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1. Introduction

Let G be a finite group. For a prime p and a p-block B of G, we denote by Irr(B)
the set of complex irreducible characters of G that belong to B. It was conjectured by
Navarro and Willems [NW] that if for blocks Bp and Bq of G at different primes p, q
we have an equality Irr(Bp) = Irr(Bq) then |Irr(Bp)| = 1. But then the first author of
the present article found that the extension group 6.A7 of the alternating group A7

provides a counterexample to the conjecture for non-principal blocks; indeed, for
p = 5 and q = 7 there are even two sets of five characters which both are at the time
the character set of a 5- and a 7-block of 6.A7.

In [NW] it was already stated that in the case of principal blocks the conjecture can
be reduced to simple groups. Here this reduction argument is presented, and we then
confirm the conjecture in the case of principal blocks for all simple groups. In what
follows B0(G)p always denotes the principal p-block of G. Trivially |Irr(B0(G)p)| = 1
if and only if p does not divide |G|. We prove the following main theorem:

Theorem 1.1. Let G be a finite group, and let p and q be different primes. If
Irr(B0(G)p) = Irr(B0(G)q), then pq does not divide |G|.

2. Reduction to the simple case

Proposition 2.1. It suffices to prove Theorem 1.1 for finite non-abelian simple
groups.

Proof. We argue by induction on |G|. Let us write B = B0(G)p. Let 1 < N �G be a
proper normal subgroup of G. We have that B covers a unique p-block (q-block) of N
which is the principal p-block (q-block) of N . Now if θ ∈ Irr(B0(N)p), then there
exists χ ∈ Irr(B) lying over θ. Now, χ ∈ Irr(B0(G)q) and therefore θ ∈ Irr(B0(N)q).
This proves that B0(N)p = B0(N)q. By induction, we have that |N | is not divisible
by pq for every normal subgroup N of G. If G/N is p-solvable or q-solvable, then
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we are done by [NW]. Hence, we may assume that G has a unique maximal normal
subgroup N , that |N | is not divisible by pq, and that G/N is simple non-abelian.

Now, we have that

Irr(B0(G/N)p) ⊆ Irr(B0(G)p)

and that

Irr(B0(G/N)q) ⊆ Irr(B0(G)q) .

Therefore, by [N, Theorem (9.9.c)], it follows that

Irr(B0(G/N)p) = Irr(B0(G)p)

and

Irr(B0(G/N)q) = Irr(B0(G)q) .

Hence, Theorem 1.1 is reduced to the case of finite non-abelian simple groups. �

3. Simple groups of Lie type

Throughout this section, S is a finite simple non-abelian group of Lie type in
characteristic p. We will view S as the derived group [G,G], where G := GF for a
simple algebraic group of adjoint type G and a Frobenius map F on G. Let the pair

(G∗, F ∗) be dual to (G, F ). Notice that |G| = |G∗F∗ |.
Lemma 3.1. Let � �= p be a prime divisor of |G| and let 1 �= t ∈ G∗F∗

be an

�-element. Then the semisimple character χt corresponding to the G∗F∗
-conjugacy

class of t belongs to Irr(B0(G)�). Furthermore, if χ is any irreducible constituent of
χs|S, then χ belongs to Irr(B0(S)�).

Proof. Since G is of adjoint type, Z(G) = 1 and so it is connected. It follows that

CG∗(s) is connected, cf. [DM, Remark 13.15]. Hence to the G∗F∗
-conjugacy class of s

one can associate the semisimple character χt which is an irreducible character of G

of degree (G∗F∗
: CG∗F∗ (t))p′. In general, the G∗F∗

-conjugacy class of any semisimple

element s ∈ G∗F∗
corresponds to the Lusztig series E(GF , s). Now if s is assumed

to be a semisimple �’-element, then by the fundamental result [BM] of Broué and
Michel,

E�(GF , s) :=
⋃

x∈C
G∗F∗ (s), x is an �-element

E(GF , x)

is a union of �-blocks of G. Since t is an �-element, χt belongs to the union E�(GF , 1).
By a result of Hiss [H2, 1.5], all semisimple characters in E�(GF , s) lie in a unique �-
block. Notice that the semisimple character χ1 corresponding to the identity element
is just the principal character of G. Hence by choosing s = 1, we see that χt ∈
Irr(B0(G)�). By [N, Theorem 9.2], χ ∈ Irr(B0(S)�). �
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Lemma 3.2. Let � �= p be a prime and let 1 �= t ∈ G∗F∗ \Z(G∗F∗
) be a semisimple �’-

element. Then the semisimple character χt corresponding to the G∗F∗
-conjugacy class

of t does not belong to Irr(B0(G)�). Furthermore, if χ is any irreducible constituent
of χs|S, then χ does not belong to Irr(B0(S)�).

Proof. As above, χt is an irreducible character ofG of degree D := (G∗F∗
: CG∗F∗ (t))p′.

We claim that D > 1. Assume the contrary. Then χt is one of m := |G/S| irreducible

characters of G of degree 1. We have already noticed that |G| = |G∗F∗ |. Furthermore,

G∗F∗
/Z(G∗F∗

) is a simple group of the same order as of S. It follows that m =

|Z(G∗F∗
)|. Now the m Lusztig series corresponding to central elements s ∈ Z(G∗F∗

)
are disjoint, and each of them contains an irreducible character of degree 1 of G.
Hence χt belongs to one of these m Lusztig series, contradicting the disjointness of

Lusztig series as t /∈ Z(G∗F∗
).

Observe that the degree of any irreducible character contained in E�(GF , t) is di-
visible by D. Since D > 1 and E�(GF , t) is a union of �-blocks, χt cannot belong to
Irr(B0(G)�).

Next assume that χ belongs to B1 := B0(S)�. Then B1 is covered by the �-block B
containing χt. Consider the principal character ψ := 1S of S. Then one can find
ρ ∈ Irr(B) such that ψ is a constituent of ρ|S. Since ψ(1) = 1 and G/S is abelian,
we conclude that ρ(1) = 1. On the other hand, B is contained in E�(GF , t) and so
ρ(1) is divisible by D > 1, a contradiction. �

Theorem 3.3. Theorem 1.1 holds for any finite simple non-abelian group S of Lie
type.

Proof. Let p denote the defining characteristic of S as before, and let � �= p be
a prime divisor of |S|. Also, let �1 be any prime divisor of |S| that is different
from p and � (such an �1 exists always since S is not solvable). In the notation of

the proof of Lemma 3.2, |G∗F∗
/Z(G∗F∗

)| = |S|. Hence we can find an �1-element

t ∈ G∗F∗ \Z(G∗F∗
) and consider any irreducible constituent χ of χt|S. By Lemma 3.1

applied to the �1-element t, χ ∈ Irr(B0(S)�1). By Lemma 3.2 applied to the �’-element
t, χ /∈ Irr(B0(S)�). We have shown that if � and �1 are distinct, and different from p,
prime divisors of |S|, then none of Irr(B0(S)�), Irr(B0(S)�1) can contain the other.

Now we consider S as the quotient HF/Z(HF ) for some simple simply connected
algebraic group H and some Frobenius map F . By the result of [Da, Hu], HF has
exactly |Z(HF )|+ 1 p-blocks. It follows that S has exactly two p-blocks, B0(S)p and
another one, B1 of p-defect 0. It is well known that Irr(B1) consists of the Steinberg
character of S. Since χ(1) is coprime to p, χ �= St and so χ ∈ Irr(B0(S)p). We have
shown above that χ /∈ Irr(B0(S)�), so Irr(B0(S)�) �⊇ Irr(B0(S)p). �

Remark 3.4. Let S be a finite simple group of Lie type in characteristic p.
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(i) Let � �= p be a prime divisor of |S| such that 1S is a constituent of the reduction
modulo � of the Steinberg character St (say if S = PSp2n(q) then we can take any
�|(q + 1), cf. [H1]). Then St ∈ Irr(B0(S)�) \ Irr(B0(S)p) and so none of Irr(B0(S)�),
Irr(B0(S)p) can contain the other.

(ii) Let � �= p be a prime divisor of |S| such that � does not divide |gS| for g
a long-root element in S (say if S = PSp2n(q) then we can take any � coprime
to p(q2n − 1)). Then the central character of St is 0 at g, whereas the central
character of 1S is nonzero (modulo �) at g. It follows that St /∈ Irr(B0(S)�), and so
Irr(B0(S)�) ⊂ Irr(B0(S)p).

4. Alternating groups

Lemma 4.1. Let p and q be different primes p < q ≤ n. Then there exists a two-part
partition λ of n, labelling an irreducible character which is in exactly one of the sets
Irr(B0(Sn)p) and Irr(B0(Sn)q).

Proof. In this proof we apply repeatedly the “Nakayama Conjecture” [JK, 6.1.21] in
the following form: The irreducible character χλ labelled by the two-part partition
λ = (n− c, c) is in Irr(B0(Sn)p) if and only if p | (n− c+1)c. We call such a partition
p-good.

If n ≤ 2p− 2, then λ = (p− 1, n− p+ 1) is p-good and not q-good, since q > p. If
n = 2p− 1 there is no p-good partition whereas (q − 1, n− q + 1) is q-good.

Let us write n = sp + a, 0 ≤ a < p. If n ≥ 2p then (n− (a + 1), a + 1) is p-good.
Assume it is also q-good. Then q | n− a = sp, so that we have n = s′pq+ a for some
integer s′ ≥ 1. If a < p − 1 then (n − p, p) is another p-good partition and it is not
q-good. Thus we may assume a = p − 1 so that p | n + 1. But then (n − q, q) is
q-good and not p-good. �

Theorem 4.2. Theorem 1.1 holds for the alternating group An, n ≥ 5.

Proof. If p ≤ n, then the principal p-block of Sn covers only the principal p-block
of An. Thus Irr(B0(An)p) consists only of irreducible constituents of the restrictions
of characters in Irr(B0(Sn)p) to An. Therefore the theorem follows from Lemma 4.1.

�

Remarks 4.3. (i) In [OS, Corollary 2.8] a far more general result on blocks of Sn

was proved, showing in particular that for the symmetric groups the general Navarro-
Willems conjecture holds. But as this has quite a long proof we have preferred to
provide here with Lemma 4.1 for the case of principal blocks a short self-contained
argument for the proof of Theorem 4.2.
(ii) It is shown in [BO] that also in the case of the double cover groups of Sn the full
Navarro-Willems conjecture is true.
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5. Sporadic groups

In the course of investigating separation properties of the characters of the sporadic
groups (as well as their cyclic upward and downward extensions and the double, triple
and sixfold extensions of A6 and A7), their block distribution was closely examined
using Gap [Gap]; indeed, Gap provides the distribution of the characters into blocks
for all these groups. As a result, none of the sporadic groups has an equality Irr(Bp) =
Irr(Bq) for a p-block Bp and a q-block Bq of positive defect and different primes p, q;
in particular:

Theorem 5.1. Theorem 1.1 holds for the sporadic simple groups.

In fact, more is true: the counterexample to the general Navarro-Willems conjec-
ture occurring for the group 6.A7 (mentioned in the introduction) is the only such
example among all the groups mentioned above.
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