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Abstract

Necessary and sufficient conditions are given for an s-block of integer
partitions to be contained in a t-block. The generating function for such
partitions is found analytically, and also bijectively, using the notion of an
(s, t)-abacus. The largest partition which is both an s-core and a t-core
is explicitly given.

1 Introduction

The starting point for our investigation is the following question. Let n be a
positive integer. Let s, t be different positive integers ≤ n. Let Bs be an s-block
and Bt a t-block of partitions of n. Thus Bs is the set of all partitions of n
having a fixed given s-core (and similarly for Bt). Is it possible that Bs ⊆ Bt?
A stronger question is: When is Bs = Bt?

The answer to the former question led us to study a class of s-core partitions
called (s, t)-good partitions. It turns out that when s and t are relatively prime,
there is a unique minimal (s, t)-good partition and this partition is also (t, s)-
good. Thus it is an (s, t)-core, i.e. a partition which is simultaneously s-core
and t-core.

Anderson [1] showed that the number of (s, t)-cores is finite and in fact equal
to

(
s+t

t

)
/(s+ t). We show that the unique minimal (s, t)-good partition contains

exactly (s2−1)(t2−1)
24 nodes and that it is also the unique maximal (s, t)-core.

Thus any (s, t)-core has at most (s2−1)(t2−1)
24 nodes.

The question about equality of blocks for different integers originates from
a problem formulated for a general finite group G in a paper by Navarro and
Willems [8]. We consider for a prime p a p-block Bp in G simply as a subset of the
set Irr(G) of irreducible characters of G. It was conjectured that if for different
primes p, q we have Bp = Bq then |Bp| = 1. This means that both blocks have
defect 0 for their respective primes. (See [3, Lemma IV.4.19]). Recently it
was noticed by C. Bessenrodt that the extension group 6.A7 of the alternating
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group A7 provides a counterexample to the conjecture for non-principal blocks
(p, q = 5, 7). However in the case of symmetric groups the conjecture is true.
This is a consequence of a stronger statement.

In the case of a block inclusion Bp ⊆ Bq in a finite group G we call the
inclusion trivial if |Bp| = 1, i.e. if the smaller block has defect 0. This case
is not particularly interesting and of course happens frequently: Whenever an
irreducible character χ of G has p-defect 0, i.e. p � |G|

χ(1) , then for any other prime
divisor q of |G| there is a q-block Bq such that {χ} = Bp ⊆ Bq. As noticed by
Navarro there are also simple examples of non-trivial block inclusions in solvable
groups, e.g. if the group has only one q-block.

By the so-called Nakayama conjecture ([5, Theorem 6.2.21]), which states
that two irreducible characters of Sn are in the same p-block if and only if
the partitions labelling them have the same p-core, there is then a natural
correspondence between p-blocks of irreducible characters in Sn and p-blocks of
partitions of n: The partitions are simply the natural labels of the irreducible
characters in a block.

As shown in [7, Theorem 5.13] there is an analogue of the Nakayama con-
jecture for generalized blocks in Sn. This then gives a background for the more
general questions about blocks of partitions formulated above.

In the case of blocks of partitions it seems reasonable to extend the concept
of trivial inclusions as follows: If t | s then two partitions which have the same
s-core also have the same t-core. This is because an s-hook may be decomposed
into s

t t-hooks. Thus for any s-block there is always a t-block containing it. A
non-trivial block inclusion Bs ⊆ Bt is therefore defined as an inclusion where
t � s and |Bs| > 1.

We define the weight w = w(Bs) of an s-block of n by w(Bs) = n−|κ|
s , where

κ is the common s-core of the partitions in Bs. It turns out that in Sn non-
trivial block inclusions can only occur when Bs has weight 1 (Theorem 2.5). In
particular, the Navarro-Willems conjecture is therefore valid in the symmetric
groups, as is easily seen (see Corollary 2.8.)

The paper is organized as follows: In section 2 we classify the non-trivial
block inclusions (and also all block equalities) and this leads to the definition
of (s, t)-good partitions. In section 3 the generating function for the number of
(s, t)-good partitions is computed showing that there is a unique minimal (s, t)-
good partition κs,t. This partition is also (t, s)-good. In section 4 it is shown
that κs,t is also the maximal (s, t)-core. In the final section 5 we introduce an
(s, t)-abacus which is used to establish a natural bijection between the sets of
all (s, t)-good partitions and all s-cores. This provides also a bijective proof of
the generating function identity of section 3.

2 Non-trivial block inclusions

In the following s, t are different positive integers.
Generally, a β-set is a finite subset X of N0 = {0, 1, 2, · · · , }. Let X be a
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β-set. An element a ∈ X is called s-maximal if a + s /∈ X. We call X (s, t)-good
if all of its s-maximal elements have the same residue modulo t.

The s-abacus is defined as follows: It has s runners numbered 0, 1, · · · , s− 1
running from north to south. On the i-th runner we place all non-negative
integers of residue i modulo s in increasing order. A β-set may be represented
by a bead configuration on the s-abacus by underlining on the abacus the
numbers of the β-set. We refer to this also as the s-abacus for X and the
underlined numbers are referred to as beads. For example, X = {1, 3, 4, 7, 8, 9}
is represented by the following bead configuration on the 3-abacus:

0 1 2
3 4 5
6 7 8
9 10 11
12 13 14
....

Let λ be a partition. Let β(λ) be the β-set consisting of all first column
hook lengths of λ. For i ≥ 0 let β(λ, i) be the set which is obtained from β(λ)
in the following way: It is the union of the set {0, 1, · · · , i − 1} and the set
obtained from β(λ) by adding i to all its elements. (In the notation of [10] we
have β(λ, i) = β(λ)+i.) Note that β(λ, 0) = β(λ). The sets β(λ, i), i ≥ 0 are
called the β-sets for λ. Trivially

Lemma 2.1 Suppose that X = {c1, c2, · · · , ck} is a β-set for the partition λ.
Then λ contains

|λ| =
k∑

i=1

ci −
(

k

2

)

nodes.

The following basic fact is needed ([5, Lemma 2.7.13], [10, Proposition (1.8)]):

Lemma 2.2 Suppose that X is a β-set for the partition λ. Then λ contains a
hook of length s if and only if there exists a c ∈ X such that c − s ≥ 0 and
c− s /∈ X. In this case X ∪ {c− s} \ {c} is the β-set for a partition obtained by
removing an s-hook from λ.

Let us write X ∼s X ′ for two β-sets if they have the same number of elements
of any given residue modulo s. (Thus for example {1, 2, 4} ∼3 {4, 5, 7}). The
lemma above implies

Lemma 2.3 Suppose that X and X ′ are β-sets for the partitions λ and λ′. If
|X | = |X ′| then λ and λ′ have the same s-core if and only if X ∼s X ′.

This result is applied below in the following form:
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Lemma 2.4 Let Y be a β-set for the partition κ. Suppose that X is obtained
from Y by a sequence of operations of the following form: Replace c in the set
by a non-negative element c + s (or c− s), which is not already in the set. If X
is a β-set for the partition λ then this partition has the same s-core as κ.

Theorem 2.5 Assume t � s. Let Bs be an s-block of n of weight w ≥ 1 with core
κ. If w ≥ 2 then there exist two partitions in Bs with different t-cores. Thus Bs

is not contained in any t-block Bt.
If w = 1 then all partitions in Bs have the same t-core if and only if the

β-set β(κ, s) is (s, t)-good. This can only happen when s and t are relatively
prime.

Remark 2.6 Before proving Theorem 2.5 we make a comment on the somewhat
technical condition that the set β(κ, s) is (s, t)-good. The addition of s to the
β-set β(κ) ensures that all runners on the s-abacus for β(κ, s) are non-empty
and that 0 is the unique bead on the 0-th runner. Thus 0 is s-maximal in β(κ, s).
The condition that β(κ, s) is (s, t)-good is then transformed into the following
condition on the set of first column hook lengths for κ, β(κ). Suppose that for
1 ≤ i ≤ s − 1, β(κ) contains ci ≥ 0 integers which are congruent to i modulo
s. Then sci + i ≡ 0 modulo t. This in particular forces ci �= 0 whenever t � i. It
also forces s and t to be relatively prime, e.g. since sc1 + 1 ≡ 0 modulo t.

Proof of Theorem 2.5. We assume w > 0 and that Bs ⊆ Bt for some t-block,
i.e. that all partitions in Bs have the same t-core. Let Y := β(κ, 2s), a β-set for
κ. The set Y contains at least 2 elements of any given residue modulo s, since
{0, 1, · · · , 2s− 1} ⊆ Y.

Since κ is an s-core there is by Lemma 2.2 for each i, 0 ≤ i ≤ s− 1 a unique
element mi ∈ Y such that mi is s-maximal in Y and mi ≡s i. Note that also
mi − s ∈ Y. Consider the β-sets

Yi = Y ∪ {mi + ws} \ {mi}.

They are β-sets for partitions in Bs by Lemma 2.4.
We show that either all mi’s are congruent modulo t or t | ws.
Indeed, assume that t � ws. Then mi �≡t mi + ws. Thus the number of

elements in Yi with the same residue as mi is exactly one less than in Y. This is
the unique residue where Yi has fewer elements than Y . Since Yi ∼t Yj for all
i, j, by Lemma 2.3 we must also have mi ≡t mj .

We should note that the case mi ≡t mj for all i, j only occurs when gcd(s, t) =
1. Indeed if u = gcd(s, t) and m0 ≡t m1 then u | t | (m1−m0). But since mi ≡s i
we also have m1 − m0 ≡s 1 whence u | s | (m1 − m0) − 1 forcing u = 1.

If w = 1 the case t | ws is not possible, since t � s. Thus all mi are congruent
modulo t, so that Y = β(κ, 2s) is (s, t)-good. The same is then true for β(κ, s).
As noticed above this can only happen when gcd(s, t) = 1. Conversely if β(κ, s)
and therefore Y is (s, t)-good, then Yi ∼t Yj for all i, j so that all partitions in
Bs have the same t-core by Lemma 2.3.
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Suppose that w > 1. Then also

Y ′
i = Y ∪ {mi + (w − 1)s} \ {mi − s}

are β-sets for partitions in Bs and thus Yi ∼t Y ′
j for all i, j.

If t � ws then the number of elements in Yi with the same residue as mi is
exactly one less than in Y and this then also has to be the case in Y ′

i . Thus
mi − s ≡t mi contradicting t � s.

If t | ws then Yi ∼t Y. We then also have Yi,j ∼t Y, for all i, j, i �= j, where

Yi,j := Y ∪ {mi + (w − 1)s, mj + s} \ {mi, mj}.

This yields mi ≡t mj + s for all i �= j. These congruences are not compatible
if s > 2, since t � s. But for s = 2, m0 and m1 must have different parity. The
equivalences m0 ≡t m1 + s, m1 ≡t m0 + s force t | 2s = 4, i.e. t = 4. In that
case m0, m1 cannot have different parity, a contradiction. 	

Corollary 2.7 Suppose that Bs is an s-block and Bt is a t-block of n. If κ is
the s-core of the partitions in Bs, then

Bs ⊆ Bt is nontrivial ⇔ (s, t) = 1, w(Bs) = 1 and β(κ, s) is (s, t) − good.

Corollary 2.8 Suppose that Bs is an s-block and Bt is a t-block of n, where
s �= t. If Bs = Bt then |Bs| = 1.

Proof. After possibly interchanging s and t, assume that t � s. Assume that
|Bs| �= 1. Apply Theorem 2.5 to the inclusion Bs ⊆ Bt. We get that Bs has
weight 1 and thus |Bs| = s. Also in this case s and t are relatively prime. Thus
s � t and the inclusion Bt ⊆ Bs implies |Bt| = t. This is a contradiction to the
assumption Bs = Bt. 	

The corollary shows that equality between an s-block and a t-block for s �= t
happens exactly when the block contains a unique partition which is an (s,t)-
core, i.e. simultaneously an s-core and a t-core.

We call a partition κ (s, t)-good, if κ is an s-core and the set β(κ, s) is (s, t)-
good. (See Remark 2.6 for details.)

Remark 2.9 Whereas (s, t)-good partitions are not t-cores, it is true that all
(s, t)-good partitions have the same t-core κs,t. Also, for any nontrivial inclusion
Bs ⊆ Bt the t-core of the partitions in Bt is always the same partition µs,t. It is
therefore independent of the particular (s, t)-good partition κ, which is the s-core
of the partitions in Bs. These statements are proved in the final section of this
paper.
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3 Generating functions

The goal of this section is to prove Theorem 3.1. Let

As(q) =
∞∏

k=1

(1 − qks)s

1 − qk

be the generating function for all partitions which are s-cores ([10], [4]).

Theorem 3.1 Let s and t be positive integers which are relatively prime. The
generating function for all partitions κ which are (s, t)-good is

q(s2−1)(t2−1)/24As(qt2).

Proof. Assume that κ is (s, t)-good. Let ci, 0 ≤ i ≤ s − 1, be the number of
elements of residue i modulo s in β(κ), the first column hook lengths of κ. The
number of nodes in κ can be found from the first column hook lengths. Since κ
is an s-core, by Lemma 2.2 these hook lengths are

s−1⋃
i=1

{i, i + s, · · · , i + (ci − 1)s},

so by Lemma 2.1 κ has

Q(c1, c2, · · · , cs−1) =
s−1∑
i=1

(
s

(
ci

2

)
+ ici

)
−

(
c1 + · · · + cs−1

2

)
(1)

nodes. Thus we have

As(q) =
∑

c1,··· ,cs−1≥0

qQ(c1,··· ,cs−1). (2)

By Remark 2.6 κ is (s, t)-good if, and only if,

sci + i ≡ 0 mod t, 1 ≤ i ≤ s − 1. (3)

Since s and t are relatively prime these equations always have unique solutions
ri, where 0 ≤ ri ≤ t − 1, which we specify in Lemma 3.2.

Lemma 3.2 The unique solution to (3) with 0 ≤ ri ≤ t− 1 for 1 ≤ i ≤ s− 1 is
given by

ri =
1
s
(tσ(i) − i) = �tσ(i)/s�,

where σ is the inverse of the permutation of {1, 2, · · · , s − 1} induced by multi-
plication by t modulo s.
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Proof. If t = sT + m, 0 < m ≤ s − 1, then m is relatively prime to s, and
division by m modulo s does induce a permutation σ of {1, 2, · · · , s − 1}. For
example, σ(m) = 1, and rm = (t − m)/s is a non-negative integer which is less
than t.

First, since sri + i = tσ(i) it is clear that (3) holds if ci = ri.
The second equality in Lemma 3.2 shows that ri is a non-negative integer

less than t. So it remains to prove this greatest integer form. Since

tσ(i) ≡s mσ(i) ≡s mi/m ≡s i,

tσ(i) − i is divisible by s. Since 1 ≤ i < s, the fractional part of tσ(i)/s must
be i/s. 	

For the proof of Theorem 3.1, it remains to prove the restricted generating
function identity ∑

c1,··· ,cs−1≥0, sci+i≡0 mod t

qQ(c1,··· ,cs−1) = q(s2−1)(t2−1)/24As(qt2).

Lemma 3.3 If ri is given by Lemma 3.2, then

r1 + r2 + · · · + rs−1 = (s − 1)(t − 1)/2.

Proof. This follows immediately from Lemma 3.2. 	
Lemma 3.4 If ri is given by Lemma 3.2, then

Q(r1, · · · , rs−1) = (s2 − 1)(t2 − 1)/24.

Proof. This follows from the explicit formula (1)

Q(r1, · · · , rs−1) =
s

2

s−1∑
i=1

r2
i − 1

2

s−1∑
i,j=1

rirj +
s−1∑
i=1

(−s/2 + i + 1/2)ri.

When Lemma 3.2 is used in this equation, all sums are explicitly evaluable using

s−1∑
i=1

i =
(

s

2

)
,

s−1∑
i=1

i2 = s(s − 1)(2s − 1)/6

except the sum
t

s

s−1∑
i=1

iσ(i),

which appears in the first and third terms, and cancels. 	

To complete the proof of Theorem 3.1, we need the following fact about Q.

Lemma 3.5 If ri is given by Lemma 3.2, then

Q(r1 + tn1, · · · , rs−1 + tns−1) = t2Q(nσ−1(1), · · · , nσ−1(s−1)) + Q(r1, · · · , rs−1).
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Proof. We have

Q(r1 + tn1, · · · , rs−1 + tns−1) = t2Q(n1, · · · , ns−1) + Q(r1, · · · , rs−1)

+t

s−1∑
i=1

(
sri + (−s/2 + i + 1/2)(1 − t) − (r1 + · · · + rs−1)

)
ni.

Let Q = Q′ + L, where

Q′(b1, · · · , bs−1) =
s − 1

2

s−1∑
i=1

b2
i −

∑
1≤i<j≤s−1

bibj

L(b1, · · · , bs−1) =
s−1∑
i=1

(−s/2 + i + 1/2)bi.

Since Q′ is a symmetric function of b1, · · · , bs−1, in order to prove Lemma
3.5, we need only consider the linear term and L, i.e.

tL(n1, · · · , ns−1)+
s−1∑
i=1

(
sri + (−s/2 + i + 1/2)(1 − t) − (r1 + · · · + rs−1)

)
ni

=tL(nσ−1(1), · · · , nσ−1(s−1)).
(4)

However (4) follows from Lemma 3.3 and Lemma 3.2. 	
Theorem 3.1 now follows from Lemma 3.5:∑

n1,··· ,ns−1≥0

qQ(r1+tn1,··· ,rs−1+tns−1) = qQ(r1,··· ,rs−1)
∑

n1,··· ,ns−1≥0

qt2Q(nσ−1(1),··· ,nσ−1(s−1))

=qQ(r1,··· ,rs−1)
∑

n1,··· ,ns−1≥0

qt2Q(n1,··· ,ns−1)

=qQ(r1,··· ,rs−1)As(qt2).

	
Corollary 3.6 If s and t are relatively prime positive integers with s ≥ 5, then
an (s, t)-good partition of n exists exactly when n = (s2 − 1)(t2 − 1)/24 + mt2

for some non-negative integer m.

Proof. This follows from the Granville-Ono theorem [4] on the existence of
s-cores, s ≥ 5. 	

4 The maximum (s, t)-core

Let κs,t be the unique (s, t)-good partition of (s2−1)(t2−1)/24, whose ci- values
are given by ri in Lemma 3.2. Any other (s, t)-good partition has more nodes
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than κs,t. In this section we prove that κs,t also has a maximum property. It is
both an s- and a t-core, and has more nodes than any other partition which is
also an s- and t-core. We have called partitions which are both s- and t-cores,
(s, t)-cores.

Theorem 4.1 Let s and t be relatively prime positive integers. If λ is a par-
tition of n which is both an s-core and a t-core, then n ≤ (s2 − 1)(t2 − 1)/24.
Moreover there is exactly one such partition for n = (s2 − 1)(t2 − 1)/24, which
is κs,t.

Let us note the following consequence of Theorem 4.1.

Corollary 4.2 Let s and t be relatively prime positive integers. The minimal
(s, t)-good partition κs,t is also a t-core and κs,t = κt,s.

Indeed, the first statement is immediate from Theorem 4.1. Clearly κs,t =
κt,s since they are both equal to the unique maximum (s, t)-core.

Proof of Theorem 4.1. Anderson [1] classified all partitions which are both
s- and t-cores. We review the construction here.

We may assume that t > s. We construct a sequence of s − 1 columns of
integers, each column increasing from top to bottom, the columns aligned at
the bottom elements. The integers in the columns are referred to as elements
and the elements of a column all have the same residue modulo s. In the last,
or (s − 1)st column, place the integers t − s, t − 2s, · · · , t − �t/s�s, thus �t/s�
elements of residue t modulo s. In the (s − k)th column place

kt − s, kt − 2s, · · · , kt − �kt/s�s.

By Lemma 3.2, the (s−k)th column has rσ−1(k) elements, each of residue σ−1(k)
modulo s. An example with s = 5, t = 7 is given below.

3
8 1
13 6
18 11 4
23 16 9 2

Figure 1: β-set for κ5,7

The β-set which is the union of these columns provides a partition λ which is
both an s-core and a t-core which has cσ−1(k) = rσ−1(k). We see that λ = κs,t be-
cause ri = ci for 1 ≤ i ≤ s−1. In our example, κ5,7 = (12, 8, 7, 5, 4, 3, 3, 2, 1, 1, 1, 1).

Proposition 4.3 κs,t is an (s, t)-core.

Any other partition which is an (s, t)-core has a β-set consisting of a subset
of the β-set of κs,t which is closed under moving up or to the right. We refer to
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the β-set as northeast justified. So if the largest element, st− s− t, which is at
the bottom of the first column, is in the β-set, all elements of all columns must
be in the β-set.

For example take s = 5, t = 7, and let the β-set be {1, 3, 4, 6, 8, 11}, namely
the elements above the underlined elements in the diagram below.

3
8 1
13 6
18 11 4
23 16 9 2

Figure 2: β-set for a (5,7)-core

We must show that any partition having such a β-set has fewer nodes than
κs,t.

Suppose that the β-set for an (s, t)-core consists of the top ri − bi elements
of the column which contains the residue i modulo s. We must have 0 ≤ bi ≤ ri,
for 1 ≤ i ≤ s− 1. The bottom bi elements of this column do not lie in the β-set.
The lengths of these non-β-set columns must increase from right to left, because
the β-set is northeast justified. In the example above, b2 = 1, b4 = 1, b1 = 1,
and b3 = 3, r2 = 1, r4 = 2, r1 = 4, and r3 = 5, σ−1(i) ≡ 2i mod 5. So we have

bσ−1(1) ≤ bσ−1(2) ≤ · · · ≤ bσ−1(s−1), 0 ≤ bi ≤ ri, for 1 ≤ i ≤ s − 1.

We must prove

Q(r1 − bσ−1(1), · · · , rs−1 − bσ−1(s−1)) ≤ Q(r1, · · · , rs−1), (5)

for
0 ≤ bσ−1(1) ≤ bσ−1(2) ≤ · · · ≤ bσ−1(s−1), bi ≤ ri, 1 ≤ i ≤ s − 1. (6)

We prove (5) under the inequalities (6) in 3 steps:

Step 1: Establish the t = s + 1 case.
Step 2: Prove that the t ≡ 1 mod s case follows from the t = s + 1 case.
Step 3: Prove the general case from the t ≡ 1 mod s case.

Steps 2 and 3 are technically less demanding than Step 1, so we do these
steps first.

Proof of Step 2. Note that if t = sT + 1, then σ(i) = i and the values of ri

are given by ri = iT , for 1 ≤ i ≤ s − 1. We must show that

Q(T − b1, 2T − b2, · · · , (s − 1)T − bs−1) ≤ Q(T, 2T, · · · , (s − 1)T )

for the region R(T )

R(T ) = {(b1, · · · , bs−1 : 0 ≤ b1 ≤ · · · ≤ bs−1, bi ≤ iT, 1 ≤ i ≤ s − 1}.



11

Lemma 4.4 Assuming Step 1, L and Q′ are both maximized in R(T ) uniquely
at (T, 2T, · · · , (s − 1)T ).

Proof. We see that

L(T, · · · ,(s − 1)T ) − L(T − b1, · · · , (s − 1)T − bs−1)

=
s−1∑
i=1

(−s/2 + i + 1/2)bi

=
�(s−2)/2�∑

i=1

(s/2 − i − 1/2)(bs−2−i − bi) + (s/2 − 1/2)bs−1

is non-negative because bs−2−i ≥ bi for 1 ≤ i ≤ �(s − 2)/2� and bs−1 ≥ 0. It
is zero only when bs−1 = 0, thus all bi = 0, so L has a unique maximum at
(T, · · · , (s − 1)T ).

Since Q′ is a homogeneous quadratic form, we have

Q′(Tb1, · · · , T bs−1) = T 2Q′(b1, · · · , bs−1)

so maximizing Q′ on R(T ) = TR(1) is equivalent to maximizing Q′ on R(1).
By Step 1 this occurs uniquely at (1, · · · , s − 1). 	
Proof of Step 3. For Step 3, suppose that t = sT + m, and ri is given by
Lemma 3.2. Again we want the maximum value to occur at (r1, · · · , rs−1). We
will use Lemma 3.5 to reduce the inequalities in (6) to the σ = identity case
and then apply Step 2.

By Lemma 3.5 we have

Q(r1, · · · ,rs−1) − Q(r1 − b1, · · · , rs−1 − bs−1)

= − t2Q(−bσ−1(1)/t, · · · ,−bσ−1(s−1)/t)

= − t2Q(−d1/t, · · · ,−ds−1/t)

where dk = bσ−1(k). The allowed values of the dk are

{(d1, · · · , ds−1) : dk ≤ rσ−1(k), 1 ≤ k ≤ s − 1, 0 ≤ d1 ≤ d2 ≤ · · · ≤ ds−1}.
¿From Step 2 we know that the inequality holds for m = 1, i.e.

Q(−e1, · · · ,−es−1) < 0

if (e1, · · · , es−1) �= (0, · · · , 0) and

0 ≤ e1 ≤ · · · ≤ es−1, 0 ≤ ek ≤ kT/(sT + 1), 1 ≤ k ≤ s − 1.

If T → ∞, since Q is independent of T , we see that Q(−e1, · · · ,−es−1) < 0 if
(e1, · · · , es−1) �= (0, · · · , 0) and

0 ≤ e1 ≤ · · · ≤ es−1, 0 ≤ ek < k/s. (7)



12

We verify that the allowed dk/t satisfy (7). Since m and s are relatively
prime, we have

1
k
�mk

s
� <

m

s
.

The inequality to verify for dk/t when t = sT + m is

dk

t
≤ rσ−1(k)

t
=

�tk/s�
t

=
�(sT + m)k/s�

sT + m
=

kT + �mk/s�
sT + m

=
k

s

(
T + 1

k�mk
s �

T + m/s

)
<

k

s
.

Thus Q(−d1/t, · · · ,−ds−1/t) < 0, for the allowed dk which are not all 0.
This completes the proof of Step 3.

Proof of Step 1. Finally we come to Step 1. For t = s + 1, both κs,s+1 and
β(κs,s+1) can be given explicitly. We shall use these explicit representations
to prove in Lemma 4.5 that the Ferrers diagram of any (s, s + 1)-core must be
contained in the Ferrers diagram of κs,s+1.

The s−1 columns of the diagram for β(κs,s+1) form a triangular shape. The
s − i elements in the ith column are s − i + as, 0 ≤ a ≤ (s − i) − 1. The parts
of the partition κs,s+1 are triangular numbers

κs,s+1 =
(

s

2

)1(
s − 1

2

)2

· · ·
(

3
2

)s−2(2
2

)s−1

. (8)

For example if s = 6,

κ6,7 = (15, 10, 10, 6, 6, 6, 3, 3, 3, 3, 1, 1, 1, 1, 1). (9)

The diagram for β(κ6,7) is given below.

5
11 4
17 10 3
23 16 9 2
29 22 15 8 1

Figure 3: β-set for κ6,7

A β-set β(µ) for an (s, s+1)-core µ consists of a subset of elements of κs,s+1,
which are northeast justified. For example, the elements β(µ) = {1, 2, 4, 5, 8, 11}
are northeast justified in κ6,7, the corresponding partition is µ = (6, 4, 2, 2, 1, 1).
There is one part of µ for each element of β(µ). The part of µ corresponding to
the element v ∈ β(µ) is

v − |{w ∈ β(µ) : w < v}|.
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We say that an element (a − 1)s + j is on the ath diagonal of κs,s+1. For
example 16 is on the 3rd diagonal of κ6,7. The elements on the ath diagonal
consist of the s − a consecutive integers,

(a − 1)s + a, (a − 1)s + a + 1, · · · , (a − 1)s + s − 1.

We shall prove a statement stronger than Theorem 4.1.

Proposition 4.5 If µ is any (s, s + 1)-core, then the Ferrers diagram of µ is
contained in the Ferrers diagram of κs,s+1.

The proof of Proposition 4.5 will proceed in the following way. The idea is
to push the β-set β(µ) to the northwest, creating a canonical (s, s + 1)-core,
whose Ferrers diagram contains the Ferrers diagram of µ. Then we must check
that the Ferrers diagram of κs,s+1 contains the Ferrers diagram of any of the
canonical (s, s + 1)-cores.

We use a simple sufficient condition on β-sets for Ferrers containment. If
0 /∈ β(µ) = S, then increasing any particular element of S always produces a
β-set S′ for a partition µ′ whose Ferrers diagram contains µ. In fact, by Lemma
2.2 µ′ is obtained from the partition µ by adding a hook to it.

Let µ be an (s, s+1)-core with β-set β(µ). Let dk be the number of elements
of β(µ) on the kth diagonal. Let D(dk) be the subset of β(κs,s+1) consisting of
the largest dk elements in the kth diagonal of β(κs,s+1). Then

diag(µ) =
s−1⋃
k=1

D(dk)

is the β-set for a partition whose Ferrers diagram contains µ. In fact it is not
hard to see that diag(µ) is northeast justified, because dk−1 ≥ dk + 1 when
dk > 0, k ≥ 2.

We show that by increasing elements of diag(µ) we can obtain a β-set for a
canonical (s, s + 1)-core, denoted by θl,b. We let θl,b be the (s, s + 1)-core such
that β(θl,b) consists of the top l − 1 rows of β(κs,s+1) and the last b elements
of the lth row of β(κs,s+1). (We suppress the s-dependence of θl,b as s is fixed
throughout this section.) The diagram below indicates by x’s where β(θ4,2) is
located in β(κs,s+1) .

x
x x
x x x
. . x x
. . . . .

Figure 4: θ4,2

Lemma 4.6 Let µ be an (s, s + 1)-core with exactly
(

l
2

)
+ b parts, for some l, b,

with 0 ≤ b ≤ l − 1 ≤ s − 2. Then the Ferrers diagram of µ is contained in the
Ferrers diagram of the (s, s + 1)-core partition θl,b.
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Proof. Let µ be an (s, s + 1)-core with dk elements on the kth diagonal. Note
that dk = 0 for k > l−1, since any element of β(µ) on the kth diagonal produces
at least

(
k+1
2

)
elements in β(µ), and β(µ) has fewer than

(
l
2

)
elements.

Let d′k be the number of elements of β(θl,b) on the kth diagonal, so

d′l−k =

{
k if 1 ≤ k ≤ l − b − 1,

k + 1 if l − b ≤ k ≤ l − 1.

To show that β(θl,b) can be obtained by increasing elements of diag(µ), we show
that

d′1 + d′2 + · · · + d′p ≤ d1 + d2 + · · · + dp, 1 ≤ p ≤ l − 1. (10)

Suppose, by contradiction, that p is the smallest positive integer such that

d′1 + d′2 + · · · + d′p+1 > d1 + d2 + · · · + dp+1. (11)

Then we must have d′p+1 > dp+1. Since diag(µ) is northeast justified, all
elements of diag(µ) on diagonals p + 2, · · · , l − 1 must be contained in β(θl,b),
so dk ≤ d′k for k > p + 1. Using (11), we see that(

l

2

)
+ b = d1 + d2 + · · · + dl−1 < d′1 + d′2 + · · · + d′l−1 =

(
l

2

)
+ b,

which is a contradiction. 	
To complete the proof of Proposition 4.5, we show that the flattened par-

tition θl,b is indeed inside κs,s+1. Let us take an example and compare θ5,0 =
(14, 9, 9, 5, 5, 5, 2, 2, 2, 2) to κ6,7. The elements of β(θ5,0) are given below.

5
11 4
17 10 3
23 16 9 2

Figure 5: β(θ5,0) for s = 6

We see that the consecutive differences of parts for θ5,0 and κ6,7 (see (9))
are the same. The reason for this behaviour is twofold: the ith largest diagonal
has length i in each case and the largest elements in consecutive diagonals differ
by s. This shows that the Ferrers diagram of θl,b is contained in the Ferrers
diagram of κs,s+1 and

θl,0 =
((

s

2

)
−

(
s − l + 1

2

))1

· · ·
((

s − l + 2
2

)
−

(
s − l + 1

2

))l−1

.

If b > 0, we take as an example θ5,2 = (12, 7, 7, 3, 3, 3, 3, 1, 1, 1, 1, 1) inside
κ6,7.
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5
11 4
17 10 3
23 16 9 2

8 1

Figure 6: β(θ5,2) for s = 6

Because we have two more elements, the largest part, 14, in θ5,0, has de-
creased by 2 to 12 in θ5,2. As before, the consecutive differences are the same
until we come to the diagonals with an extra element, which will also add one to
the multiplicities. The differences progressively decrease by one as the diagonals
move northeast. In the example, the differences for θ5,2 are (5, 4, 2) while those
for θ5,0 are (5, 4, 3). This becomes

θl,b = p1
1p

2
2 · · · pl−b−1

l−b−1p
l−b+1
l−b · · · pl

l−1

where

pi =

{(
s−i+1

2

) − (
s−l+1

2

) − b, 1 ≤ i ≤ l − b − 1,(
s−i+1

2

) − (
s−l+1

2

)
+ (i − l), l − b ≤ i ≤ l − 1.

(12)

To test for Ferrers containment, we need only check the last “extra part” in
each diagonal against the next corresponding part of κs,s+1. This is

pi ≤
(

s − i

2

)
, l − b ≤ i ≤ l − 1,

which holds because the difference in the two sides is
(
s−l
2

)
.

Thus after some routine calculations we have proven the following two results.

Lemma 4.7 The Ferrers diagram of θl,b is contained in the Ferrers diagram of
κs,s+1.

Corollary 4.8 Suppose µ is an (s, s + 1)-core with exactly
(

l
2

)
+ b parts, where

0 ≤ b ≤ l − 1 ≤ s − 2. Then the Ferrers diagram of µ has at most(
l + 2

4

)
+ (s − l)

(
l + 1

3

)
− b

(
l + 1

2

)
+ s

(
b + 1

2

)

nodes, and must be contained in the Ferrers diagram of θl,b given by (12).

It is possible to use Corollary 4.8 to find the next largest (s, s + 1)-core,
which are θs−1,s−2 and θs−1,0. We do not give the details of the proof, which is
a tedious checking of inequalities.

Corollary 4.9 There are exactly two (s, s + 1)-cores which are partitions of(
s+2
4

) − (
s
2

)
. Except for κs,s+1, every other (s, s + 1)-core has fewer nodes.
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For general (s, t)-cores the appropriate number of nodes for Corollary 4.9
appears to be (s2 − 1)(t2 − 1)/24 − (s − 1)(t − 1)/2.

Remark 4.10 If λ and µ are (s, t)-cores, β(λ) ⊂ β(µ) does not imply λ ⊂ µ.
In this case one can have the size of µ less than the size of λ. An easy example
is λ = (3, 2) µ = (2, 1, 1).

Remark 4.11 In view of Lemma 4.5 it seems reasonable to ask: If µ is any
(s, t)-core, is the Ferrers diagram of µ contained in the Ferrers diagram of κs,t?
This has been proven if t = qs + r where 0 < r < s and q ≥ r − 1, by a group
led by Anderson and Swisher [2].

Remark 4.12 Theorem 4.1 answers a question of Kane [6, p. 10] who found
the size of κs,t. Puchta [11] stated that an (s, t)-core has at most s2t2 nodes.
However, he applied a property of conjugates of t-cores to t-cores themselves,
and his proof would appear to be incomplete.

5 The (s, t)-abacus

Let again s, t be relatively prime positive integers.
We consider (s, t)-good partitions. Thus κ is (s, t)-good if it is an s-core and

the set β(κ, s) is (s, t)-good. This means that the block Bs of |κ| + s with κ as
core is contained in a t-block Bt.

We are going to define the (s, t)-abacus and are going to use it to establish
a natural bijection between the set of all s-cores and the set of all (s, t)-good
partitions. If λ is an s-core of n then the corresponding (s, t)-good partition has

(s2 − 1)(t2 − 1)
24

+ t2n

nodes. This gives then in particular a bijective proof of Theorem 3.1.
By Lemma 2.2 an s-core is uniquely determined by an s−1-tuple (c1, · · · , cs−1)

of non-negative integers, where ci is the number of beads on the i-th runner of
the s-abacus representing the first column hook lengths of the s-core.

Thus for example, if s = 5 then the tuple (1,0,2,2) represents the following
bead configuration, where again beads are shown as underlined numbers:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
....

Then the β-set {1, 3, 4, 8, 9} of bead numbers represents the 5-core (5,5,2,2,1).
The s-core represented by (c1, · · · , cs−1) contains a total of

s−1∑
i=1

(
s

(
ci

2

)
+ ici

)
−

(
c1 + · · · + cs−1

2

)
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nodes and is denoted by C(c1, ..., cs−1).
To describe the s-cores which are (s, t)-good we need the following:
Let σ be the permutation of {1, · · · , s− 1} described in Lemma 3.2. Thus σ

is defined by the property that for i = 1, · · · , s − 1 we have tσ(i) ≡s i.

Put ri = tσ(i)−i
s . Then 0 ≤ ri ≤ t− 1 and the s-core κs,t := C(r1, ..., rs−1) is

(s, t)-good.
Let us consider the example s = 5, t = 7. We have σ(1) = 3, since 7 · 3 ≡5 1.

Also σ(2) = 1, σ(3) = 4, σ(4) = 2. Moreover r1 = 4, r2 = 1, r3 = 5, r4 = 2. The
bead configuration on the 5-abacus is

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
25 26 27 28 29
....

We arrange the first column hook lengths of κ5,7 in the following diagram as
was done in Figure 1 above:

3
8 1
13 6
18 11 4
23 16 9 2

Generally we arrange the hook lengths of κs,t in a similar way with rσ−1(s−1)

nodes in the first column, rσ−1(s−2) nodes in the second column and so on.
The nodes in the j-th column have residues σ−1(s − j) modulo s. Call this the
minimal (s, t)-diagram. Put r′j = rσ−1(s−j).

We proceed to describe the (s, t)-abacus which is obtained from the usual
s-abacus by changing the order of the runners using the permutation σ and
adjusting the top of each runner. Let us specify here that for 1 ≤ j ≤ s − 1
runner j on the s-abacus is going to correspond to runner σ(s− j) on the (s, t)-
abacus. Going the other way runner j on the (s, t)-abacus corresponds to runner
σ−1(s − j) on the s-abacus.

In detail the (s, t)-abacus is then defined as follows.
It has s runners, numbered 1, 2, ...s− 1 and 0, running from north to south.

On the top of the first s − 1 runners we place the minimal (s, t)-diagram as
defined above. We extend these runners to the south by adding to the j-th
runner in increasing order all remaining numbers which are congruent to the
top r′j numbers modulo s. The 0-th runner contains the numbers divisible by s
in increasing order. This runner starts below and to the right of the minimal
(s, t)-diagram.

As an example, here is part of the (5, 7)-abacus.
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Runner: 1 2 3 4 0
Row -5 3
Row -4 8 1
Row -3 13 6
Row -2 18 11 4
Row -1 23 16 9 2
Row 0 28 21 14 7 0
Row 1 33 26 19 12 5
Row 2 38 31 24 17 10
Row 3 43 36 29 22 15
Row 4 48 41 34 27 20
Row 5 53 46 39 32 25
Row 6 58 51 44 37 30
Row 7 63 56 49 42 35
Row 8 68 61 54 47 40

The rows below the minimal (s, t)-diagram are numbered 0,1,2... as indicated
in the example. Thus the i-th row contains a decreasing sequence of numbers
which are congruent modulo t. The difference between neighbouring numbers
is t and the rightmost number in the row (on the runner s) is s · i. Clearly any
non-negative integer is represented uniquely by a position on the (s, t)-abacus.
If k ≥ 0 the rows numbered tk+ i, i = 0, ..., t−1 are said to be in the k-th region
of the abacus. The rows of the minimal (s, t)-diagram are said to be in region
-1 and are numbered upwards by -1,-2,... The (j, k)-segment is the positions on
the j-th runner in the k-th region. In the above example the (3,0)-segment is
the positions 14,19,24,29,34,39,44.

Generally a β-set is then represented on the (s, t)-abacus by beads in the
positions given by the β-set. Since the original runners of the s-abacus are
preserved in the (s, t)-abacus the removal of an s-hook from the correspond-
ing partition is registered on the (s, t)-abacus by moving a bead to a vacant
position just above it on the same runner. The removal of a t-hook from the
corresponding partition is registered on the (s, t)-abacus by moving a bead in
a row to a vacant position just to the right of it, if the bead is on one of the
runners 1,...,s−1. Beads on runner 0 and in row i have to be moved to a vacant
position on the first runner in row i − t. Thus it is moved from a region (say
region k) to the region numbered one below (region k − 1).

Let β(κ) be the set of first column hook lengths of the (s, t)-good partition κ.
We represent β(κ) by beads on the (s, t)-abacus. Since κ is an s-core there are
no vacant positions above any bead on the runner containing it. Also runner 0
is empty, as 0 is not a hook length. The condition on the s-maximal elements in
β(κ) explained in Remark 2.6 then implies that the lowest bead on each runner
has to be at a row, whose number is congruent -1 modulo t. Thus runner j has
to contain at least r′j beads for 1 ≤ j ≤ s − 1. We define then a′

j(κ) ≥ 0 by
the property that row a′

j(κ)t − 1 contains the lowest bead on runner j. Thus
the number of beads on that runner is a′

j(κ)t + r′j . The (s, t)-good partition
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κ is then uniquely determined by the numbers a′
1(κ), ..., a′

s−1(κ), since these
numbers determine β(κ). Note that the beads fill up complete segments on the
(s, t)-abacus, since the lowest beads on a runner is the lowest in the segment
containing it. For technical reasons let us define

a(κ) = (a1(κ), ..., as−1(κ)),

where
aj(κ) = a′

s−j(κ).

The t-quotient of a partition is read off its t-abacus by considering the bead
positions on the runners. In the (s, t)-abacus the runners of the t-abacus are
broken into pieces. They are just all the rows whose number have the same
residue mod t.

Let us consider the t-quotient of the (s, t)-good partition κ. Then the beads
on the rows whose numbers are congruent to i modulo t determine one of the
t partitions in the t-quotient of κ. We have seen that beads fill up complete
segments on the (s, t)-abacus. This means that the bead configurations on each
runner of the t-abacus of κ represent the same partition, say ρ(κ). We then get
that

|κ| = t2|ρ(κ)| + |κ′|,
where κ′ is the t-core of κ. Moreover it is easily seen that

ρ(κ) = C(a(κ)).

In particular ρ(κ) is an s-core. We reach a bead configuration for the t-core of
κ by a sequence of |ρ(κ)| operations, where each operation consists of moving
all beads in a segment to the right to a neighbouring empty segment. Here we
have to specify that the segment to the right of the segment numbered (0, k)
by definition is numbered (1, k − 1). After these operations we reach the bead
configuration for the β-set of the form β(κs,t, tl), where l is the number of parts
in ρ(κ). Thus κs,t is the t-core of κ. We conclude that the maximal (s, t)-core
κs,t is the t-core of any (s, t)-good partition. Therefore the map κ �→ ρ(κ) is a
bijection between the set of all (s, t)-good partitions and the set of all s-cores.

We have shown:

Theorem 5.1 There is a bijection ρ between the set of all (s, t)-good partitions
and the set of all s-cores. For any (s, t)-good partition κ we have

|κ| = t2|ρ(κ)| + |κs,t| =
(s2 − 1)(t2 − 1)

24
+ t2|ρ(κ)|.

Moreover κs,t is the t-core of κ and

(ρ(κ), ρ(κ), ..., ρ(κ))

is the t-quotient of κ. 	
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Remark 5.2 Suppose that λ∗ denotes the conjugate (transpose) partition to the
partition λ. In the notation of the above theorem we get easily that ρ(κ)∗ = ρ(κ∗).

Let µs,t be the partition obtained by removing the maximal hook (of length
st − s − t) from the maximal (s, t)-core κs,t. Clearly µs,t is again an (s, t)-core.
It can be seen that the northeast justified subset of β(κs,t) which is a β-set
for µs,t may be obtained as follows: After possibly conjugating the minimal
(s, t)-diagram we may assume s < t. Then we have to remove the bottom two
elements of the 1st column and the bottom element of every other column of the
diagram. Indeed you get a β-set X for µs,t from β(κs,t) by replacing st − s − t
by 0. Since 1, 2, · · · , s − 1 ∈ β(κs,t), s /∈ β(κs,t) we see that X = β(µs,t, s).

We finish with a somewhat surprising result, involving µs,t.

Theorem 5.3 Let κ be an (s, t)-good partition. Thus the s partitions obtained
by adding an s-hook to κ all have the same t-core. This t-core equals µs,t and
in particular is also an s-core.

Proof. Denote the common t-core of the s partitions obtained by adding an
s-hook to κ by µ. We show µ = µs,t.

Suppose that x is the maximal element in the β-set β(κ) for κ. As we have
seen the row containing x in the (s, t)-abacus has a number ≡t −1. Thus x + s
is in a row, whose number is divisible by t. Therefore t | x + s. The partition µ
is the t-core of the partition with β-set β(κ) ∪ {x + s} \ {x}.

We have argued above using simultaneous movements of segments that β(κs,t, tl)
is a β-set for the t-core of κ which is κs,t. A similar argument shows that the bead
configuration on the t-abacus for a β-set of µ is obtained from that of β(κs,t, tl)
by moving the bead with the maximal number to the lowest empty position
(which is tl) on runner 0. The result is the bead configuration of β(µs,t, tl +m),
where m = min(s, t). 	
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