
Lectures in Noncommutative Geometry Seminar 2005

TRACE FUNCTIONALS AND

TRACE DEFECT FORMULAS . . .

I. Traces on classical ψdo’s.

We consider:

X — compact boundaryless n-dimensional manifold (closed).

E — hermitian vector bundle over X.

A — the ‘algebra’ of classical ψdo’s A acting in E.

On pseudodifferential operators:

Recall that a differential operator of order m ≥ 0 on R
n can

be written:

Au =
∑

|α|≤m aα(x)Dαu = F−1
ξ→x

(∑
α aα(x)ξαû(ξ)

)

= OP(a(x, ξ))u, with a(x, ξ) =
∑

α aα(x)ξα.

A classical pseudodifferential symbol of order ν ∈ R:

a(x, ξ) ∼ aν(x, ξ) + aν−1(x, ξ) + · · · + aν−j(x, ξ) + . . .
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aν−j(x, tξ) = tν−ja(x, ξ) for |ξ| ≥ 1, t ≥ 1.

Elliptic, when the principal symbol aν(x, ξ) 6= 0 for |ξ| ≥ 1.

Defines a pseudodifferential operator (ψdo):

Au = Op(a)u = F−1
ξ→x(a(x, ξ)û(ξ))

Continuous from Hs(Rn) to Hs−ν(Rn). Composition:

Op(a(x, ξ)) Op(b(x, ξ)) = Op(a#b), where

a#b ∼ a · b+
∑

α6=0
(−i)|α|

α! ∂α
ξ a ∂

α
x b.

Elliptic operators have (approximate) inverses.

Ψdo’s are defined on manifolds by use of local coordinates.

Consider A on a closed manifold X. For ν < −n, A is trace-

class, TrA =
∫

X
trKA(x, x)dx. Here Tr([A,A′]) = 0, where

[A,A′] = AA′ −A′A.

A trace functional `(A) is a linear functional that vanishes

on commutators: `([A,A′]) = 0. Search for nontrivial trace

functionals on higher-order ψdo’s!
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(I) Wodzicki, Guillemin ca. ‘84: The noncommutative residue

res(A) =

∫

X

∫

|ξ|=1

tr a−n(x, ξ) d/S(ξ)dx;

it has a coordinate invariant meaning. (d/ = (2π)−nd.)

• Local (depends only on certain homogeneous terms in a).

• Defined for all A ∈ A, unique up to a factor.

• Vanishes for ν /∈ Z.

• Vanishes for ν < −n; does not extend TrA!

(II) Kontsevich and Vishik ca. ‘94: The canonical trace TR(A)

• Global (depends on the full structure).

• Defined only for some A, namely in the cases:

(1) ν < −n, then TRA = TrA;

(2) ν /∈ Z;

(3) ν ∈ Z, n odd, A has even-even parity;

(4) ν ∈ Z, n even, A has even-odd parity. (Added by GG.)

(Will give formula later.)
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Parity properties:

even-even alternating parity: Even order terms are even in ξ,

aν−j(x,−ξ) = (−1)ν−jaν−j(x, ξ) for |ξ| ≥ 1.

Example: Differential operators and their parametrices.

even-odd alternating parity: Even order terms are odd in ξ,

aν−j(x,−ξ) = (−1)ν−j−1aν−j(x, ξ) for |ξ| ≥ 1.

Example: D|D|−1, D a selfadj. first-order elliptic diff. op.

The trace property holds in the following sense:

TR([A,A′]) = 0 in the cases

(1′) ν + ν′ < −n,

(2′) ν + ν′ ∈ R \ Z.

(3′) ν and ν′ ∈ Z, n is odd, A and A′ are both even-even

or both even-odd.

(4′) ν and ν′ ∈ Z, n is even, A is even-odd and A′ is even-

even.
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Both resA and TRA were originally defined by use of

complex powers:

Let P be elliptic of even order m > 0, say P > 0.

Define ζ(A,P, s) = Tr(AP−s), the generalized zeta function,

holomorphic for Re s > (n + ν)/m, extends meromorphically

to C with simple poles in

{(n+ ν − j)/m | j ∈ N} ∪ {−k | k ∈ N};

here N = {0, 1, 2, . . . }.

In particular, ζ has a Laurent expansion at s = 0:

ζ(A,P, s) ∼ 1
s
C−1(A,P ) + C0(A,P ) +

∑
l≥1 Cl(A,P )sl.

Then

(I) resA = m · C−1(A,P ), the residue at s = 0.

(II) In the cases (1)–(4) (with P even-even for (3)–(4)),

C−1(A,P ) = 0 and

TRA = C0(A,P ).

NB! Independent of P !
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Three operator families:

P : strongly elliptic ps.d.o. on X of even order m > 0.

Resolvent (P − λ)−1,

Heat operator e−tP ,

Power operator P−s (defined as 0 on kerP ).

Can be obtained from one another:

Resolvent (P − λ)−1
Cauchy int.

�

Laplace transf.

e−tP Heat operator

Cauchy int. ↘∼ ∼↙ Mellin transf.

Γ(s)P−s

Power operator

Example of Cauchy integral:

P−s =
i

2π

∫

C

λ−s(P − λ)−1 dλ.
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Three equivalent asymptotic trace expansions:

The resolvent trace expansion:

Tr(A(P − λ)−N ) ∼
∑

j≥0 c̃j(−λ)−
ν+n−j

m
−N

+
∑

k≥0

(
c̃′k log(−λ) + c̃′′k

)
(−λ)−k−N ,

for λ→ ∞ in C \ R+. (N > (ν + n)/m.)

The heat trace expansion:

Tr(Ae−tP ) ∼
∑

j≥0 cjt
j−ν−n

m +
∑

k≥0(−c
′
k log t+ c′′k)tk

for t→ 0+.

The complex power trace expansion:

Γ(s) Tr(AP−s) ∼
∑

j≥0
cj

s+ j−ν−n

m

+
∑

k≥0

(
c′k

(s+k)2 +
c′′k

s+k

)
;

where the right-hand side gives the pole structure of the mero-

morphic extension. Division by Γ(s) gives simple poles, and

C−1(A,P ) = c̃′0 = c′0, C0(A,P ) = c̃n+ν + c̃′′0 = cn+ν + c′′0 ;

where we set c̃n+ν = cn+ν = 0 if n+ ν /∈ N. In cases (1)–(4),

C0(A,P ) = c′′0 = TRA.
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Moreover, in cases (1)–(4),

c′′0 = TR(A) =

∫

X

∫
− tr a(x, ξ) d/ξdx;

it has a coordinate invariant meaning. Here
∫
−f(x, ξ) d/ξ is a

partie finie integral, defined as follows: When f(x, ξ) is a clas-

sical symbol of order ν, then

∫

|ξ|≤R

f(x, ξ) d/ξ ∼
∑

j∈N,j 6=n+ν

aj(x)R
n+ν−j+a′0(x) logR+a′′0(x)

for R→ ∞, and one sets
∫
−f(x, ξ) d/ξ = a′′0 (x).

Instead of considering powers AP−s, one can deduce these

results directly from trace expansions of resolvents A(P−λ)−1,

using the calculus of G-Seeley ‘95. Details in vol. 366 of AMS

Comtemp. Math. Proc., 2005.
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II. Trace defect formulas.

Consider C0(A,P ) in general. When (1)–(4) do not hold,

C0(A,P ) will depend on P and need not vanish on [A,A′].

However, there are formulas for the trace defects:

(a) C0(A,P ) − C0(A,P
′) = − 1

m
res(A(logP − logP ′)),

(b) C0([A,A
′], P ) = − 1

m
res(A[A′, logP ]),

showing in particular that they are local. ((a) by Okikiolu

‘95, Konts.-V. ‘95, (a)+(b) by Melrose-Nistor ‘96 unpublished.)

Their proofs go via the holomorphic family P−s, with

d
ds
P−s|s=0 = − logP .

logP has symbol m log |ξ|+b(x, ξ), where b is classical of order

0. Thus

A(logP − logP ′) is classical of order ν,

A(A′ logP − logPA′) is classical of order ν,

so res is defined.
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Question: Do similar formulas hold for manifolds with bound-

ary?

A reasonable ψdo boundary operator calculus containing ellip-

tic differential boundary problems and their solution operators

is the Boutet de Monvel calculus. Can we show similar formulas

for such operators?

Problematic fact: Even for PT = (−∆)Dirichlet, the complex

powers (PT )s and the logarithm log(PT ) are not in the

BdM calculus. But the resolvent (PT − λ)−1 does belong to

a parameter-dependent version of the BdM calculus.

Subquestion: Can we prove the formulas (a) and (b) using

only resolvent information?
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III. Some applications of res, TR and C0(A,P ).

Recall: resA is proportional to the residue of ζ(A,P, s) at s =

0, so

resA = 0 ⇐⇒ ζ(A,P, s) is regular at 0.

Holds when A is a diff. op., in particular for ζ(I, P, s) ≡ ζ(P, s).

The eta function of a selfadjoint, not semibounded elliptic ψdo:

η(P, s) =
∑

λ ev. 6=0 signλ |λ|−s = ζ(P |P |−1, |P |, s),

is not covered by this. Deep result by Atiyah-Patodi-Singer

and Gilkey:

(*) res(P |P |−1) = 0,

i.e., η(P, s) is regular at s = 0. For a Dirac operator D, with

D = σ(∂xn
+A) near ∂X, A tangential selfadjoint,

the value η(A, 0) for A on ∂X is a nonlocal term entering in

the index formula for the APS realization of D.

From (*) one can moreover deduce that resΠ = 0 for any

classical ψdo projection Π, a fact with various applications.
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Concerning TR and C0(A,P ):

Some people call C0(A,P ) a regularized trace of A, with nota-

tion e.g. Tr(A) (Melrose). Enters in an index formula for A:

When B is an approximate inverse (a parametrix),

indA = Tr(AB − I) − Tr(BA− I)

= C0(AB − I, P ) − C0(BA− I, P ) = C0([A,B], P )

= − 1
m

res(A[B, logP ]),

by the trace defect formula. This is a point of departure for

further calculations.
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IV. Manifolds with boundary.

Now let X be a compact n-dimensional manifold with smooth

boundary X ′ = ∂X (itself a closed manifold).

Typical operators when X ⊂ R
n:

(
1 − ∆
γ0

)
and its inverse (Q+ +G K ) ;

γ0 is the trace operator u 7→ u|X′ ,

Q = (1 − ∆)−1 = Op( 1
1+|ξ|2 ) on R

n,

Q+ = r+Qe+ (e+ extends by 0, r+ restricts to X),

G is a singular Green operator (the “boundary correction”),

K is a Poisson operator.

HereR = Q++G andK solve the respective semi-homogeneous

problems:

{
(1 − ∆)u = f in X,

γ0u = 0 on X ′;

{
(1 − ∆)u = 0 in X,

γ0u = g on X ′.
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Boutet de Monvel ‘71 defined pseudodifferential boundary op-

erators (ψdbo’s) in general as systems (Green operators):



P+ +G K

T S


 :

C∞(X,E)
×

C∞(X ′, F )
→

C∞(X,E′)
×

C∞(X ′, F ′)
,

where

P is a ψdo on a closed manifold X̃ ⊃ X, P+ = r+Pe+,

G is a singular Green operator,

T is a trace operator from X to X ′,

K is a Poisson operator from X ′ to X,

S is a ψdo on X ′.

P must satisfy the transmission condition at X ′, assuring that

P+ preserves smoothness on X. Consider operators of order ν

with polyhomogeneous symbols of suitable types.

Traces can be studied when E = E ′, F = F ′; the new

object is A = P+ +G : C∞(X,E) → C∞(X,E). Transmission

requires integer order. ForG alone one can study all real orders.
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Technical condition: G should be of class 0 (well-defined on

L2(X)), for otherwise, order < −n does not assure trace-class.

The noncommutative residue was defined by Fedosov, Golse,

Leichtnam and Schrohe ‘96 for A = P+ +G by:

res(A) =

∫

X

∫

|ξ|=1

tr p−n(x, ξ) d/S(ξ)dx

+

∫

X′

∫

|ξ′|=1

tr(trn g)1−n(x′, ξ′) d/S(ξ′)dx′;

here trn takes the trace in the normal direction to X ′; in fact

trnG is a classical ψdo on X ′.

That this is indeed a residue was shown by G-Schrohe ‘01:

As auxiliary operator we can take an elliptic differential oper-

ator P1 of order m > n+ ν on X̃ having a sector V around R−

in its resolvent set. Then

Tr(A(P1 − λ)−1
+ ) ∼

∑

0≤j≤n+ν

cj(−λ)
n+ν−j

m
−1

+ (c′0 log(−λ) + c′′0 )(−λ)−1 +O(λ−1−ε), for λ→ ∞ in V.
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There is a corresponding expansion for Γ(s) Tr(A(P−s
1 )+). In

particular,

Tr(A(P−s
1 )+) = 1

s
C−1(A,P1,+) + C0(A,P1,+) +O(s)

for s → 0, with C−1(A,P1,+) = c′0, C0(A,P1,+) = cn+ν + c′′0

(as usual, we set cn+ν = 0 if ν + n /∈ N). By G-Schrohe ‘01,

res(A) = m · C−1(A,P1,+).

Searching for a canonical trace, G-Schrohe ‘04 showed:

(i) C0(A,P1,+) is a quasi-trace, in the sense that

C0(A,P1,+) − C0(A,P2,+) and C0([A,A
′], P1,+) are local.

(ii) The value of C0(A,P1,+) is a finite part integral

∫

X

∫
− tr p(x, ξ) d/ξdx+

∫

X′

∫
− tr(trn g)(x

′, ξ′) d/ξ′dx′,

modulo local contributions.

But C0(A,P1,+) is rarely a canonical trace. Yes, if ν < −n.

Yes, if ν /∈ Z, but then only G enters. When ν ∈ Z and P 6= 0,

parity does not help much, for both dimensions n and n − 1
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enter at the same time. Cf. the closed manifold conditions:

(3) n odd and A even-even, or (4) n even and A even-odd.

So, C0(A,P1,+) itself becomes the important object!

Trace defect formulas? (See slide 9 for closed manifolds.)

By a proof that completely avoids the issue of how the op-

erators (P−s
1 )+ and (logP1)+ really act, relying instead on re-

solvent formulations, we have managed to show (G ‘05):

Theorem. Let A = P+ + G, A′ = P ′
+ + G′ be given, with

two auxiliary elliptic differential operators P1 and P2.

One can construct ψdo’s S and S′ on X ′ in a specific way from

the given operators such that

(a) C0(A,P1,+) − C0(A,P2,+)

= − 1
m

resX((P (logP1 − logP2))+) − 1
m

resX′(S),

(b) C0([A,A
′], P1,+)

= − 1
m

resX((P [P ′, logP1])+) − 1
m

resX′(S′).
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V. Ingredients in the proofs.

P is assumed elliptic with R− in the resolvent set.

Qλ = (P − λ)−1 defined in sector V around R−, symbol

q(x, ξ, λ) ∼
∑

j≥0 q−m−j(x, ξ, λ). Then

P−s is a classical ψdo of order −ms (Seeley ‘67), symbol

p(−s)(x, ξ) ∼
∑

j≥0 p
(−s)
−ms−j(x, ξ), where

p
(−s)
−ms−j(x, ξ) = i

2π

∫

C

λ−sq−m−j(x, ξ, λ) dλ;

C a closed curve in C\R− encircling the eigenvalues of pm(x, ξ).

logP = Op(m log[ξ] + b(x, ξ)); [ξ] = |ξ| for |ξ| ≥ 1;

b(x, ξ) ∼
∑

j≥0 b−j(x, ξ) classical of order 0,

b−j(x, ξ) = i
2π

∫

C

logλq−m−j(x, ξ, λ) dλ for j > 0.

Note that res(logP ) =
∫

X

∫
|ξ|=1

tr b−n(x, ξ) d/S(ξ)dx

=
∫

X

∫
|ξ|=1

i
2π

∫
C

log λ tr q−m−n(x, ξ, λ) dλd/S(ξ)dx.
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Remarkable fact (Scott ‘04, partially known earlier):

C0(I, P ) = − 1
m

res(logP ).

We can show it without using complex powers, by observing:

Lemma 1. The strictly homogeneous symbol qh
−m−n(x, ξ, λ) is

integrable at ξ = 0 and ∞, and

C0(I, P ) =
∫

X
cn(x), with cn(x) =

∫
Rn q

h
−m−n(x, ξ,−1) d/ξ.

Lemma 2. When f(x, ξ, λ) is holomorphic in λ on a nbd. of

R−, with suitable bounds, then (with a curve C in C \ R−)

1
2πi

∫
C

logλf(x, ξ, λ) dλ =
∫ 0

−∞
f(x, ξ, t) dt.

For, logλ gives a jump of 2πi at R−; the contributions from

log |λ| cancel out.

Combine this with homogeneity, polar coordinates:

∫
Rn q

h
−m−n(x, ξ,−1) d/ξ = 1

m

∫
|η|=1

∫ 0

−∞
qh
−m−n(x, η, t) dtd/S(η)

= − 1
m

∫
|η|=1

i
2π

∫
C

logλqh
−m−n(x, η, λ) dλd/S(η)

= − 1
m

∫
|η|=1

b−n(x, η) d/S(η),

the inner integral in the residue of logP !
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The trace defect formulas in the closed manifold case can be

proved by calculations where this type of argument is central;

we never need to consider P−s, and logP enters only in a very

rudimentary way.

Finally, for the case with boundary, this argument is again

central, but a lot of extra efforts are needed to master the

contributions from the boundary.

Application e.g. to index formulas:

If A = P+ +G : C∞(X,E) → C∞(X,F ) is elliptic of order

and class 0, and B is a parametrix, then with auxiliary elliptic

operators P1 in E and P2 in F ,

indA = C0(AB − I, P2,+) − C0(BA− I, P1,+)

= C0(AB,P2,+) − C0(BA,P1,+)

+ 1
m

res((logP2)+) − 1
m

res((logP1)+).

Here C0(AB,P2,+) − C0(BA,P1,+) is a res with ψdo part

res((B logP2A−BA logP1)+).
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