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Prove that for any positive integer, n,
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Proof:

Introducing the notation of a descending factorial with specified stepsize, in
casu 1 or 2:
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we proceed from the left side writing the binomial coefficients out as factorials
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Splitting the factorials with a factor 2 in two with stepsize 2 and introducing the
factorial
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to get rid of the single factor in the denominator by writing

1 . [n“f’%vl]n—k[k_%?l]k
2k +1 n+2,1],
we may write
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Now we change the factorials to stepsize 1 by dividing with the appropriate powers
of 2 and cancelling common factorials:
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Now we change the signs of all factors in the factorials contaning the variable k:
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Organized nicely to
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This may be recognized as the Pfaff-Saalschiitz formula, (9.1), in my recent text-
book, Summa Summarum, A K Peters 2007:

Theorem 9.1. If the numbers satisfy a1 + as + by + by = n — 1 we have the
Pfaff-Saalschiitz formula

(9.1)
kZ:o (k) a1, ], (a2, 1], [b1, 1], [b2, 1], (=1)" = [a1 + b1, 1], [a1 + b2, 1],

= [b1 +a1,1], [b1 + a2, 1], (-1)"

So we obtain:

1 1,12 = n!? B
n+ 3.1, n—21, 7" [+ i - 31,
22np|2 24np14
C2n4+1,20020 1,2, [2n41,2]020, 21220 — 1,2,
24n(n!)4

2n)!(2n + 1)!



