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1 Introduction

In 1998, the second author raised the problem of classifying the irreducible
characters of Sn of prime power degree. Zalesskii proposed the analogous
problem for quasi-simple groups, and he has, in joint work with Malle, made
substantial progress on this latter problem. With the exception of the al-
ternating groups and their double covers, their work provides a complete
solution. In this article we first classify all the irreducible characters of Sn
of prime power degree (Theorem 2.4), and then we deduce the corresponding
classification for the alternating groups (Theorem 5.1), thus providing the
answer for one of the two remaining families in Zalesskii’s problem. This
classification has another application in group theory. With it, we are able to
answer, for alternating groups, a question of Huppert: Which simple groups
G have the property that there is a prime p for which G has an irreducible
character of p-power degree > 1 and all of the irreducible characters of G
have degrees that are relatively prime to p or are powers of p?

The paper is organized as follows. In section 2, some results on hook lengths
in partitions are proved. These results lead to an algorithm which allows us
to show that every irreducible representation of Sn with prime power degree
is labelled by a partition having a large hook. In section 3, we obtain a new
result concerning the prime factors of consecutive integers (Theorem 3.4). In
section 4 we prove Theorem 2.4, the main result. To do so, we combine the
algorithm above with Theorem 3.4 and work of Rasala on minimal degrees.
This implies Theorem 2.4 for large n. To complete the proof, we check that
the algorithm terminates appropriately for small n (i.e. those n ≤ 9.25 ·108)
with the aid of a computer. In the last section we derive the classification of
irreducible characters of An of prime power degree, and we solve Huppert’s
question for alternating groups.

Acknowledgements. The second and third author are grateful to the
Danish Natural Science Foundation for the support of their cooperation on

1



2

this work. The fourth author thanks the National Science Foundation, the
Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation
for their generous support. The authors are indebted to Rhiannon Weaver
for writing an efficient computer program which was vital for this work.

2 An algorithm for hook lengths

We refer to [5], [7] for details about partitions, Young diagrams and hooks.
Consider a partition λ = (λ1, λ2, . . . , λm) of the integer n. Thus λ1 ≥ λ2 ≥
· · · ≥ λm > 0 and λ1 + λ2 + . . . + λm = n. We call the λi’s the parts of λ
and m the length of λ. Moreover for i ≥ 1, mi = mi(λ) denotes the number
of parts equal to i in λ. Thus m =

∑
i≥1mi. The Young diagram of λ

consists of n nodes (boxes) with λi nodes in the ith row. We refer to the
nodes in matrix notation, i.e. the (i, j)-node is the jth node in the ith row.
The (i, j)-hook consists of the nodes in the Young diagram to the right and
below the (i, j)-node, and including this node. The number of nodes in this
hook is its hooklength, denoted by hij . Thus

• • •
•

is the Young diagram of (52, 4, 1), where we have marked the (2, 3)-hook
belonging to the third node in the second row, and the corresponding hook
length h23 is 4.

We put hi = hi1 = λi + (m − i) for 1 ≤ i ≤ m; these are the first column
hook lengths, abbreviated by fch.
The degree fλ of λ is

fλ =
n!

Πi,jhij
.

It is known that this is the degree of the complex irreducible representation
of the symmetric group Sn labelled by λ (see [5], [7]).

Example 2.1 If λ = (n − k, 1k), a partition of n with 0 < k < n then
fλ =

(
n−1
k

)
, a binomial coefficient.

Binomial coefficients are prime powers only in the “trivial” cases ([3], [11]):

Proposition 2.2 The binomial coefficient
(
n
k

)
is a (nontrivial) power of a

prime exactly when n is a prime power and k = 1 or k = n− 1.
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This immediately implies the characterization of hook partitions of (non-
trivial) prime power degree:

Corollary 2.3 Suppose that λ = (n − k, 1k) with 0 < k < n − 1. Then
fλ = pr for some prime p and integer r ≥ 1 if and only if n = pr + 1 and
k = 1 or k = pr − 1.

The following theorem characterizes those partitions (resp. irreducible char-
acters of symmetric groups) that are of prime power degree.

Theorem 2.4 Let λ be a partition of n. Then fλ = pr for some prime p,
r ≥ 1, if and only if one of the following occurs:

n = pr + 1 , λ = (pr, 1) or (2, 1p
r−1) , fλ = pr

or we are in one of the following exceptional cases:

n = 4 : λ = (22), fλ = 2
n = 5 : λ = (221) or (3, 2) , fλ = 5
n = 6 : λ = (4, 2) or (2212) , fλ = 32

λ = (32) or (23) , fλ = 5
λ = (321) , fλ = 24

n = 8 : λ = (521) or (3213) , fλ = 26

n = 9 : λ = (72) or (22, 15) , fλ = 33

First we state some elementary results about hook lengths. In the following,
λ is a partition of n, m1 is the multiplicity of 1 as a part of λ, and hij , hi
are the hook lengths as defined above.

The following lemma is elementary.

Lemma 2.5 If hi2 6= 0 (i.e. λi ≥ 2) then

hi2 = hi −m1 − 1 .

Proposition 2.6 Let 1 ≤ i, j ≤ m, i 6= j. Then

hi + hj − n− 1 ≤ m1 .

Proof. It suffices to prove this for h1 and h2. If λ = (n− k, 1k) is a hook
partition, then the result is trivially true. If λ is not a hook partition, then
h22 6= 0 so that h22 = h2 −m1 − 1 by Lemma 2.5. Since h11 = h1 and since
h11 + h22 ≤ n the result follows. �

Lemma 2.7 Suppose that s = hik and t = hj` where (i, k) 6= (j, `).
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(1) If i 6= j and k 6= `, then s+ t ≤ n.

(2) If s + t > n, then either i = j = 1 (both hooks in the first row) or
k = ` = 1 (both hooks in the first column).

Proof. (1) By assumption, the two hooks have at most one node in com-
mon. If they have a node in common, none of the hooks is the (1, 1)-hook.
Thus, the hooks plus possibly the (1, 1)-node comprise s+ t nodes, whence
s+ t ≤ n.

(2) By (1), we know that i = j or k = `. Assume the former so that k 6= `.
If i > 1, then h1k > hik whence h1k + hj` > n, contradicting (1) applied to
(1, k) and (j, `). The case k = ` is similar. �

Corollary 2.8 For i ≥ 2, every hook of length t > n − hi = n − hi1 is in
the first column of λ.

Proof. Assume that t = hj`. If (j, `) = (i, 1), then the result is true.
Otherwise, apply (2) of Lemma 2.7 with (i, k) = (i, 1) to get ` = 1. �

From now on, assume that fλ is a power of a prime and that λ is not a hook
partition. For n ≤ 6 one easily checks Theorem 2.4 by hand (or by using
the tables in [5]). So we assume from now on that n > 6. Consequently, it
follows that fλ ≥ n+ 1 ([5], Theorem 2.4.10).

Proposition 2.9 If q is a prime for which n−m1 ≤ q ≤ n, then

q, 2q, . . . ,
[
n

q

]
q

are all fch of λ.

Proof. Put w =
[
n
q

]
, n = wq + r, 0 ≤ r < q. By assumption, we

have that (w − 1)q ≤ (w − 1)q + r = n − q ≤ m1. Since m1 is the multi-
plicity of 1 in λ, the numbers 1, 2, . . . ,m1 are fch. In particular, we have
that q, 2q, . . . , (w − 1)q are fch. If wq ≤ m1, then we are done. Assume
that m1 < wq. At most w hooks in λ are of lengths divisible by q (see
e.g. [7], Proposition (3.6)). If there are only the above (w − 1) hooks in
the first column of length divisible by q, then q|fλ since

∏w
i=1(iq) | n!. By

assumption, fλ is then a power of q. We get fλ = (wq)q, the q-part of wq.
Thus fλ|wq ≤ n, whence fλ ≤ n, a contradiction. Let hij be the additional
hook length divisible by q. Since λ 6= (1n), m1 ≤ h2. If h2 > m1, then
hij + h21 > q + m1 ≥ n. By Corollary 2.8 we get j = 1. If h2 = m1, then
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λ = (n − m1, 1m1) and since m1 < wq there has to be a hook of length
divisible by q in the first row. Since n−m1 ≤ q it has to be the (1, 1)-hook.
Thus h11 = wq. �

Corollary 2.10 Let 1 ≤ i < j ≤ m. If h ≤ n has a prime divisor q
satisfying 2n− hi − hj < q, then h is a fch of λ.

Proof. By Proposition 2.6, n −m1 ≤ 2n + 1 − hi − hj . By assumption
2n+ 1− hi − hj ≤ q ≤ h ≤ n, whence n−m1 ≤ q ≤ n. By Proposition 2.9,
any multiple of q less or equal to n is a fch. In particular h is a fch of λ. �

Lemma 2.11 If q is a prime, n
2 < q ≤ n, then λ has a hook of length q.

Proof. This follows immediately from the degree formula and the fact
that fλ ≥ n+ 1. �

We are now going to strengthen our assumption on n and λ slightly. Ac-
cording to Table 3 of [2] there are, for all n ≥ 12, at least two distinct primes
p, q with n

2 < p, q ≤ n. By Lemma 2.11 there are hooks of length p and q in
λ. We will assume that such primes p, q exist for n and that p and q are fch.
This is not a restriction, see Lemma 2.7(2) (if necessary we may replace λ by
its conjugate partition λ0 as we have fλ = fλ0). Now the above assumption
forces any prime between n

2 and n to be a fch of λ.

Proposition 2.12 Suppose we have sequences of integers s1 < s2 < · · · <
sr ≤ n, t1 < t2 < · · · < tr ≤ n satisfying

(i) si < ti for all i;

(ii) s1 and t1 are primes > n
2 ;

(iii) For 1 ≤ i ≤ r − 1, si+1 and ti+1 contain prime factors exceeding
2n− si − ti.

Then s1, . . . , sr, t1, . . . , tr are all fch of λ.

Proof. We use induction on i to show that si and ti are fch for λ. For
i = 1 this is true by our assumption. If si and ti are fch, then Corollary 2.10
shows that si+1 and ti+1 are fch of λ. �

We get an algorithm from Proposition 2.12 which shows that h1 is large and
thus λ is “almost” a hook: Start with two large primes s1 < t1 close to n.
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Then 2n − s1 − t1 is small. Choose if possible two integers s2 and t2 with
s2 < t2, s1 < s2 ≤ n, t1 < t2 ≤ n each having a prime divisor exceeding
2n−s1− t1. Then 2n−s2− t2 < 2n−s1− t1. Choose if possible two integers
s3 and t3 with s3 < t3, s2 < s3 ≤ n, t2 < t3 ≤ n each having a prime divisor
exceeding 2n− s2 − t2 and so on. If this process reaches sr, tr, then tr ≤ h1

by Proposition 2.12.

Example 2.13 n = 189 = 33 · 7. Choose s1 = 179, t1 = 181. Then
2n−s1−t1 = 18. Now choose t2 = 188 = 4 ·47 and s2 = 186 = 2 ·3 ·31 which
have prime factors exceeding 18. Then 2n − s2 − t2 = 4. Choose t3 = 189,
s3 = 188. Thus if fλ is a prime power then h1 = 189 and λ is a hook
partition, contradicting Corollary 2.3. Thus none of the 1.527.273.599.625
partitions of n = 189 is of prime power degree greater than one.

3 Prime factors in consecutive integers and good
sequences

In this section we show, for sufficiently large n, that there are suitable se-
quences as in Proposition 2.12 that end with numbers close to n. Thus, for
a partition λ of prime power degree the algorithm described in the previous
section shows that λ differs from a hook partition only by a small amount.

Suppose that n ≥ 3 is a positive integer. Consider two finite increasing
sequences of integers {Ai} and {Bi} which satisfy the following properties:

(i) A1 < B1 ≤ n are two “large” primes not exceeding n.

(ii) For every i, we have that

Ai < Bi ≤ n.

(iii) If Bi < n, then Ai+1 < Bi+1 are integers not exceeding n each with a
prime factor exceeding 2n−Ai −Bi.

Then denote by A(n) (resp. B(n)) the largest integer in such a sequence
{Ai} (resp. {Bi}).
We want to show that there are such sequences with n−B(n) “small”.

More precisely, we prove the following theorem:

Theorem 3.1 If n > 3.06 · 108, then there is a pair of sequences {Ai} and
{Bi} as above for which

n−B(n) ≤ 225.
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We note that the 225 in the theorem above can be reduced to 2 for suffi-
ciently large n. However, this result is of no use in the present paper.

We first review some facts about the distribution of primes, and we prove a
theorem on the prime divisors of a product of consecutive integers. Using
this, we then prove Theorem 3.1.

Throughout this section p shall denote a prime. Now we recall three relevant
functions. If X > 0, then define π(X) and θ(X) by

π(X) := #{p ≤ X}, (1)
θ(X) :=

∑
p≤X log p. (2)

Moreover, recall that von Mangoldt’s function Λ(n) is defined by

Λ(n) :=

{
log p if n = pα with α ∈ Z,
0 otherwise.

(3)

Rosser and Schoenfeld [9], [10] proved the following unconditional inequali-
ties. These inequalities will be important in the proof of Theorem 3.1.

Theorem 3.2 (Rosser-Schoenfeld)

(1) If X > 1, then

π(X) ≤ 1.25506 · X

logX
.

(2) If X > 1, then ∑
1≤n≤X

Λ(n)
n
≤ logX.

(3) If X ≥ 1319007, then

0.998684 ·X < θ(X) < 1.001102 ·X.

Now we prove the following crucial result about the prime factors of consec-
utive integers.

Lemma 3.3 If 1 ≤ m ≤ k ≤ y < n are integers for which(n
k

)k
≥ (n+ k)π(y)+m−1, (4)

then at least m of the integers n + 1, n + 2, . . . , n + k have a prime factor
exceeding y.
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Proof. If L is defined by

L :=
k∏
j=1

(n+ j) =
∏
p

pαp ,

then let R and S be the unique integers for which L = RS and

R =
∏
p>y p

αp , (5)
S =

∏
p≤y p

αp . (6)

Since n+ k is the largest factor defining L, if

R > (n+ k)m−1, (7)

then at least m of the numbers n + 1, n + 2, . . . , n + k have a prime factor
exceeding y. Therefore, it suffices to prove (7). Since L = RS > nk, we
trivially have that

R >
nk

S
,

and so by (7) it suffices to prove that

nk

S
> (n+ k)m−1. (8)

Now we derive an upper bound for S. By definition, we have that

logS = log
∏
p≤y

pαp =
∑
p≤y

αp log p =
∑
p≤y

log p
∞∑
α=1

 ∑
1≤j≤k , pα|n+j

1

 .

Now, the innermost sum clearly has the upper bound
[
k
pα

]
+ 1 Moreover,

since this bound equals 1 whenever pα > k, by Theorem 3.2(2) we find that

logS ≤
∑

pα≤k log p
[
k
pα

]
+
∑

p≤y log p
∑

pα≤n+k 1

≤ k
∑k

d=1
Λ(d)
d +

∑
p≤y log p

[
log(n+k)

log p

]
≤ k log k + π(y) log(n+ k). (9)

Therefore, we have that
S ≤ kk(n+ k)π(y),

and so
nk

S
≥
(n
k

)k
(n+ k)−π(y).
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However, since
(
n
k

)k ≥ (n+ k)π(y)+m−1 by (4) we have that

nk

S
≥ (n+ k)m−1

which is (8). �

As a consequence of Theorem 3.2 and Lemma 3.3, we obtain the following
crucial result.

Theorem 3.4 If n > 3.06 · 108 is an integer and k is a positive integer
satisfying

168 ≤ k ≤ n

4
,

then at least three of the integers n+ 1, n+ 2, . . . , n+ k have a prime factor
exceeding 4k.

Proof. By Theorem 3.2 (3), we have that

θ(n+ k)− θ(n) > 0.998684(n+ k)− 1.001102n = 0.998684k − 0.002418n.

So, if n/400 < k ≤ n/4 and n ≥ 1319007, then

θ(n+ k)− θ(n) > 0.0000787n > 2 log(5n/4) ≥ 2 log(n+ k). (10)

Since

θ(n+ k)− θ(n) =
∑

n<p≤n+k

log p ≤ (π(n+ k)− π(n)) log(n+ k),

(10) implies that there are at least three primes among the numbers n+1, n+
2, . . . , n + k provided that n/400 < k ≤ n/4 and n ≥ 1319007. Moreover,
by hypothesis these primes are ≥ n+ 1 > 4k.
Next we consider the cases where 100 ≤ k ≤ n/400 and n ≥ 1.8 · 1014. By
Lemma 3.3 it suffices to verify that(n

k

)k
≥ (n+ k)π(4k)+2 (11)

whenever 100 ≤ k ≤ n/400 and n > 1.8 · 1014.
By Theorem 3.2(1), if k ≥ 100, then

π(4k) + 2 ≤ 5.02024k
log(4k)

+ 2 <
5.15k

log(4k)
.

Therefore, (11) holds as soon as(n
k

)k
≥ ((1 +

1
400

)n)
5.15k

log(4k) ≥ (n+ k)
4.95k

log(4k) .
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By taking logarithms, the first inequality is equivalent to

log(4k) log(n/k) ≥ 5.15 log
((

1 +
1

400

)
n

)
. (12)

However, for a fixed value of n the function on the left hand side of this
inequality is an increasing function in k in the interval [1,

√
n/2] and is de-

creasing for larger k thus taking the minimal value log 400 · log(n/100) at
the endpoints. It is easy to verify that (12) holds for all k in the interval
[100, n/400] provided that n > 1.8 · 1014. Similarly, we can show that (11)
holds for all 500 ≤ k ≤ n/2000 and n ≥ 3 · 108.

To complete the proof in the remaining cases we use Maple on a PC. On
one hand, one can, using the Nextprime function, check that for j = 0, . . . , 6
there is always a prime in any interval of type (m · 104+j , (m + 1) · 104+j ]
where 104 ≤ m ≤ 105. This implies immediately that there are at least
three primes in any interval of type (n, n+ n/2000] where 108 ≤ n ≤ 1015.
On the other hand using log(n+ k) < logn+ k/n, (11) follows from

logn ≥ k log k + (π(4k) + 2)k/n
k − π(4k)− 2

.

This is easily verified (using only a table of primes below 2000) for 168 ≤
k ≤ 500 and n > 3.06 · 108. All cases are considered. �

Proof of Theorem 3.1.
Suppose that n > 3.06 · 108 and pick two primes 0.8n < A1 < B1 ≤ 0.9n
which is allowable by Theorem 3.2 (3). Note that B1 − A1 ≤ n − B1 by
hypothesis. Now suppose that when constructing the sequences we have

Bi −Ai ≤ n−Bi.

Now we seek new integers Ai+1 < Bi+1 < n for which

Bi+1 −Ai+1 ≤ n−Bi+1, (13)
Bi < Ai+1 < Bi+1 ≤ n. (14)

and each with a prime factor exceeding 3(n−Bi).
Now we apply Theorem 3.4 with n = Bi and k = d3

4(n − Bi)e (Note. dxe
denotes the smallest integer ≥ x). Obviously, we have 4k ≥ 3(n − Bi) >
2n − Ai − Bi. As long as k ≥ 168 we can find three integers Bi < a < b <
c ≤ Bi + k each with a prime factor > 4k.
We now show that either the pair a and b or the pair b and c satisfies (13)
and (14). If neither does, then

c− b > n− c and b− a > n− b
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which are equivalent to

c− b ≥ n− c+ 1 and b− a ≥ n− b+ 1.

These imply that

a ≤ 2b− n− 1 ≤ 2(2c− n− 1)− n− 1 = 4c− 3n− 3
≤ 4(Bi + k)− 3n− 3
≤ 4Bi + 4

(
3
4(n−Bi) + 3

4

)
− 3n− 3 = Bi.

Since Bi < a we see that we can always choose such an Ai+1 and Bi+1 pro-
vided that k ≥ 168. Suppose that Ai+1 and Bi+1 are the last terms which
are found this way, then we have n−Bi+1 ≤ 225. This proves Theorem 3.1. �

Corollary 3.5 Let λ be a partition of n with largest hook length h1. If λ is
of prime power degree and n > 3.06 · 108, then n− h1 ≤ 225.

Proof. This follows immediately from Theorem 3.1 and Proposition 2.12.
�

4 Proof of the classification result for Sn

For dealing with the situation where c = n− h1 is small, we provide a good
upper bound for the p-powers in the character degrees for Sn. This is similar
to the case of binomial coefficients (i.e. the case of hook partitions).

Proposition 4.1 Let λ be a partition of n, and set c = n− h1. Let p be a
prime, and l the integer with pl ≤ n < pl+1.
Then

νp(fλ) ≤ νp((2c+ 2)!) + 2l .

In particular, a bound for the p-part of fλ is given by

(fλ)p ≤ n2 · ((2c+ 2)!)p .

Proof. Let k = m1 be the multiplicity of 1 in λ. By looking at the Young
diagram we see that

λ1 − λ2 ≥ h1 − k − (c+ 2) = n− 2c− k − 2 .

Let A denote the set of nodes other than the final k nodes in the leg and
the final n− 2c−k− 2 nodes in the arm of the (1, 1)-hook; for a node y ∈ A
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let hy denote the corresponding hook length. Then from the degree formula
we obtain

νp(fλ) =
l∑

i=1

([
n

pi

]
−
[
k

pi

]
−
[
n− 2c− k − 2

pi

])
−
∑
y∈A

νp(hy)

For fixed i, the ith summand in the first sum gives a contribution of at most[
2c+2
pi

]
+ 2, hence

νp(fλ) ≤
l∑

i=1

([
2c+ 2
pi

]
+ 2
)
≤ νp((2c+ 2)!) + 2l .

The second inequality follows immediately from this. �

We first consider the case of small n. Assume again that λ is a partition of
n of prime power degree but not a hook.

Using the available tables (or with the aid of MAPLE), it is easy to check
the main theorem for n < 43. In other words, the only partitions having
prime power degree are of the form (n−1, 1) together with their conjugates,
or are on the short list of exceptions given in the theorem.

For a midsized n (i.e. 43 ≤ n ≤ 9.25 · 108), we use the following number
theoretic condition.

Fix a number b. Given a number n, let p1, p2 be the two largest primes below
n. Then check whether there is a prime divisor q of n(n−1)(n−2) · · · (n−b)
with p1 + p2 + q > 2n.

A computer program (written in C++ using the LiDIA number theory pack-
age, run on a super computer with 32 nodes, running time 2 hours) was used
to check that this condition is satisfied for all n from 29 to 9.25·108 for b = 4.

We now want to use this in the situation where λ is a partition of n of prime
power degree, 43 ≤ n ≤ 9.25 · 108. Since the two largest primes p1, p2 are
fch of λ, if q is a prime divisor as in the condition above (with b = 4), then
by Corollary 2.10 one of the numbers n, n− 1, . . . n− 4 is a fch of λ. Hence
n− h1 ≤ 4.

From Proposition 4.1 we know that if λ is of prime power degree, then

fλ ≤ o(c) · n2
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where c = n− h1 and o(c) = max{(2c+ 2)!p | p prime }.
In our situation we have c ≤ 4, so o(c) ≤ o(4) = 256, and hence we know

fλ ≤ 256 · n2

Now we use information on the minimal degrees of Sn-representations. Burn-
side’s theorem on the minimal degree > 1 for Sn was greatly generalized by
Rasala [8], giving in a suitable sense the list of the minimal degrees for suf-
ficiently large n (depending on the requested length of the list). We use the
notation from [8].

For any k, the list of minimal degrees for Sn starts with the degrees of par-
titions of n coming from partitions of numbers d ≤ k by adding on a part
n − d, if n ≥ Bk, a bound which is provided explicitly in [8]. The degree
polynomial ϕµ(n) for any partition µ of k is also given explicitly.

For k = 5, one has B5 = 43. One easily checks that for n ≥ 43

256 · n2 ≤ ϕ5(n) =
1
5!

(n− 9)
3∏
i=0

(n− i)

Hence fλ is among the minimal degrees for Sn. But the list of minimal
degrees is easily computed [8], and none of these is a prime power except
possibly n − 1 which occurs only for (n − 1, 1) and its conjugate (use that
the degree formula in [8], Theorem A, gives a factorized expression in which
consecutive numbers appear). Hence we do not get any further partitions
of prime power degree.

Now we deal with the case of large n (i.e. n > 9.25 · 108). By Corollary 3.5
we know that n − h1 ≤ 225. We want to use the bound for the degree and
the minimal degree argument again in this situation. From [8] we get the
numbers Bk from which on the minimal degrees all come from partitions of
weight at most k.

Since B18 = 310.390.100 < n, we thus know a long list of minimal degrees.
The maximal entry on this list comes from the partition µ = (643213) which
is of maximal degree 16.336.320 among the partitions of 18.
For c = 225 we have o(c) = 2448 and one checks (for example, using MAPLE)
that for n ≥ 9.25 · 108 one has

fλ ≤ 2448 · n2 ≤ ϕµ(n) =
[µ](1)

18!

18∏
i=1

(n− µi − 18 + i)

where µ = (µ1, . . . , µ18), extending µ by parts 0 if necessary.
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Hence fλ is among the minimal degrees, but as before, one can check that
all the minimal degrees on this list are not prime powers, except possibly
n− 1. This completes the proof. �

5 Alternating groups and a question of Huppert

The purpose of this section is to prove the analogue of Theorem 2.4 for
the alternating groups. Also we answer a question of B. Huppert about
character degrees in alternating groups.
If λ is a partition of n, then the irreducible representation of Sn labelled
by λ remains irreducible when restricted to An if and only if λ 6= λ0, the
conjugate (associated) partition of λ. If λ = λ0 the restriction is a sum
of two irreducible representations of the same degree. This leads us to the
following definition providing the character degrees in An ([5], 2.5).
Let λ be a partition of n. Then

f̃λ :=

{
fλ if λ 6= λ0

1
2fλ if λ = λ0.

Theorem 5.1 Let λ be a partition of n. Then f̃λ = pr for some prime p,
r ≥ 1, if and only if one of the following occurs:

n = pr + 1 > 3 , λ = (pr, 1) or (2, 1p
r−1) , f̃λ = pr

or we are in one of the following exceptional cases

n = 5 : λ = (221) or (3, 2) , f̃λ = 5
λ = (312) , f̃λ = 3

n = 6 : λ = (4, 2) or (2212) , f̃λ = 32

λ = (32) or (23) , f̃λ = 5
λ = (321) , f̃λ = 23

n = 8 : λ = (521) or (3213) , f̃λ = 26

n = 9 : λ = (72) or (22, 15) , f̃λ = 33

Proof. If λ 6= λ0 we may apply Theorem 2.4. Suppose λ = λ0. The only
self conjugate partitions occurring in the list of Theorem 2.4 are (2, 1) and
(22) and here f̃λ = 1. Using the character tables of [1] there are no further
occurrences of self conjugate partitions with f̃λ = pr for n ≤ 13. When
n > 13 we may always find two primes p1, p2 satisfying n+1

2 < p1 < p2 ≤ n,
(using [2], Table 3). Then 2p1 and 2p2 are not character degrees of Sn. If
λ = λ0 and fλ = 2pr then p 6= p1. Thus λ has to contain hooks of lengths
p1 and p2. Since λ contains only one hook of length p1 and p2 respectively,
both of them have to be in the diagonal, i.e. p1 = hii, p2 = hjj for some i, j.
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This contradicts Lemma 2.7. �

In recent work on the characterization of the finite simple groups PSL(n, q)
by character degree properties [4], B. Huppert needs the following:

Corollary 5.2 Suppose that for some simple alternating group An there is
a prime p, such that all irreducible character degrees of An are either prime
to p or powers of p. Assume that some power of p is a degree for An. Then
n = 5 and p = 2, 3 or 5, or n = 6 and p = 3.

Proof. Using the Atlas [1] we may assume n > 13. By Theorem 5.1, An
only has a prime power character degree pr when n = pr + 1. But then

f̃(n−2,12) =
(n− 1)(n− 2)

2
= pr(pr − 1)/2

is a character degree which is divisible by p and not a power of p.
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