Supplement til SDL, Blok 12009

Inst. f. Matematiske Fag, KU
Gerd Grubb
November 2009

SOLUTION OF THE CLASSROOM TEST

Exercise E14.

We are considering the differential equation for $(t, \boldsymbol{y}) \in \mathbb{R}^{3}$:

$$
\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{y}), \text { where } \boldsymbol{f}(\boldsymbol{y})=\binom{e^{y_{1}}-1-2 y_{2}}{3 y_{1}-4 y_{2}}
$$

with the initial condition

$$
\boldsymbol{y}\left(t_{0}\right)=\eta
$$

(a). Since all the entering functions are C^{∞}-functions, the conditions for applying Theorem S1 are satisfied; this assures that for any $\boldsymbol{\eta} \in \mathbb{R}^{2}, t_{0} \in \mathbb{R}$, there exists a unique maximal solution $\varphi(t)$ defined on an open interval containing t_{0}. As in Theorem S4.2 we use the notation $] c^{*}, d^{*}$ [for the interval.

The possible ways of behavior of the solution for $t \rightarrow d^{*}$ are given in Corollary S4.3. Since the open set where (t, \boldsymbol{y}) runs is $D=\mathbb{R}^{3}$, the boundary ∂D is the empty set. Then (a) and (c) in Corollary S4.3 cannot happen. Therefore (b) happens, $|t|+|\varphi(t)| \rightarrow \infty$ for $t \rightarrow d^{*}$. If d^{*} is finite, it is $|\boldsymbol{\varphi}(t)|$ that goes to ∞.
(b). That $\mathbf{0}$ is a critical point means that $\boldsymbol{f}(\mathbf{0})=\mathbf{0}$. We see by insertion of $\boldsymbol{y}=\mathbf{0}$ that

$$
\boldsymbol{f}(\mathbf{0})=\binom{e^{0}-1-2 \cdot 0}{3 \cdot 0-4 \cdot 0}=\binom{0}{0}=\mathbf{0} .
$$

(c). Taylor's formula for the exponential function gives that for y_{1} in an interval $[-k, k]$ (with $k>0$),

$$
e^{y_{1}}=1+y_{1}+\frac{1}{2} y_{1}^{2}+o\left(y_{1}^{2}\right)=1+y_{1}+h\left(y_{1}\right)
$$

where $\left|h\left(y_{1}\right)\right| \leq c\left|y_{1}\right|^{2}$ for some $c>0$. Then

$$
e^{y_{1}}-1=y_{1}+h\left(y_{1}\right)
$$

Now we can write

$$
\boldsymbol{f}(\boldsymbol{y})=\binom{e^{y_{1}}-1-2 y_{2}}{3 y_{1}-4 y_{2}}=\binom{y_{1}+h\left(y_{1}\right)-2 y_{2}}{3 y_{1}-4 y_{2}}=A \boldsymbol{y}+\boldsymbol{g}(\boldsymbol{y})
$$

where

$$
A=\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right), \quad \boldsymbol{g}(\boldsymbol{y})=\binom{h\left(y_{1}\right)}{0}
$$

The eigenvalues of the matrix A are determined as the roots of

$$
p_{A}(\lambda)=(1-\lambda)(-4-\lambda)-(-2) 3=\lambda^{2}+3 \lambda+2
$$

they are found to have the negative values -1 and -2 . Moreover, for $\left|y_{1}\right| \leq k$,

$$
\frac{|\boldsymbol{g}(\boldsymbol{y})|}{|\boldsymbol{y}|}=\frac{\left|h\left(y_{1}\right)\right|}{\left|y_{1}\right|+\left|y_{2}\right|} \leq \frac{c\left|y_{1}\right|^{2}}{\left|y_{1}\right|}=c\left|y_{1}\right| \rightarrow 0 \text { for } \boldsymbol{y} \rightarrow \mathbf{0} .
$$

Then the assumptions of Theorem 4.3 in the book are satisfied, so it follows that the null-solution is asymptotically stable.
(Comment. It is also OK to indicate $h\left(y_{1}\right)$ by the explicit series $\frac{1}{2!} y_{1}^{2}+\frac{1}{3!} y_{1}^{3}+\ldots$, as long as one can show that $h\left(y_{1}\right) /\left(\left|y_{1}\right|+\left|y_{2}\right|\right) \rightarrow 0$ for $\boldsymbol{y} \rightarrow 0$. L'Hospital's rule can be used.

Some people have tried to use Theorem 4.3 with matrix $\left(\begin{array}{ll}0 & -2 \\ 3 & -4\end{array}\right)$ and remainder $\binom{e^{y_{1}}-1}{0}$; here the eigenvalues of the matrix do have negative real part, but the remainder does not have the needed limit property, since $\left(e^{y_{1}}-1\right) / y_{1} \rightarrow 1$ for $y_{1} \rightarrow 0$.)

Exercise E15.

We are considering the differential equation for $(t, \boldsymbol{y}) \in \mathbb{R}^{4}$:

$$
y^{\prime}=A y, \text { where } A=\left(\begin{array}{ccc}
5 & 0 & 1 \\
0 & 2 & 0 \\
-1 & 0 & 7
\end{array}\right)
$$

(a). The eigenvalues of A are determined as the roots of the polynomial

$$
\begin{aligned}
p_{A}(\lambda) & =\operatorname{det}(A-\lambda E)=(5-\lambda)(2-\lambda)(7-\lambda)-1 \cdot(2-\lambda) \cdot(-1) \\
& =(2-\lambda)((5-\lambda)(7-\lambda)+1)=(2-\lambda)\left(\lambda^{2}-12 \lambda+36\right)=(2-\lambda)(\lambda-6)^{2} .
\end{aligned}
$$

Here 2 is a simple root, 6 a double root.
For $\lambda=2$, the eigenvectors are found as the nontrivial solutions of

$$
\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 5
\end{array}\right) \boldsymbol{y}=\mathbf{0}
$$

and it is seen that they are multiples of the vector $(0,1,0)$. So the eigenspace is spanned by this vector, and it is the same as the generalized eigenspace X_{1} for $\lambda=2$, since the eigenvalue is simple.

For $\lambda=6$, the eigenvectors are found as the nontrivial hsolutions of

$$
\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -4 & 0 \\
-1 & 0 & 1
\end{array}\right) \boldsymbol{y}=\mathbf{0}
$$

and it is seen that they are multiples of the vector $(1,0,1)$. So the eigenspace is spanned by this vector. Since $\lambda=6$ has multiplicity 2 , the generalized eigenspace has dimension 2 , and another vector in it is found by calculating

$$
(A-6 E)^{2}=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -4 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -4 & 0 \\
-1 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and finding a solution of $(A-6 E)^{2} \boldsymbol{y}=0$ that is linearly independent of $(1,0,1)$; here we can for example take $(1,0,0)$. The generalized eigenspace X_{2} is then the span of $(1,0,1)$ and $(1,0,0)$, and, even simpler, it is the span of $(1,0,0)$ and $(0,0,1)$.
(b). To find the fundamental matrix $e^{t A}$ we use the formulas on page 66 of the book. For $\boldsymbol{v}_{1} \in X_{1}, \boldsymbol{v}_{1}=\left(0, x_{2}, 0\right)$

$$
e^{t A} \boldsymbol{v}_{1}=e^{2 t} \boldsymbol{v}_{1}=\left(\begin{array}{c}
0 \\
e^{2 t} x_{2} \\
0
\end{array}\right)
$$

For $\boldsymbol{v}_{2} \in X_{2}, \boldsymbol{v}_{2}=\left(x_{1}, 0, x_{3}\right)$,

$$
\begin{aligned}
e^{t A} \boldsymbol{v}_{2} & =e^{6 t}(E+t(A-6 E)) \boldsymbol{v}_{2}=e^{6 t}\left(\begin{array}{ccc}
1-t & 0 & t \\
0 & 1-4 t & 0 \\
-t & 0 & 1+t
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
0 \\
x_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
(1-t) e^{6 t} & 0 & t e^{6 t} \\
0 & 0 & 0 \\
-t e^{6 t} & 0 & (1+t) e^{6 t}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
0 \\
x_{3}
\end{array}\right) .
\end{aligned}
$$

Adding the formulas, we find

$$
e^{t A}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
(1-t) e^{6 t} & 0 & t e^{6 t} \\
0 & e^{2 t} & 0 \\
-t e^{6 t} & 0 & (1+t) e^{6 t}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

so

$$
e^{t A}=\left(\begin{array}{ccc}
(1-t) e^{6 t} & 0 & t e^{6 t} \\
0 & e^{2 t} & 0 \\
-t e^{6 t} & 0 & (1+t) e^{6 t}
\end{array}\right)
$$

(c). To find a solution of the nonhomogeneous problem

$$
\boldsymbol{y}^{\prime}=A \boldsymbol{y}+\left(\begin{array}{c}
0 \\
e^{t} \\
0
\end{array}\right), \quad \boldsymbol{y}(0)=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)
$$

we use that this is the sum of the solution $\boldsymbol{\varphi}$ of the homogeneous problem with the given initial value and the solution $\boldsymbol{\psi}$ of the nonhomogeneous problem which is $\mathbf{0}$ at $t=0$. The first function is

$$
\boldsymbol{\varphi}(t)=e^{t A}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
e^{6 t} \\
e^{2 t} \\
e^{6 t}
\end{array}\right)
$$

The second function is

$$
\boldsymbol{\psi}(t)=\int_{0}^{t} e^{(t-s) A}\left(\begin{array}{c}
0 \\
e^{s} \\
0
\end{array}\right) d s=\left(\begin{array}{c}
0 \\
\int_{0}^{t} e^{2(t-s)} e^{s} d s \\
0
\end{array}\right)
$$

here

$$
\int_{0}^{t} e^{2(t-s)} e^{s} d s=e^{2 t}\left[-e^{-s}\right]_{0}^{t}=e^{2 t}-e^{t}
$$

Then we find the solution to be:

$$
\boldsymbol{\varphi}+\boldsymbol{\psi}=\left(\begin{array}{c}
e^{6 t} \\
2 e^{2 t}-e^{t} \\
e^{6 t}
\end{array}\right)
$$

(Comment. If we exchange the second and third coordinate, the matrix gets the form

$$
\left(\begin{array}{ccc}
5 & 1 & 0 \\
-1 & 7 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

and it is seen clearly how the problem breaks up into two easy problems, for (x_{1}, x_{2}) resp. x_{3}. One could answer the problem using this transformation.)

