribution of absolute value

|εµ

√

εµ

∏

i

hi| =

√

∏

i

hi =
√

ah(µ) ,

where h(µ) = (h1, h2, . . .). Hence the absolute value of the determinant of
the whole submatrix is given by:

Proposition 2.1

| detXs| =
∏

ν∈D∩O

√
aν =

√
aD∩O .
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We can also easily determine the (absolute value of the) determinant for
the whole character table X of An. By character orthogonality, we know that
X̄ tX is a diagonal matrix with the centralizer orders as its diagonal entries.
Set P (+) = P+ \ (D ∩ O). Hence we have

| detX |2 =
(

∏

µ∈P(+)
zµ

2

) (

∏

µ∈D∩O z2
µ

)

= 2−|P(+)|zP+zD∩O = 2−|P(+)|aP+bP+aD∩O

Now we have bP+ = 2e+
aP+, for some integer e+ ∈ Z. (This is not hard

to prove by a combinatorial argument, see Lemma 3.3.)
Hence we obtain

Proposition 2.2

| detX |2 = 2e+−|P(+)|a2
P+aD∩O .

In the next section we will see that e+ = e+(n) ∈ N, and that there
is a nice generating function for the numbers e+(n) (Proposition 3.4). In
particular, an explicit formula for e+(n) is given by

e+(n) =

[n/2]
∑

i=1

τ(i)p′(n − 2i) ,

where τ(i) is the number of divisors of i, and p′(j) = |D(j) ∩ O(j)|.
We are interested in determining the determinant of the integral part

of the character table of An corresponding to the non-symmetric partitions
and the non-split conjugacy classes; let us call this matrix Xu (with some
ordering of rows and columns chosen). (Note that this is also a submatrix
of the character table of Sn.) This part of the character table of An is
complementary to the submatrix we have considered above, and we want to
compute its determinant by employing Jacobi’s theorem.

Theorem 2.3 The determinant of the matrix Xu has absolute value

| detXu| = 2(e+−|P(+)|)/2aP(+) .

Proof. We assume that the rows of the character table X of An are
labelled such that the rows corresponding to the symmetric partitions come
first, and that the columns are labelled such that the v = |P (+)| partitions in
P(+) come first. Let ∆ be the diagonal matrix with the centralizer orders z ′

µ
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as its diagonal entries, and let ∆(+) be the diagonal submatrix corresponding
to the partitions µ ∈ P (+).

As we have X̄ t · X = ∆ , we know that the adjoint matrix to X is

X ′ = (detX )∆−1X̄ t .

We now want to apply Jacobi’s minor theorem as it is stated in Section 1.
We take the v-rowed minor Mv corresponding to the upper left square part in
X , i.e., Mv = detXu. The corresponding minor of X ′ is then the determinant
of

(detX )(∆(+))−1Xu

(remember that Xu is integral). The signed complementary minor to Mv in
X is then just detXs. By Jacobi’s theorem we know that

(detX )v(
∏

µ∈P(+)

z′µ)−1 detXu = (detX )v−1 detXs .

Hence
detXu = (detX )−12−vaP(+)bP(+) detXs ,

and thus

| detXu| = 2−(e+−v)/2(aP+
√

aD∩O)−12−vaP(+)bP+
√

aD∩O

= 2(e+−v)/2aP(+)

where we have used the relation bP+ = 2e+
aP+. 2

3 Powers of 2

We compute the generating functions for the powers of 2 occurring in the
determinants of the previous section.

Let P (q), P +(q), P−(q) be the generating function for the number of par-
titions (resp. even/odd partitions) of n. The following is wellknown:

Lemma 3.1 P +(q) − P−(q) = ∆(q), where

∆(q) =
∏

k≥0

(1 + q2k+1) ( =
P (q)P (q4)

P (q2)2
)

is the generating function for the number of partitions of n into distinct odd

parts.
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Indeed, using that in P (q) =
∏

k≥1
1

1−qk the factor 1
1−qk accounts for the

parts equal to k we see that

P+(q) − P−(q) =
∏

k≥1

1

1 + (−q)k
.

Substituting q → −q in the Euler identity
∏

k≥1(1 + qk) =
∏

k≥0
1

1−q2k+1 and
inverting we get

∏

k≥1

1

1 + (−q)k
=

∏

k≥0

(1 + q2k+1) ,

proving the Lemma. 2

We assume in the following always that δ = + or − is a sign.

Corollary 3.2 We have

P δ(q) =
P (q) + δ∆(q)

2
.

We let Pδ(n) be the set of partitions of n with sign δ. Then define

aδ(n) = aPδ(n) =
∏

µ∈Pδ(n)

aµ, bδ(n) = bPδ(n) =
∏

µ∈Pδ(n)

bµ .

We factor each i ∈ N as a product i = i2i
′, where i2 is a power of 2 and

i′ is odd and consider two involutory bijections ι, ι′ on the set

T (n) = {(µ, d, k)|µ ∈ P(n), md(µ) ≥ k} .

Here
ι : (µ, d, k) 7→ (µ̂, k, d)

where µ̂ is obtained from µ by replacing k parts equal to d by d parts equal
to k and leaving all other parts unchanged and

ι′ : (µ, d, k) 7→ (µ̃, d2k
′, k2d

′)

where µ̃ is obtained from µ by replacing k parts equal to d by k2d
′ parts

equal to d2k
′ and leaving all other parts unchanged. Let

T δ
d,k(n) = {µ ∈ Pδ(n)|md(µ) ≥ k} .

Then
|T δ

d,k(n)| = p(−1)(d−1)kδ(n − dk) (1)
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Indeed removing k parts equal to d from a partition µ with sign δ gives you
a partition with sign (−1)(d−1)kδ and of cardinality |µ| − dk.

Note that this means that the partitions µ, µ̂ in the definition of ι have
different signs if and only if (d − 1)k and d(k − 1) have different parities, ie.
if and only if d and k have different parities. Moreover the partitions µ, µ̃ in
the definition of ι′ have the same sign.

Thus ι induces a bijection between T δ
d,k(n) and T δ

k,d(n) if d, k have the

same parity and between T δ
d,k(n) and T −δ

k,d (n) if d, k have different parities.
Moreover the bijection ι′ shows that

aδ(n)′ = bδ(n)′, (2)

and hence

Lemma 3.3 bδ(n)/aδ(n) = 2eδ(n) for some integer eδ(n).

The power of 2 in aδ(n) is

xδ(n) =
∏

d,k
d even

d
|T δ

d,k(n)|

2

and the power of 2 in bδ(n) is

yδ(n) =
∏

d,k
k even

k
|T δ

d,k(n)|

2

Let xδ
o(n), xδ

e(n) be the product of the factors in xδ(n), where k is odd/even
and correspondingly yδ

o(n), yδ
e(n) be the product of the factors in yδ(n), where

d is odd/even. Using the map ι we see that

xδ
e(n) = yδ

e(n), xδ
o(n) = y−δ

o (n)

Thus the power of 2 in bδ(n)/aδ(n) is x−δ
o (n)/xδ

o(n).
Suppose that xδ

o(n) = 2fδ
o (n) and xδ

e(n) = 2fδ
e (n). Then eδ(n) = f−δ

o (n)−f δ
o (n).

We have (since ν2(d) = 0, when d is odd)

f δ
o (n) =

∑

d,k
k odd

ν2(d)|T δ
d,k(n)| =

∑

d,k
k odd

ν2(d)p−δ(n − dk) .

Let τo(n) the number of odd divisors of n. Note that τo(n)ν2(n) equals the
number τe(n) of even divisors of n. We then get (substituting dk = t in the
above sum and noting that then ν2(d) = ν2(t) )

f δ
o (n) =

n
∑

t=1

τo(t)ν2(t)p
−δ(n − t) =

n
∑

t=1

τe(t)p
−δ(n − t) .
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Let T (q) =
∑

t≥1
qt

1−qt be the generating function for τ(n). Then T (q2) is the

generating function for the number τe(n) of even divisors of n. If F δ
o (q) is

the generating function for f δ
o (n) we obtain

F δ
o (q) = T (q2)P−δ(q). (3)

Using Lemmas 3.1 and 3.3 we deduce

Proposition 3.4 The generating function for eδ(n) is

Eδ(n) = F−δ
o (q) − F δ

o (q) = δT (q2)∆(q) .

Remark 3.5 This Proposition was also proved in [6] in a different way. Our
approach was partially inspired by an unpublished note of John Graham.
Note that the proposition shows that e+ = e+(n) is always a positive integer.

Let us also consider F δ
e (q). We have

f δ
e (n) =

∑

{d,k|k even}

ν2(d)|T δ
d,k(n)| =

∑

{d,k|k even}

ν2(d)pδ(n − dk) .

We substitute dk = 2t in the above and obtain

f δ
e (n) =

∑

t≥1

τ ∗(t)pδ(n − 2t) ,

where τ ∗(t) =
∑

d|t

ν2(d). We have

τ ∗(t) =

(

ν2(t) + 1

2

)

∏

p odd

(νp(t) + 1) .

Thus if T ∗(q) is the generating function for τ ∗(t) then

F δ
e (q) = T ∗(q2)P δ(q) .

It is easily seen that

T ∗(q) =
∑

j≥1

T (q2j

) .

Proposition 3.6 The exponent of 2 in aδ(n) has the generating function

F δ
e (q) + F δ

o (q) = T ∗(q2)P δ(q) + T (q2)P−δ(q) .
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In Theorem 2.3 we have seen that | detXu| = 2(e−|P(+)|)/2aP(+) .
By Proposition 3.4, e = e+(n) has generating function E+(q) = ∆(q)T (q2).
Moreover |P (+)(n)| has generating function P +(q) − ∆(q) = P−(q) (Lemma
3.1). Clearly, aP (+)(n) is divided by the same power of 2 as a+(n), as the
removed partitions have only odd parts. The generating function for the
corresponding exponent is given by Proposition 3.6. Hence the exponent of
2 in detXu has the generating function

G(q) =
1

2

(

T (q2)∆(q) − P−(q)
)

+ T ∗(q2)P+(q) + T (q2)P−(q)

and this then yields

Theorem 3.7 The exponent of 2 in detXu has the generating function

G(q) =
1

2

(

T (q2)P (q) − P−(q)
)

+ T ∗(q2)P+(q) .

According to MAPLE the first values of the coefficients of G(q) are the
following for n = 2, . . . , 14: 0 0 2 2 4 6 15 19 30 43 70 94 138

Let us finally remark that the Propositions 3.4 and 3.6 also allow to
compute the generating function for the exponent of 2 in | det(X )|, using
Proposition 2.2.
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