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Abstract. We consider some elementary functions of the components of a
regularly varying random vector such as linear combinations, products, min-
ima, maxima, order statistics, powers. We give conditions under which these
functions are again regularly varying, possibly with a different index.

1. Introduction

Regular variation is one of the basic concepts which appears in a natural way
in different contexts of applied probability theory. Feller’s [21] monograph has
certainly contributed to the propagation of regular variation in the context of limit
theory for sums of iid random variables. Resnick [44, 45, 46] popularized the notion
of multivariate regular variation for multivariate extreme value theory. Bingham
et al. [3] is an encyclopedia where one finds many analytical results related to one-
dimensional regular variation. Kesten [28] and Goldie [22] studied regular variation
of the stationary solution to a stochastic recurrence equation. These results find
natural applications in financial time series analysis, see Basrak et al. [2] and
Mikosch [39]. Recently, regular variation has become one of the key notions for
modeling the behavior of large telecommunications networks, see e.g. Leland et al.
[35], Heath et al. [23], Mikosch et al. [40].

It is the aim of this paper to collect some well and less known results on basic
functions acting on regularly varying random variables and random vectors such
as sums, products, linear combinations, maxima and minima, and powers. These
appear quite often in applications related to time series analysis, risk management,
insurance and telecommunications. Most of the results belong to the folklore but
they are often wide spread over the literature and not always easily accessible. We
will give references whenever we are aware of a proved result and give proofs if this
is not the case.
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2 A. H. JESSEN AND T. MIKOSCH

We focus on functions of finitely many regularly varying random variables.
With a few exceptions (the tail of the marginal distribution of a linear process,
functionals with a random index) we will not consider results where an increasing
or an infinite number of such random variables or vectors is involved. We exclude
distributional limit results e.g. for partial sums and maxima of iid and strictly
stationary sequences, tail probabilities of subadditive functionals acting on a regu-
larly varying random walk (e.g. ruin probabilities) and heavy-tailed large deviation
results, tails of solutions to stochastic recurrence equations.

We start by introducing the notion of a multivariate regularly varying vector in
Section 2. Then we will consider sum-type functionals of regularly varying vectors
in Section 3. Functionals of product-type are considered in Section 4. In Section 5
we finally study order statistics and powers.

2. Regularly varying random vectors

In what follows, we will often need the notion of a regularly varying random
vector and its properties; we refer to Resnick [44] and [45], Section 5.4.2.

Definition 2.1. An Rd-valued random vector X and its distribution are said
to be regularly varying with limiting non-null Radon measure µ on the Borel σ-field

B(R
d

0) of R
d

0 = R
d\{0} if

P (x−1X ∈ ·)
P (|X| > x)

v→ µ , x→ ∞ .(2.1)

Here | · | is any norm in Rd and
v→ refers to vague convergence on B(R

d

0).

Since µ necessarily has the property µ(t A) = t−αµ(A), t > 0, for some α > 0

and all Borel sets A in R
d

0 we say that X is regularly varying with index α and

limiting measure µ, for short X ∈ RV(α, µ). If the limit measure µ is irrelevant we
also write X ∈ RV(α). Relation (2.1) is often used in different equivalent disguises.
It is equivalent to the sequential definition of regular variation: there exist cn → ∞
such that

nP (c−1
n X ∈ ·) v→ µ .

One can always choose (cn) increasing and such that nP (|X| > cn) ∼ 1. Another
aspect of regular variation can be seen if one switches in (2.1) to a polar coordinate
representation. Writing x̃ = x/|x| for any x 6= 0 and Sd−1 = {x ∈ Rd : |x| = 1} for
the unit sphere in Rd, relation (2.1) is equivalent to

P (|X| > x t , X̃ ∈ ·)
P (|X| > x)

w→ t−α P (Θ ∈ ·) for all t > 0,(2.2)

where Θ is a random vector assuming values in Sd−1 and
w→ refers to weak conver-

gence on the Borel σ-field of Sd−1.
Plugging the set Sd−1 into (2.2), it is straightforward that the norm |X| is

regularly varying with index α.



REGULARLY VARYING FUNCTIONS 3

The special case d = 1 refers to a regularly varying random variable X with
index α > 0:

P (X > x) ∼ p x−α L(x) and P (X 6 −x) ∼ q x−α L(x) ,

p+ q = 1 ,(2.3)

where L is a slowly varying function, i.e., L(cx)/L(x) → 1 as x → ∞ for every
c > 0. Condition (2.3) is also referred to as a tail balance condition. The cases
p = 0 or q = 0 are not excluded. Here and in what follows we write f(x) ∼ g(x) as
x → ∞ if f(x)/g(x) → 1 or, if g(x) = 0, we interpret this asymptotic relation as
f(x) = o(1).

3. Sum-type functions

3.1. Partial sums of random variables. Consider regularly varying ran-
dom variables X1, X2, . . ., possibly with different indices. We write

Sn = X1 + · · · +Xn , n > 1 ,

for the partial sums. In what follows, we write G = 1 − G for the right tail of a
distribution function G on R.

Lemma 3.1. Assume |X1| is regularly varying with index α > 0 and distribution

function F . Assume X1, . . . , Xn are random variables satisfying

lim
x→∞

P (Xi > x)

F (x)
= c+i and lim

x→∞

P (Xi 6 −x)
F (x)

= c−i ,

i = 1, . . . , n ,(3.1)

for some non-negative numbers c±i and

lim
x→∞

P (Xi > x ,Xj > x)

F (x)
= lim

x→∞

P (Xi 6 −x ,Xj > x)

F (x)

= lim
x→∞

P (Xi 6 −x ,Xj 6 −x)
F (x)

= 0 , i 6= j .(3.2)

Then

lim
x→∞

P (Sn > x)

F (x)
= c+1 + · · · + c+n

and

lim
x→∞

P (Sn 6 −x)
F (x)

= c−1 + · · · + c−n .

In particular, if the Xi’s are independent non-negative regularly varying random

variables then

P (Sn > x) ∼ P (X1 > x) + · · · + P (Xn > x) .(3.3)
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The proof of (3.3) can be found in Feller [21], p. 278, cf. Embrechts et al.
[18], Lemma 1.3.1. The general case of possibly dependent non-negative Xi’s was
proved in Davis and Resnick [14], Lemma 2.1; the extension to general Xi’s follows
along the lines of the proof in [14]. Generalizations to the multivariate case are
given in Section 3.6 below.

The conditions in Lemma 3.1 are sharp in the sense that they cannot be sub-
stantially improved. A condition like (3.1) with not all c±i ’s vanishing is needed
in order to ensure that at least one summand Xi is regularly varying. Condition
(3.2) is a so-called asymptotic independence condition. It cannot be avoided as the
trivial example X2 = −X1 for a regularly varying X1 shows. Then (3.1) holds but
(3.2) does not and S2 = 0 a.s.

A partial converse follows from Embrechts et al. [17].

Lemma 3.2. Assume Sn = X1 + · · ·+Xn is regularly varying with index α > 0
and Xi are iid non-negative. Then the Xi’s are regularly varying with index α and

P (Sn > x) ∼ nP (X1 > x) , n > 1 .(3.4)

Relation (3.4) can be taken as the definition of a subexponential distribution. The
class of those distributions is larger than the class of regularly varying distributions,
see Embrechts et al. [18], Sections 1.3, 1.4 and Appendix A3. Lemma 3.2 remains
valid for subexponential distributions in the sense that subexponentiality of Sn

implies subexponentiality of X1. This property is referred to as convolution root

closure of subexponential distributions.

Proof. Since Sn is regularly varying it is subexponential. Then the regular
variation of Xi follows from the convolution root closure of subexponential dis-
tributions, see Proposition A3.18 in Embrechts et al. [18]. Relation (3.4) is a
consequence of (3.3). �

An alternative proof is presented in the proof of Proposition 4.8 in Faÿ et
al. [20]. It strongly depends on the regular variation of the Xi’s: Karamata’s
Tauberian theorem (see Feller [21], XIII, Section 5) is used.

In general, one cannot conclude from regular variation of X+Y for independent
X and Y that X and Y are regularly varying. For example, if X+Y has a Cauchy
distribution, in particular X + Y ∈ RV(1), then X can be chosen Poisson, see
Theorem 6.3.1 on p. 71 in Lukacs [37]. It follows from Lemma 3.12 below that
Y ∈ RV(1).

3.2. Weighted sums of iid regularly varying random variables. We
assume that (Zi) is an iid sequence of regularly varying random variables with
index α > 0 and tail balance condition (2.3) (applied to X = Zi). Then it follows
from Lemma 3.1 that for any real constants ψi

P (ψ1 Z1 + · · · + ψmZm > x) ∼ P (ψ1 Z1 > x) + · · · + P (ψm Z1 > x) .

Then evaluating

P (ψi Z1 > x) = P (ψ+
i Z

+
i > x) + P (ψ−

i Z
−
i > x) ,
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where x± = 0∨(±x) we conclude the following result which can be found in various
books, e.g. Embrechts et al. [18], Lemma A3.26.

Lemma 3.3. Let (Zi) be an iid sequence of regularly varying random variables

satisfying the tail balance condition (2.3). Then for any real constants ψi and

m > 1,

P (ψ1 Z1 + · · · + ψm Zm > x) ∼ P (|Z1| > x)

m∑

i=1

[
p (ψ+

i )α + q (ψ−
i )α

]
.

(3.5)

The converse of Lemma 3.3 is in general incorrect, i.e., regular variation of
ψ1 Z1 + · · · + ψm Zm with index α > 0 for an iid sequence (Zi) does in general
not imply regular variation of Z1, an exception being the case m = 2 with ψi > 0,
Zi > 0 a.s., i = 1, 2, cf. Jacobsen et al. [27].

3.3. Infinite series of weighted iid regularly varying random vari-

ables. The question about the tail behavior of an infinite series

X =

∞∑

i=0

ψjZj(3.6)

for an iid sequence (Zi) of regularly varying random variables with index α > 0
and real weights occurs for example in the context of extreme value theory for
linear processes, including ARMA and FARIMA processes, see Davis and Resnick
[11, 12, 13], Klüppelberg and Mikosch [29, 30, 31], cf. Brockwell and Davis
[5], Section 13.3, Resnick [45], Section 4.5, Embrechts et al. [18], Section 5.5 and
Chapter 7.

The problem about the regular variation of X is only reasonably posed if the
infinite series (3.6) converges a.s. Necessary and sufficient conditions are given
by Kolmogorov’s 3-series theorem, cf. Petrov [42, 43]. For example, if α > 2
(then var(Zi) < ∞), the conditions E(Z1) = 0 and

∑
i ψ

2
i < ∞ are necessary and

sufficient for the a.s. convergence of X .
The following conditions from Mikosch and Samorodnitsky [41] are best pos-

sible in the sense that the conditions on (ψi) coincide with or are close to the con-
ditions in the 3-series theorem. Similar results, partly under stronger conditions,
can be found in Lemma 4.24 of Resnick [45] for α 6 1 (attributed to Cline [7, 8]),
Theorem 2.2 in Kokoszka and Taqqu [32] for α ∈ (1, 2).

Lemma 3.4. Let (Zi) be an iid sequence of regularly varying random variables

with index α > 0 which satisfy the tail balance condition (2.3). Let (ψi) be a

sequence of real weights. Assume that one of the following conditions holds:

(1) α > 2, E(Z1) = 0 and
∑∞

i=0 ψ
2
i <∞.

(2) α ∈ (1, 2], E(Z1) = 0 and
∑∞

i=0 |ψi|α−ε <∞ for some ε > 0.
(3) α ∈ (0, 1] and

∑∞
i=0 |ψi|α−ε <∞ for some ε > 0.
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Then

P (X > x) ∼ P (|Z1| > x)

∞∑

i=0

[
p (ψ+

i )α + q (ψ−
i )α

]
.(3.7)

The conditions on (ψj) in the case α ∈ (0, 2] can be slightly relaxed if one knows
more about the slowly varying L. In this case the following result from Mikosch
and Samorodnitsky [41] holds.

Lemma 3.5. Let (Zi) be an iid sequence of regularly varying random variables

with index α ∈ (0, 2] which satisfy the tail balance condition (2.3). Assume that∑∞
i=1 |ψi|α < ∞, that the infinite series (3.6) converges a.s. and that one of the

following conditions holds:

(1) There exist constants c, x0 > 0 such that L(x2) 6 c L(x1) for all x0 <
x1 < x2.

(2) There exist constants c, x0 > 0 such that L(x1 x2) 6 c L(x1)L(x2) for all

x1, x2 > x0 > 0

Then (3.7) holds.

Condition (2) holds for Pareto-like tails P (Z1 > x) ∼ c x−α, in particular for
α-stable random variables Zi and for student distributed Zi’s with α degrees of
freedom. It is also satisfied for L(x) = (logk x)

β , any real β, where logk is the kth
time iterated logarithm.

Classical time series analysis deals with the strictly stationary linear processes

Xn =

∞∑

i=0

ψi Zn−i , n ∈ Z ,

where (Zi) is an iid white noise sequence, cf. Brockwell and Davis [5]. In the case
of regularly varying Zi’s with α > 2, var(Z1) and var(X1) are finite and there-
fore it makes sense to define the autocovariance function γX(h) = cov(X0, Xh) =∑

i ψiψi+|h|, h ∈ Z. The condition
∑

i ψ
2
i < ∞ (which is necessary for the

a.s. convergence of Xn) does not only capture short range dependent sequences
(such as ARMA processes for which γX(h) decays exponentially fast to zero) but
also long range dependent sequences (Xn) in the sense that

∑
h |γX(h)| = ∞.

Thus Lemma 3.4 also covers long range dependent sequences. The latter class
includes fractional ARIMA processes; cf. Brockwell and Davis [5], Section 13.2,
and Samorodnitsky and Taqqu [50].

Notice that (3.7) is the direct analog of (3.5) for the truncated series. The
proof of (3.7) is based on (3.5) and the fact that the remainder term

∑∞
i=m+1 ψi Zi

is negligible compared to P (|Z1| > x) when first letting x→ ∞ and then m→ ∞.
More generally, the following result holds:

Lemma 3.6. Let A be a random variable and Z be positive regularly varying

with index α > 0. Assume that for every m > 0 there exist finite positive constants

cm > 0, random variables Am and Bm such that the representation A
d
= Am +Bm
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holds and the following three conditions are satisfied:

P (Am > x) ∼ cm P (Z > x) , as x → ∞ ,

cm → c0 , as m→ ∞ ,

lim
m→∞

lim sup
x→∞

P (Bm > x)

P (Z > x)
= 0 and Am, Bm are independent for every m > 1 or

lim
m→∞

lim sup
x→∞

P (|Bm| > x)

P (Z > x)
= 0 .

Then P (A > x) ∼ c0 P (Z > x).

Proof. For every m > 1 and ε ∈ (0, 1).

P (A > x) 6 P (Am > x(1 − ε)) + P (Bm > εx) .

Hence

lim sup
x→∞

P (A > x)

P (Z > x)
6 lim sup

x→∞

P (Am > x(1 − ε))

P (Z > x)
+ lim sup

x→∞

P (Bm > εx)

P (Z > x)

= cm (1 − ε)−α + ε−α lim sup
x→∞

P (Bm > εx)

P (Z > εx)

→ c0 (1 − ε)−α as m→ ∞

→ c0 as ε ↓ 0.

Similarly, for independent Am and Bm,

lim inf
x→∞

P (A > x)

P (Z > x)
> lim inf

x→∞

P (Am > x (1 + ε) , Bm > −ε x)
P (Z > x)

= lim inf
x→∞

P (Am > x (1 + ε))

P (Z > x)
P (Bm > −ε x)

= cm (1 + ε)−α → c0 , as m→ ∞, ε ↓ 0.

If Am and Bm are not necessarily independent a similar bound yields

lim inf
x→∞

P (A > x)

P (Z > x)
> lim inf

x→∞

P (Am > x (1 + ε) , |Bm| 6 ε x)

P (Z > x)

> lim inf
x→∞

P (Am > x (1 + ε))

P (Z > x)
− lim sup

x→∞

P (|Bm| > εx)

P (Z > x)

= cm (1 + ε)−α → c0 , as m→ ∞, ε ↓ 0.

Combining the upper and lower bounds, we arrive at the desired result. �

We also mention that Resnick and Willekens [47] study the tails of the infinite
series

∑
i Ai Zi, where (Ai) is an iid sequence of random matrices, independent of

the iid sequence (Zi) of regularly varying vectors Zi.
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3.4. Random sums. We consider an iid sequence (Xi) of non-negative ran-
dom variables, independent of the integer-valued non-negative random variable K.
Depending on the distributional tails of K and X1, one gets rather different tail
behavior for the random sum

SK =

K∑

i=1

Xi .

The following results are taken from Faÿ et al. [20].

Lemma 3.7. (1) Assume X1 is regularly varying with index α > 0, EK <
∞ and P (K > x) = o(P (X1 > x)). Then, as x → ∞,

P (SK > x) ∼ EK P (X1 > x) .(3.8)

(2) Assume K is regularly varying with index β > 0. If β = 1, assume that

EK < ∞. Moreover, let (Xi) be an iid sequence such that E(X1) < ∞
and P (X1 > x) = o(P (K > x)). Then, as x → ∞,

P (SK > x) ∼ P (K > (E(X1))
−1 x) ∼ (E(X1))

β P (K > x) .(3.9)

(3) Assume SK is regularly varying with index α > 0 and E(K1∨(α+δ)) <
∞ for some positive δ. Then X1 is regularly varying with index α and

P (SK > x) ∼ EK P (X1 > x).
(4) Assume SK is regularly varying with index α > 0. Suppose that E(X1) <

∞ and P (X1 > x) = o(P (SK > x)) as x → ∞. In the case α = 1 and

E(SK) = ∞, assume that xP (X1 > x) = o(P (SK > x)) as x→ ∞. Then

K is regularly varying with index α and

P (SK > x) ∼ (E(X1))
α P (K > x) .

(5) Assume P (K > x) ∼ c P (X1 > x) for some c > 0, that X1 is regularly

varying with index α > 1 and E(X1) <∞. Then

P (SK > x) ∼ (EK + c (E(X1))
α)P (X1 > x) .

Relations (3) and (4) are the partial converses of the corresponding relations (1)
and (2). The law of large numbers stands behind the form of relation (3.9), whereas
relation (3.8) is expected from the results in Section 3.1.

Relations of type (3.8) appear in a natural way in risk and queuing theory when
the summands Xi are subexponential and K has a moment generating function in
some neighborhood of the origin, see for example the proof of the Cramér-Lundberg
ruin bound in Section 1.4 of Embrechts et al. [18].

For α ∈ (0, 2) some of the results in Lemma 3.7 can already be found in
Resnick [44] and even in the earlier papers by Stam [51], Embrechts and Omey
[19]. The restriction to α < 2 is due to the fact that some of the proofs depend
on the equivalence between regular variation and membership in the domain of
attraction of infinite variance stable distributions. Resnick [44] also extends some
of his results to the case when K is a stopping time.

In the following example the assumptions of Lemma 3.7 are not necessarily
satisfied. Assume (Xi) is a sequence of iid positive α-stable random variables for
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some α < 1. Then SK
d
= K1/αX1 and P (X1 > x) ∼ c x−α for some c > 0; cf.

Feller [21] or Samorodnitsky and Taqqu [50]. If EK < ∞ then Breiman’s result
(see Lemma 4.2 below) yields P (SK > x) ∼ EKP (X > x) in agreement with (3.8).
If EK = ∞ we have to consider different possibilities. If K is regularly varying
with index 1, then K1/α ∈ RV(α). Then we are in the situation of Lemma 4.2
below and SK is regularly varying with index α. If we assume that K ∈ RV(β)
for some β < 1, then K1/α ∈ RV(βα) and the results of Lemma 4.2 ensure that
P (SK > x) ∼ E(Xαβ)P (K1/α > x).

The latter result can be extended by using a Tauberian argument.

Lemma 3.8. Assume that K,X1 > 0 are regularly varying with indices β ∈ [0, 1)
and α ∈ [0, 1), respectively. Then

P (SK > x) ∼ P (K > [P (X > x)]−1) ∼ P (MK > x) ,

where Mn = maxi=1,...,nXi.

Proof. By Karamata’s Tauberian theorem (see Feller [21], XIII, Section 5),
1−E(e −sK) ∼ sβLK(1/s) as s ↓ 0 provided that P (K > x) = x−βLK(x) for some
slowly varying function L. In the same way, 1 − E(e −tX1) ∼ tαLX(1/t) as t ↓ 0.
Then

1− E(e −t SK ) = 1 −E
(
exp

{
K log

(
E
(
e−t X1

))})

∼
[
− log

(
E
(
e−t X1

))]β
LK(1/[− log

(
E
(
e−t X1

))
])

∼
[
1 −E

(
e−t X1

)]β
LK

(
1/
[
1 −E

(
e−t X1

)])

∼ [tαLX(1/t)]βLK([tαLX(1/t)]−1)

= tαβL(1/t) ,

where

L(x) = Lβ
X(x)LK(xα/LX(x))

is a slowly varying function. Again by Karamata’s Tauberian theorem,

P (SK > x) ∼ x−α β L(x) .

Notice that the right-hand side is equivalent to the tail P (K > [P (X1 > x)]−1) ∼
P (MK > x). The latter equivalence follows from (5.1) below. �

3.5. Linear combinations of a regularly varying random vector. As-
sume X ∈ RV(α, µ) and let c ∈ Rd, c 6= 0, be a constant. The set Ac = {x : c′x >
1} is bounded away from zero and µ(∂Ac) = 0. Therefore, from (2.1),

P (x−1X ∈ Ac)

P (|X| > x)
=
P (c′X > x)

P (|X| > x)
→ µ(Ac) .

We conclude the following, see also Resnick [46], Section 7.3.
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Lemma 3.9. For c ∈ R, c 6= 0, c′X is regularly varying with index α if µ(Ac) 6=
0. In general,

P (c′X > x)

P (|X| > x)
→ µ({x : c′x > 1}) ,

where the right-hand side possibly vanishes. In particular, if µ({x : c′
ix > 1}) > 0

for the basis vector ci = (0, . . . , 0, 1, 0, . . . , 0)′ with 1 in the ith component then

(Xi)
+ is regularly varying with index α.

A natural question arises: given that

P (c′X > x)

L(x)x−α
= C(c) for all c 6= 0 and C(c) 6= 0 for at least one c(3.10)

holds for some function C, is then X regularly varying in the sense of Definition 2.1?
This would yield a Cramér-Wold device analog for regularly varying random vectors.

The answer to this question is not obvious. Here are some partial answers. The
first three statements can be found in Basrak et al. [1], the last statements are due
to Hult and Lindskog [26]. Statement (5) was already mentioned (without proof)
in Kesten [28].

Lemma 3.10. (1) (3.10) implies that X is regularly varying with a unique

spectral measure if α is not an integer.

(2) (3.10) when restricted to c ∈ [0,∞)d r {0} implies that X is regularly

varying with a unique spectral measure if X has non-negative components

and α is positive and not an integer,

(3) (3.10) implies that X is regularly varying with a unique spectral measure

if X has non-negative components and α is an odd integer.

(4) (1) and (2) cannot be extended to integer α without additional assumptions

on the distribution of X. There exist regularly varying X1 and X2 both

satisfying (3.10) with the same function C but having different spectral

measures.

(5) For integer α > 0, there exist non-regularly varying X satisfying (3.10).

3.6. Multivariate extensions. In this section we assume that X1 and X2 are
random vectors with values in R

d. The following result due to Hult and Lindskog
[24], see also Resnick [46], Section 7.3, yields an extension of Lemma 3.1 to regularly
varying vectors.

Lemma 3.11. Assume that X1 and X2 are independent regularly varying such

that nP (c−1
n Xi ∈)

v→ µi, i = 1, 2, for some sequence cn → ∞ and Radon measures

µi, i = 1, 2. Then X1 + X2 is regularly varying and nP (c−1
n (X1 + X2) ∈ ·) v→

µ1 + µ2.

The following lemma is often useful.

Lemma 3.12. Assume X1 ∈ RV(α, µ) and P (|X2| > x) = o(P (|X1| > x)) as

x→ ∞. Then X1 + X2 ∈ RV(α, µ).
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Proof. It suffices to show that

P (x−1(X1 + X2) ∈ A) ∼ P (x−1X1 ∈ A) ,(3.11)

where A is any rectangle in Rd bounded away from zero. The latter class of sets

generates vague convergence in B(R
d

0) and satisfies µ(∂A) = 0. Assume that A =
[a,b] for two vectors a < b. Write a±ε = (a1 ± ε, · · · , ad ± ε) and define b±ε

correspondingly. Define A−ε = [a−ε,bε] and Aε = [aε,b−ε]. For small ε these sets
are not empty, bounded away from zero and Aε ⊂ A ⊂ A−ε.

For small ε > 0,

P (x−1(X1 + X2) ∈ A)

= P (x−1(X1 + X2) ∈ A , x−1|X2| > ε) + P (x−1(X1 + X2) ∈ A , x−1|X2| 6 ε)

6 P (|X2| > xε) + P (x−1X1 ∈ A−ε) .

Then

lim sup
x→∞

P (x−1(X1 + X2) ∈ A)

P (|X1| > x)

6 lim sup
x→∞

P (|X2| > xε)

P (|X1| > x)
+ lim sup

x→∞

P (x−1X1 ∈ A−ε)

P (|X1| > x)

= µ(A−ε) ↓ µ(A) as ε ↓ 0.

In the last step we used that A is a µ-continuity set. Similarly,

P (x−1(X1 + X2) ∈ A) > P (x−1X1 ∈ Aε , x−1|X2| 6 ε)

> P (x−1X1 ∈ Aε) − P (|X2| > εx) .

Then

lim inf
x→∞

P (x−1(X1 + X2) ∈ A)

P (|X1| > x)
> lim inf

x→∞

P (x−1X1 ∈ Aε)

P (|X1| > x)

= µ(Aε) ↑ µ(A) as ε ↓ 0.

In the last step we again used that A is a µ-continuity set.
Now collecting the upper and lower bounds, we arrive at the desired relation

(3.11). �

4. Product-type functions

Products are more complicated objects than sums. Their asymptotic tail be-
havior crucially depends on which tail of the factors in the product dominates. If
the factors have similar tail behavior the results become more complicated.

Assume for the moment d = 2. The set A = {x : x1 x2 > 1} is bounded away
from zero and therefore regular variation of X implies that the limit

P (X1X2 > x2)

P (|X| > x)
=
P (x−1(X1, X2) ∈ A)

P (|X| > x)
→ µ(A)
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exists. However, the quantity µ(A) can be rather non-informative, for example, in
the two extreme cases: X = (X,X) for a non-negative regularly varying X with
index α and X = (X1, X2), where X1 and X2 are independent copies of X . In the
former case, with the max-norm | · |, µ(A) = 1, and in the latter case µ(A) = 0
since µ is concentrated on the axes.

Thus, the knowledge about regular variation of X is useful when µ(A) > 0,
i.e., when the components of X are not (asymptotically) independent. However, if
µ(A) = 0 the regular variation of X is too crude in order to determine the tails of
the distribution of the products of the components.

4.1. One-dimensional results. In the following result we collect some of
the well known results about the tail behavior of the product of two independent
non-negative random variables.

Lemma 4.1. Assume that X1 and X2 are independent non-negative random

variables and that X1 is regularly varying with index α > 0.

(1) If either X2 is regularly varying with index α > 0 or P (X2 > x) =
o(P (X1 > x)) then X1X2 is regularly varying with index α.

(2) If X1, X2 are iid such that E(Xα
1 ) = ∞ then P (X1X2 > x)/P (X1 >

x) → ∞.

(3) If X1, X2 are iid such that E(Xα
1 ) < ∞, then the only possible limit

of P (X1X2 > x)/P (X1 > x) as x → ∞ is given by 2E(Xα
1 ) which is

attained under the condition

lim
M→∞

lim sup
x→∞

P (X1X2 > x ,M < X1X2 6 x/M)

P (X1 > x)
= 0 .

(4) Assume P (X1 > x) ∼ cα x−α for some c > 0. Then for iid copies

X1, . . . , Xn of X1, n > 1,

P (X1 · · ·Xn > x) ∼ αn−1 cnα

(n− 1)!
x−α logn−1 x .

Proof. (1) was proved in Embrechts and Goldie [16], p. 245.
(2) The following decomposition holds for any M > 0:

P (X1X2 > x)

P (X1 > x)
=

∫

(0,M ]

P (X2 > x/y)

P (X1 > x)
dP (X1 6 y)

+

∫

(M,∞)

P (X2 > x/y)

P (X1 > x)
dP (X1 6 y)

= I1 + I2 .(4.1)
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By the uniform convergence theorem, P (X1 > x/y)/P (X1 > x) → y−α uniformly
for y ∈ (0,M ]. Hence

I1 →
∫ M

0

yα dP (X1 6 y) , x→ ∞ ,

→ E(Xα
1 ) , M → ∞ .

Hence, if E(Xα
1 ) = ∞, (2) applies.

(3) It follows from Chover et al. [6] that the only possible limits of P (X1X2 >
x)/P (X1 > x) are 2E(Xα

1 ). The proof follows now from Davis and Resnick [12],
Proposition 3.1.
(4) We start with the case when P (Yi/c > x) = x−α, for x > 1 and an iid sequence
(Yi). Then

∑n
i=1 log(Yi/c) is Γ(α, n) distributed:

P

(
n∑

i=1

log(Yi/c) > x

)
=

αn

(n− 1)!

∫ x

0

yn−1 e−α y dy , x > 0 ,

Then, by Karamata’s theorem,

P

(
n∏

i=1

(Yi/c) > x/cn

)
=

αn

(n− 1)!

∫ log(x/cn)

0

yn−1 e−α y dy

=
αn

(n− 1)!

∫ x/cn

1

(log z)n−1 z−α−1 dz

∼ αn−1

(n− 1)!
(log(x/cn))n−1 (x/cn)−α

∼ αn−1 cnα

(n− 1)!
(logx)n−1 x−α .(4.2)

Next consider an iid sequence (Xi) with P (X1 > x) ∼ cα x−α, independent of
(Yi), and assume without loss of generality that c = 1. Denote the distribution
function of

∏n
i=2 Yi by G and let h(x) → ∞ be any increasing function such that

x/h(x) → ∞. Then

P

(
X1

n∏

i=2

Yi > x

)
=

∫ ∞

0

P (X1 > x/y) dG(y)

=

∫ h(x)

0

P (X1 > x/y)

P (Y1 > x/y)
P (Y1 > x/y) dG(y)

+

∫ ∞

h(x)

P (X1 > x/y) dG(y)

= I1(x) + I2(x) .
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For any ε > 0, sufficiently large x and y ∈ (0, h(x)),

1 − ε 6
P (X1 > x/y)

P (Y1 > x/y)
6 1 + ε .

Hence

I1(x) ∼
∫ h(x)

0

P (Y1 > x/y) dG(y) .

Now choose, for example, h(x) = x/ log logx. Then

I2(x) 6 G(x/ log logx) = O((x/(log logx))−α logn−2 x) = o(x−α logn−1 x) .

A similar argument yields
∫ ∞

h(x)

P (Y1 > x/y) dG(y) = o(x−α logn−1 x) .

In view of (4.2) we conclude that

P

(
X1

n∏

i=2

Yi > x

)
∼ I1(x) ∼ P

(
n∏

i=1

Yi > x

)

A similar argument shows that we may replace in the left probability any Yi, i =
2, . . . , n, by Xi. This proves (4). �

Under the assumption lim supx→∞ xαP (Xi > x) <∞ upper bounds similar to
(4) were obtained by Rosiński and Woyczyński [48]. The tail behavior of products
of independent random variables is then also reflected in the tail behavior of poly-
nomial forms of iid random variables with regularly varying tails and in multiple
stochastic integrals driven by α-stable Lévy motion; see Kwapień and Woyczyński
[34].

In the following results for the product X1X2 of non-negative independent
random variablesX1 and X2 we assume that the tail of one of the factors dominates
the tail of the other one.

Lemma 4.2. Assume X1 and X2 are non-negative independent random vari-

ables and that X1 is regularly varying with index α > 0.

(1) If there exists an ε > 0 such that E(Xα+ε
2 ) <∞, then

P (X1X2 > x) ∼ E(Xα
2 )P (X1 > x) .(4.3)

(2) Under the assumptions of part (1),

sup
x>y

∣∣∣∣
P (X1X2 > x)

P (X1 > x)
−E(Xα

2 )

∣∣∣∣→ 0 , as y → ∞.

(3) If P (X1 > x) ∼ c x−α and E(Xα
2 ) <∞ then (4.3) holds.

(4) If P (X2 > x) = o(P (X1X2 > x)) then X1X2 is regularly varying with

index α.
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Proof. Part (1) is usually attributed to Breiman [4] although he did not prove
the result for general α. However, the proof remains the same for all α > 0, and it
also applies to the proof of (3): a glance at relation (4.1) shows that one has to prove
limM→∞ lim supx→∞ I2 = 0 by applying a domination argument. An alternative
proof of (1) is given in Cline and Samorodnitsky [9], Theorem 3.5(v). Part (3)
is hardly available as an explicit result; but is has been implicitly used in various
disguises e.g. in the books by Samorodnitsky and Taqqu [50] and in Ledoux and
Talagrand [36]. Part (2) is Lemma 2.2 in Konstantinides and Mikosch [33]. Part
(4) is due to Embrechts and Goldie [16], see also Theorem 3.5(iii) in Cline and
Samorodnitsky [9]. �

Denisov and Zwart [15] give best possible conditions on the distributions of X1

and X2 such that Breiman’s result (4.3) holds.
The lemma has applications in financial time series analysis. Indeed, financial

time series are often assumed to be of the form Xn = σn Zn, where the volatility σn

is a measurable function of past Zi’s, (Zi) is an iid sequence and (Xn) is strictly sta-
tionary. For example, this is the case for a strictly stationary GARCH(p, q) process,
see e.g. Mikosch [39]. In many cases of interest, Zn is light-tailed, e.g. standard
normal, but σn is regularly varying with some positive index α. Breiman’s result
implies P (X1 > x) ∼ E(Zα

1 )P (σ1 > x). Another case of interest is a stochastic
volatility model, where the strictly stationary volatility sequence (σn) is indepen-
dent of the iid noise sequence (Zn). A convenient example is given when logσn

constitutes a Gaussian stationary process. Then σn is log-normal. If Zn is regularly
varying with index α then Breiman’s result yields P (X1 > x) ∼ E(σα

1 )P (Z1 > x).
The following results contain partial converses to Breiman’s result, i.e., if we

know that X1X2 is regularly varying what can be said about regular variation of
X1 or X2?

Lemma 4.3. Assume that X1 and X2 are independent non-negative random

variables and that X1X2 is regularly varying with positive index α.

(1) Assume that Xp
2 for some p > 0 has a Lebesgue density of the form f(x) =

c0 x
β e−c xτ

, x > 0, for some constants τ, c, c0 > 0, β ∈ R, such that

xβP (X1 > x−1) is ultimately monotone in x. Then X1 is regularly varying

with index α and Breiman’s result (4.3) holds.

(2) Assume P (X1 > x) = x−α, x > 1. Then X2 ∈ RV(β) for some β < α if

and only if X1X2 ∈ RV(β).
(3) There exist X1, X2 such that E(Xα

1 ) < ∞, X1 and X2 are not regularly

varying and P (X1 > x) = o(P (X1X2 > x)).

Proof. (1) The idea is similar to the proof in Basrak et al. [2], Lemma 2.2,
who assumed that X2 is the absolute value of a normal random variable. Notice
that if X1X2 ∈ RV(α) then (X1X2)

p ∈ RV(α/p) for p > 0. Therefore assume
without loss of generality that p = 1 and we also assume for simplicity that c = 1.
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Since X1X2 is regularly varying there exists a slowly varying function L such that

L(x)x−α = P (X1X2 > x) =

∫ ∞

0

P (X1 > x/y) f(y) dy

= c0 x
1+β

∫ ∞

0

P (X1 > z−1) zβe−(z x)τ

dz

= c0 τ
−1 x1+β

∫ ∞

0

P (X1 > v−1/τ ) v(β+1)/τ−1 e−v xτ

dv

= x1+β

∫ ∞

0

e−r xτ

dU(r) ,

where

U(r) =
c0
τ

∫ r

0

P (X1 > v−1/τ )v(β+1)/τ−1 dv = c0

∫ r1/τ

0

P (X1 > z−1) zβ dz .

Thus

L(x1/τ )x−(α+β+1)/τ =

∫ ∞

0

e−r x dU(r) .

An application of Karamata’s Tauberian theorem (see Feller [21], XIII, Section 5)
yields that

U(x) ∼ L(x−1/τ )x(α+β+1)/τ

Γ((α + β + 1)/τ + 1)
, x → ∞ .

By assumption, P (X1 > z−1) zβ is ultimately monotone. Then the monotone
density theorem (see Bingham et al. [3]) implies that

P (X1 > x) ∼ τ

c0 Γ((α + β + 1)/τ)

L(x)

xα
.

(2) This part is proved in Maulik and Resnick [38].
(3) An example of this kind, attributed to Daren Cline, is given in Maulik and
Resnick [38]. �

Results for products of independent positive random variables can also be ob-
tained by taking logarithms and then applying the corresponding results for regu-
larly varying summands. The following example is in this line of thought.

Lemma 4.4. Let Xi be positive iid and such that (logX1)+ ∈ RV(α) for some

α > 0 and P (X1 6 x−1) = o(P (X1 > x)). Then for n > 1,

P (X1 · · ·Xn > x) ∼ nP (X1 > x) .

Proof. We have for x > 0,

P (X1 · · ·Xn > x) = P (logX1 + · · · + logXn > logx)

∼ nP (logX1 > logx) = nP (X1 > x) .



REGULARLY VARYING FUNCTIONS 17

This follows e.g. by an application of Lemma 3.3. Indeed, (logX1)+ is regularly
varying and by assumption, for x > 0,

P ((logX1)− > x) = P (X1 < e−x) = o(P (X1 > e x)) = o(P ((logX1)+ > x)) .

�

Results for random products are rather rare. The following example is due to
Samorodnitsky (personal communication). Extensions can be found in Cohen and
Mikosch [10].

Lemma 4.5. Let (Xi) be an iid sequence with P (X1 > x) = c x−1 for some x >

c > 1, K be Poisson(λ) distributed and independent of (Xi). Write PK =
∏K

i=1 Xi.

Then P (PK = 0) = e −λ and PK has density fP on (c,∞) satisfying as x→ ∞,

fP (x) ∼ e−λc−λ c(λ c)1/4

2
√
π

x−2 (log x)−3/4 e 2 (λ c)1/2 (log x)1/2

,

and hence

P (PK > x) ∼ e−λc−λ c(λ c)1/4

2
√
π

x−1 (logx)−3/4 e 2 (λ c)1/2 (log x)1/2

.

Various results of this section can be extended to subexponential and even long-
tailed distributions, see Cline and Samorodnitsky [9]. Resnick [46], Section 7.3.2,
also treats the case of products with dependent regularly varying factors. Hult and
Lindskog [25] extended Breiman’s result in a functional sense to stochastic integrals

(
∫ t

0
ξs−dηs)06t61, where η is a Lévy process with regularly varying Lévy measure

and ξ is a predictable integrand.

4.2. Multivariate extensions. Breiman’s result (4.3) has a multivariate ana-
log. It was proved in the context of regular variation for the finite-dimensional
distributions of GARCH processes where multivariate products appear in a natural
way; see Basrak et al. [2].

Lemma 4.6. Let A be an m× d random matrix such that E(‖A‖α+ε) <∞ for

some matrix norm ‖ · ‖ and ε > 0. If X ∈ RV(α, µ) assumes values in Rd and is

independent of A, then AX is regularly varying with index α and

P (AX ∈ ·)
P (|X| > x)

v→ E (µ{x : Ax ∈ ·}) .

5. Other functions

5.1. Powers. Let X > 0 be a regularly varying random vector with index
α > 0. It is straightforward from the definition of multivariate regular variation
that for p > 0, Xp = (Xp

1 , . . . , X
p
d) is regularly varying with index α/p. This can

be seen from the polar coordinate representation of regular variation with | · | the
max-norm, see (2.2):

P (|Xp| > tx , X̃p ∈ ·)
P (|Xp| > x)

=
P (|X| > (t x)1/p , (X̃)p ∈ ·)

P (|X| > x1/p)
→ t−α/p P (Θp ∈ ·) .
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5.2. Polynomials. We consider a sum Sn = X1+ · · ·+Xn of iid non-negative
random variables Xi. Assume that X1 is regularly varying with index α > 0. By
virtue of Lemma 3.2 this is equivalent to the fact that Sn is regularly varying and
P (Sn > x) ∼ nP (X1 > x). Then Sp

n for p > 0 is regularly varying with index α/p
and

P (Sp
n > x) ∼ nP (Xp

1 > x) ∼ P (Xp
1 + · · · +Xp

n > x) .

The latter relation has an interesting consequence for integers k > 1. Then one can
write

Sk
n =

n∑

i=1

Xk
i +

∑
Xi1 · · ·Xik

,

where the second sum contains the off-diagonal products. It follows from the results
in Section 4 that this sum consists of regularly varying summands whose index does
not exceed α/(k− 1). Hence, by Lemma 3.12, the influence of the off-diagonal sum
on the tail of Sk

n is negligible. The regular variation of polynomial functions of the
type

∑

16i1,...,ik6n

ci1...ik
X

pi1

i1
· · ·Xpik

ik

for non-negative coefficients ci1...ik
and integers pi > 0 can be handled by similar

ideas.

5.3. Maxima. Assume that X ∈ RV(α, µ) and write Md = maxi=1,...,dXi for
the maximum of the components of X. The set

A = {x : xi > 1 for some i}
is bounded away from zero and µ(∂A) = 0. Then

P (Md > x)

P (|X| > x)
=
P (x−1X ∈ A)

P (|X| > x)
→ µ(A) .

If µ(A) > 0, Md is regularly varying with index α. In particular, if X has non-
negative components and | · | is the max-norm, then Md = |X| which is clearly
regularly varying.

If X1, . . . , Xn are independent, direct calculation with

P (Xi > x)

P (|Xi| > x)
→ pi and

P (|Xi| > x)

P (|X| > x)
→ ci ,

yields the following limits

P (Md > x)

P (|X| > x)
∼

d∑

i=1

pi
P (|Xi| > x)

P (|X| > x)
→

d∑

i=1

ci pi .

For iid Xi we obtain
∑d

i=1 ci pi = d p.
Next we consider maxima with a random index.

Lemma 5.1. Assume that K is independent of the sequence (Xi) of iid random

variables with distribution function F and right endpoint xF .
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(1) If EK <∞ then

P (MK > x) ∼ EK P (X1 > x) , x ↑ xF .

Hence X1 is regularly varying with index α if and only if MK is regularly

varying with index α.

(2) If EK = ∞ assume that P (K > x) = L(x)x−α for some α ∈ [0, 1) and a

slowly varying function L. Then

P (MK > x) ∼ (F (x))αL(1/F (x)) , x ↑ xF .(5.1)

Hence X1 is regularly varying with index p > 0 if and only if MK is

regularly varying with index pα.

Proof. (1) Write F (x) = P (Xi 6 x). Then by monotone convergence, as
x ↑ xF ,

P (MK > x) = F (x)E
[
1 + F (x) + · · · + FK−1(x)

]
∼ EK F (x) .

(2) By Karamata’s Tauberian theorem (see Feller [21], XIII, Section 5) and a Taylor
expansion argument as x ↑ xF

P (MK > x) = 1 −E(FK(x)) = 1 −E
(
e log F (x) K

)

∼ (− logF (x))αL(1/(− logF (x)))

∼ (F (x))αL(1/F (x)) .

Finally, if X1 is regularly varying, L(1/F (x)) is slowly varying and therefore
(F (x))αL(1/F (x)) is regularly varying with index −pα. �

5.4. Minima. For the minimum md = min(X1, . . . , Xd) of X ∈ RV(α, µ)
similar calculations apply by observing that md = −max(−X1, . . . ,−Xd). This
observation is not useful if some of the Xi’s do not assume negative values. Never-
theless, in this situation

P (md > x) = P (X1 > x , . . . , Xd > x) = P (x−1X ∈ B) ,

where B = {x : mini=1,...,d xi > 1} which is bounded away from zero and µ(∂B) = 0
and therefore md is regularly varying with index α if µ(B) > 0. However, for
independent Xi, md is not regularly varying with index α since µ(B) = 0 and

P (md > x) =

d∏

i=1

P (Xi > x) .

In particular, if all Xi ∈ RV(α), then md ∈ RV(dα).
For an integer-valued non-negative random variable K independent of the se-

quence (Xi) of iid non-negative regularly varying random variables we have

P (mK > x) =

∞∑

n=1

P (K = n) [P (X1 > x)]n .
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Let n0 be the smallest positive integer such that P (K = n0) > 0. Then

P (mK > x) ∼ P (K = n0) [P (X1 > x)]n0 ,

implying that mK is regularly varying with index n0α.

5.5. Order statistics. Let X(1) 6 · · · 6 X(d) be the order statistics of the
components of the vector X ∈ RV(α, µ). The tail behavior of the order statistics
has been studied in some special cases, including infinite variance α-stable ran-
dom vectors which are regularly varying with index α < 2, see Theorem 4.4.8 in
Samorodnitsky and Taqqu [50]. It is shown in Samorodnitsky [49] (cf. Theorem
4.4.5 in Samorodnitsky and Taqqu [50]) that eachX(i) as well as the order statistics
of the |Xi|’s are regularly varying with index α.

For a general regularly varying vector X with index α similar results can be
obtained. We assume that X has non-negative components. Write x(1) 6 · · · 6 x(d)

for the ordered values of x1, . . . , xd. Notice that the sets Ai = {x : x(i) > x} are
bounded away from zero. Hence the limits

lim
x→∞

P (X(i) > x)

P (|X| > x)
= µ(Ai)

exist and if µ(Ai) > 0 then X(i) is regularly varying. This statement can be
made more precise by the approach advocated in Samorodnitsky and Taqqu [50],
Theorem 4.4.5, which also works for general regularly varying vectors:

P (X(d−i+1) > x)

P (|X| > x)
(5.2)

=

d∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

16i1<···<ij6d

P (Xi1 > x , . . . , Xij > x)

P (|X| > x)

→
d∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

16i1<···<ij6d

µ({x : xi1 > 1 , . . . , xij > 1})(5.3)

In the same way one can also show the joint regular variation of a vector of order
statistics.

For iid positive Xi’s the limits of the ratios P (X(i) > x)/P (|X| > x) are zero
with the exception of i = 1. However, one can can easily derive that X(d−i+1) is
regularly varying with index i α. Indeed, by virtue of (5.2),

P (X(d−i+1) > x)

[P (X1 > x)]i
∼ d · · · (d− i+ 1)

i!
.

5.6. General transformations. Since the notion of regular variation bears
some resemblance with weak convergence it is natural to apply the continuous
mapping theorem to a regularly varying vector X with index α. Assume that

f : R
d

0 → R
m

0 for some d,m > 1 is an a.e. continuous function with respect to the

limit measure µ such that the inverse image with respect to f of any set A ∈ B(R
m

0 )
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which is bounded away from zero is also bounded away from zero in R
d

0. Then we
may conclude that

P (f(x−1X) ∈ A)

P (|X| > x)
=
P (x−1X ∈ f−1(A))

P (|X| > x)
→ µ(f−1(A)) ,

provided µ(∂f−1(A)) = 0.

This means that f(x−1X) can be regularly varying in R
m

0 , usually with an index
different from α. Think for example of the functions f(x) = x1 · · ·xd, mini=1,...,d xi,
maxi=1,...,d xi, (xp

1, . . . , x
p), c1x1 + · · · + cdxd. These are some of the examples of

the previous sections. These functions have in common that they are homogeneous,
i.e., f(tx) = tqf(x) for some q > 0, all t > 0. Then f(X) is regularly varying with
index α/q.
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[30] Klüppelberg, C. and Mikosch, T. (1996) Self–normalised and randomly centred spectral

estimates. In: Heyde, C.C., Prokhorov, Yu.V., Pyke, R. and Rachev, S.T. (Eds.) Proceedings

of the Athens International Conference on Applied Probability and Time Series, vol. 2: Time

Series, pp. 259–271. Springer, Berlin.
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