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Dear Peter.
In Monthly 112,7 2005, Heinz—Jiirgen Seiffert, Berlin, Germany as problem

no. 11172 (b) asks for proof of two identities. Both show up to be Chu-
Vandermonde in disguise. Let n,m > 0. The identities are:
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The factorial [z, d], is defined for any number, = € C, any stepsize,
d € C, and any length, n € Z, except for —x € {d,2d,---, —nd}, by
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The traditional Chu—Vandermonde formula looks like
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Multiplication with n! gives the form:
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This has quotient
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Sums with the same quotients have the invariant corrected sum

(6) =3t

Now consider the quotient of the sum in the first problem:
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So the sum is the 0 term times the corrected Chu—Vandemonde sum:
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Now consider the quotient of the sum in the second problem:
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So the sum is the 0 term times the corrected Chu—Vandemonde sum:
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