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Abstract. In the June 2012 issue of this Magazine, Frumosu and Teodorescu–Frumosu proved
that, for all integers m ≥ 2,

m∑
p=1

 (−1)p

p!

∑
k1+···+kp=m

1

k1 · · · kp

 = 0

where the inner sum is taken over all Their proof is calculus–based, relying on power series manip-
ulations. In this note, we provide a combinatorial proof of this identity (which they requested at
the end of their article) by demonstrating that the identity of Frumosu and Teodorescu–Frumosu is
closely related to Stirling number of the first kind, and we use the insights gained via this connection
as well as knowledge from character theory to prove several other results of a similar type.

1. Introduction

In the June 2012 issue of this Magazine, Frumosu and Teodorescu–Frumosu [1] proved that,

for all integers m ≥ 2,

(1.1)
m∑
p=1

(−1)p

p!

∑
k1+···+kp=m

1
k1 · · · kp

 = 0

where the inner sum is taken over all p-term ordered partitions of m. Their proof is calculus–based,

relying on power series manipulations. In this note, we provide a combinatorial proof of (a more

general version of) this identity, which the authors requested at the end of their article. It is thus

by specialization possible to state numerous other concrete results of a similar type. Related results

may be proved using character theory of the symmetric groups. This is discussed in the final section.

2. First Combinatorial Approach - Stirling Numbers of the First Kind

The primary step in proving a generalization of (1.1) in a combinatorial way is to rewrite the

inner sum so that the sum is taken over partitions rather than ordered partitions. We will utilize

the rising factorial xm which for m ≥ 1 is defined by

(2.1) xm := x(x+ 1) · · · (x+m− 1).

The quantity xm is a polynomial for each m ≥ 1, and so it can be written as a sum of ordinary

powers:

(2.2) xm =
m∑
p=1

s(m, p)xp
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The coefficients s(m, p) which appear in (2.2) are called the (unsigned) Stirling numbers of the first

kind. These numbers s(m, p) satisfy numerous properties [2, 4]. The key property which we need in

this note is that s(m, p) counts the number of permutations of the set {1, 2, · · · ,m} with exactly p

cycles in their cycle decomposition.

We now show that

(2.3)
1
p!

∑
k1+···+kp=m

1
k1 · · · kp

=
1
m!
s(m, p)

where as in (1.1) the sum is on p-term ordered partitions of m.

Indeed ∑
k1+···+kp=m

1
k1 · · · kp

=
∑

k1≥k2≥···≥kp≥1
k1+···+kp=m

1
k1 · · · kp

× (number of ways to permute the parts)

=
∑

t1,t2,...,tm≥0
t1·1+t2·2+···+tm·m=m

t1+t2+···+tm=p

1
1t12t2 . . .mtm

× p!
t1!t2! . . . tm!

where ti, 1 ≤ i ≤ m, is the number of occurrences of the part i in a given partition of m. By writing

the partitions of m as t1 · 1 + t2 · 2 + · · · + tm ·m we are able to get an explicit handle on those

partitions of m which contain exactly p parts.

From the above we see that
1
p!

∑
k1+···+kp=m

1
k1 · · · kp

=
∑

t1,t2,...,tm≥0
t1·1+t2·2+···+tm·m=m

t1+t2+···+tm=p

1
1t12t2 . . .mtm

× 1
t1!t2! . . . tm!

which is equivalent to

(2.4)
1
p!

∑
k1+···+kp=m

1
k1 · · · kp

=
1
m!

∑
t1,t2,...,tm≥0

t1·1+t2·2+···+tm·m=m
t1+t2+···+tm=p

1
1t12t2 . . .mtm

× m!
t1!t2! . . . tm!

.

Now a summand in the sum on the right–hand side of (2.4) counts the number of permutations

of the set {1, 2, · · · ,m} which, for each 1 ≤ i ≤ m, have exactly ti cycles of length i in their

unique cycle decomposition. This fact may be deduced directly using elementary counting methods.

Therefore, the sum on the right–hand side of (2.4) equals s(m, p), and this proves (2.3).

Clearly, (2.2) and (2.3) imply the following significant generalization of (1.1):

Theorem 2.1. Let m ≥ 1. We have the polynomial identity

(2.5)
m∑
p=1

xp

p!

∑
k1+···+kp=m

1
k1 · · · kp

 =
1
m!
xm.
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In particular Theorem 2.1 shows that the left–hand side of (1.1) equals 1
m!(−1)m which in turn

equals 0, whenever m ≥ 2, by (2.1). Thus we have given a combinatorial proof of (1.1).

Of course, (2.5) can be utilized to prove other combinatorial identities which are related to (1.1).

For example, we see that

(2.6)
m∑
p=1

 1
p!

∑
k1+···+kp=m

1
k1 · · · kp

 = 1

for each m ≥ 1 by substituting x = 1 into (2.5). Similarly, the substitution x = 2 in (2.5) yields

(2.7)
m∑
p=1

2p

p!

∑
k1+···+kp=m

1
k1 · · · kp

 = m+ 1

for m ≥ 1. Lastly, for m ≥ 3, (2.5) gives

(2.8)
m∑
p=1

(−2)p

p!

∑
k1+···+kp=m

1
k1 · · · kp

 = 0

via the substitution x = −2.

We return specifically to (2.6)–(2.8) below when we present our character–theoretic perspective.

3. Second Combinatorial Approach - Character Theory

In this section we refocus our attention to group theory, in particular to the characters of finite

groups. (Character theory was invented by Frobenius as a help to study the structure of finite

groups, but it has developed into an area of independent interest with applications outside of group

theory. See [3] for a very thorough introduction.) In this context, we consider the permutations of

Section 2 as elements of symmetric groups. We will see that from this point of view, the results in

the previous section are all special cases of a more general formula involving characters. In addition,

as often happens in abstraction, the more general formula quickly implies other results that aren’t

at all obvious from the results of Section 2.

If G is a (finite) group then a representation T of G is a map, associating to each group element

g ∈ G an invertible square matrix T (g) with complex entries such that T “repects multiplication”.

This means that T (g1g2) = T (g1)T (g2) for all g1, g2 ∈ G, i.e. T is a homomorphism of groups.

The character χT of T is defined by χT (g) = trace(T (g)), the sum of the diagonal entries in

T (g). A character of G is the character of some representation. One of the amazing facts about

characters is that in a sense you may recover a representation from its character. You are not losing

information by looking only at traces. The fact that similar matrices have the same trace implies

that character values are constant on the conjugacy classes of the group. It is known that the sum

and the product of two characters is again a character. A character is called irreducible if it cannot

be written as a sum of two other characters. The simplest irreducible character of G is the trivial

character 1G, which maps all elements of G to 1. Any character χ may be decomposed into a sum

of (not necessarily distinct) irreducible characters and it can be shown that this decomposition is
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unique. We denote by a(χ) the multiplicity (number of occurrences) of the trivial character 1G in

the decomposition of the character χ. It is well–known [3, Theorem 14.17] that

(3.1) a(χ) =
1
m!

∑
g∈G

χ(g)

so a(χ) is really just the average of all the values of the character χ.

The set of all permutations of {1, 2, · · · ,m} considered above forms a group, which is called the

symmtric group Sm. The characters of Sm turn out to be non-zero integer-valued functions on the

elements of Sm which take the same value on permutations having the same cycle decomposition.

This is because these elements are in the same conjugacy class of Sm.

To involve the characters of Sm we start by replacing the term (−1)p in the left–hand side of

(1.1) with a “weight function” w(k1, k2, ..., kp). That is, we define

σ(m,w) :=
m∑
p=1

 1
p!

∑
k1+···+kp=m

w(k1, ..., kp)
k1 · · · kp


for m ≥ 1 and suitable choices of the function w. Choosing w to be identically 1 or to be (−1)m−p,

we see that σ(m,w) equals 1 or 0, respectively, by (2.6) and (1.1). These are also examples of a

special kind of weight function which we now consider.

Any character of Sm gives rise to a weight function. Thus, if χ is any character of Sm, then we

may define a weight function wχ as follows:

wχ(k1, ..., kp) is the value of χ on an element which is a product of disjoint cycles of

lengths k1, ..., kp.

Apart from the the trivial character 1Sm the simplest irreducible character is the sign character

sgnSm . It maps an even permutation to 1 and and an odd permutation to −1. If a permutation in

Sm is a product of p disjoint cycles then it is an even permutation exactly when m− p is even, i.e.

when (−1)m−p = 1. Thus wsgnSm
(k1, ..., kp) = (−1)m−p.

We have then

Theorem 3.1. For any character χ of Sm,

σ(m,wχ) = a(χ).

Proof. By definition wχ(k1, ..., kp) is independent of the ordering of k1, ..., kp. Therefore the calcu-

lation in the previous section shows that

σ(m,wχ) =
m∑
p=1

 1
p!

∑
k1+···+kp=m

wχ(k1, . . . , kp)
k1 · · · kp

 =
1
m!

∑
g∈Sm

χ(g) = a(χ). �

In view of the above remarks the left-hand sides of (2.6) and (1.1) equal σ(m,w1Sm
) and

(−1)mσ(m,wsgnSm
), repectively. Thus (2.6) and (1.1) follow from Theorem 3.1. We also have that

a(sgnSm) = 0. This is because 1Sm obviously cannot occur in the decomposition of the irreducible

character sgnSm . Thus we have gained the following additional insight: The original identity (1.1)
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is equivalent to the well–known fact that there are equally many even and odd permutations of

{1, 2, . . . ,m}.
This character–theoretic viewpoint also provides a new way to view (2.7). Namely, consider

the action of Sm on the power set Pm of {1, 2, . . . ,m}. The corresponding character χpow has the

property that χpow(g) = 2p where p is the number of cycles in g. Using [5, Example 7.18.8], we see

that a(χpow) = m+1. Also a(sgnSmχpow) = 0. (Note that sgnSmχpow is a product of two characters

and thus also a character.) Now (2.7) and (2.8) follow from Theorem 3.1.

We now discuss one final example of a “relative” of the original identity (1.1) which does not

follow from Theorem 2.1. Consider the weight function w1 defined by

w1(k1, . . . , kp) := |{i | ki = 1}|.

Then w1 = wχnat where χnat is the character of Sm acting naturally on the set {1, 2, . . . ,m}. (Thus

χnat(g) equals the number of fixed points of g.) As noted in [3, Corollary 29.10], χnat is a sum

of 1Sm and another irreducible character. Thus a(χnat) = 1 and a(sgnSmχnat) = 0. Therefore, we

have the following “relatives” of (2.6) and (1.1) respectively:

Theorem 3.2. For all m ≥ 2,

m∑
p=1

 1
p!

∑
k1+···+kp=m

|{i | ki = 1}|
k1 · · · kp

 = 1,

and for all m ≥ 3,
m∑
p=1

(−1)p

p!

∑
k1+···+kp=m

|{i | ki = 1}|
k1 · · · kp

 = 0.

We close by highlighting that the first equation in Theorem 3.2 is equivalent to the following

combinatorial statement:

The total number of fixed points in all permutations of {1, 2, . . . ,m} equals m! .

This is because the left-hand side of the equation is equal to a(χnat) and χnat(g) counts the

fixed points of g. We see also by (3.1) that in average the permutations of {1, 2, . . . ,m} have one

fixed point.

There is a simple direct proof of the combinatorial statement: List the m! permutations in an

(m!×m)-matrix where the ith row contains the ith permutation in some arbitrary ordering of the

permutations. For example, the corresponding matrix for the case m = 3 can be written as follows:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

The fixed points corresponds to the occurrencies of an integer j in the jth column of this matrix.

Clearly each column contains each of the integers 1, 2, . . . ,m with the same multiplicity of (m−1)!.
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In particular the jth column contains j with this multiplicity. Thus there is a total ofm·(m−1)! = m!

fixed points in all the permutations of {1, 2, . . . ,m}.
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