Lectures in Noncommutative Geometry Seminar 2005

TRACE FUNCTIONALS AND

TRACE DEFECT FORMULAS ...

I. Traces on classical ψ do's.

We consider:
X - compact boundaryless n-dimensional manifold (closed).
E - hermitian vector bundle over X.
\mathcal{A} - the 'algebra' of classical ψ do's A acting in E.
On pseudodifferential operators:
Recall that a differential operator of order $m \geq 0$ on \mathbb{R}^{n} can
be written:

$$
\begin{aligned}
A u & =\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} u=\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\sum_{\alpha} a_{\alpha}(x) \xi^{\alpha} \hat{u}(\xi)\right) \\
& =\operatorname{OP}(a(x, \xi)) u, \text { with } a(x, \xi)=\sum_{\alpha} a_{\alpha}(x) \xi^{\alpha}
\end{aligned}
$$

A classical pseudodifferential symbol of order $\nu \in \mathbb{R}$:

$$
a(x, \xi) \sim a_{\nu}(x, \xi)+a_{\nu-1}(x, \xi)+\cdots+a_{\nu-j}(x, \xi)+\ldots
$$

$$
a_{\nu-j}(x, t \xi)=t^{\nu-j} a(x, \xi) \text { for }|\xi| \geq 1, t \geq 1
$$

Elliptic, when the principal symbol $a_{\nu}(x, \xi) \neq 0$ for $|\xi| \geq 1$. Defines a pseudodifferential operator (ψ do) :

$$
A u=\operatorname{Op}(a) u=\mathcal{F}_{\xi \rightarrow x}^{-1}(a(x, \xi) \hat{u}(\xi))
$$

Continuous from $H^{s}\left(\mathbb{R}^{n}\right)$ to $H^{s-\nu}\left(\mathbb{R}^{n}\right)$. Composition:

$$
\begin{aligned}
& \operatorname{Op}(a(x, \xi)) \operatorname{Op}(b(x, \xi))=\operatorname{Op}(a \# b), \text { where } \\
& a \# b \sim a \cdot b+\sum_{\alpha \neq 0} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} a \partial_{x}^{\alpha} b
\end{aligned}
$$

Elliptic operators have (approximate) inverses.
Ψ do's are defined on manifolds by use of local coordinates.

Consider A on a closed manifold X. For $\nu<-n, A$ is traceclass, $\operatorname{Tr} A=\int_{X} \operatorname{tr} K_{A}(x, x) d x$. Here $\operatorname{Tr}\left(\left[A, A^{\prime}\right]\right)=0$, where $\left[A, A^{\prime}\right]=A A^{\prime}-A^{\prime} A$.

A trace functional $\ell(A)$ is a linear functional that vanishes on commutators: $\ell\left(\left[A, A^{\prime}\right]\right)=0$. Search for nontrivial trace functionals on higher-order ψ do's!
(I) Wodzicki, Guillemin ca. '84: The noncommutative residue

$$
\operatorname{res}(A)=\int_{X} \int_{|\xi|=1} \operatorname{tr} a_{-n}(x, \xi) d S(\xi) d x ;
$$

it has a coordinate invariant meaning. $\left(\mathbb{d}=(2 \pi)^{-n} d\right.$.)

- Local (depends only on certain homogeneous terms in a).
- Defined for all $A \in \mathcal{A}$, unique up to a factor.
- Vanishes for $\nu \notin \mathbb{Z}$.
- Vanishes for $\nu<-n$; does not extend $\operatorname{Tr} A$!
(II) Kontsevich and Vishik ca. '94: The canonical trace $\operatorname{TR}(A)$
- Global (depends on the full structure).
- Defined only for some A, namely in the cases:
(1) $\nu<-n$, then $\operatorname{TR} A=\operatorname{Tr} A$;
(2) $\nu \notin \mathbb{Z}$;
(3) $\nu \in \mathbb{Z}, n$ odd, A has even-even parity;
(4) $\nu \in \mathbb{Z}, n$ even, A has even-odd parity. (Added by GG.)
(Will give formula later.)

Parity properties:
even-even alternating parity: Even order terms are even in ξ,

$$
a_{\nu-j}(x,-\xi)=(-1)^{\nu-j} a_{\nu-j}(x, \xi) \text { for }|\xi| \geq 1 .
$$

Example: Differential operators and their parametrices.
even-odd alternating parity: Even order terms are odd in ξ,

$$
a_{\nu-j}(x,-\xi)=(-1)^{\nu-j-1} a_{\nu-j}(x, \xi) \text { for }|\xi| \geq 1 .
$$

Example: $D|D|^{-1}, D$ a selfadj. first-order elliptic diff. op.

The trace property holds in the following sense:
$\operatorname{TR}\left(\left[A, A^{\prime}\right]\right)=0$ in the cases
(1') $\nu+\nu^{\prime}<-n$,
$\left(2^{\prime}\right) \nu+\nu^{\prime} \in \mathbb{R} \backslash \mathbb{Z}$.
(3') ν and $\nu^{\prime} \in \mathbb{Z}, n$ is odd, A and A^{\prime} are both even-even or both even-odd.
(4') ν and $\nu^{\prime} \in \mathbb{Z}, n$ is even, A is even-odd and A^{\prime} is eveneven.

Both res A and TR A were originally defined by use of

complex powers:

Let P be elliptic of even order $m>0$, say $P>0$.
Define $\zeta(A, P, s)=\operatorname{Tr}\left(A P^{-s}\right)$, the generalized zeta function, holomorphic for $\operatorname{Re} s>(n+\nu) / m$, extends meromorphically to \mathbb{C} with simple poles in

$$
\{(n+\nu-j) / m \mid j \in \mathbb{N}\} \cup\{-k \mid k \in \mathbb{N}\} ;
$$

here $\mathbb{N}=\{0,1,2, \ldots\}$.
In particular, ζ has a Laurent expansion at $s=0$:

$$
\zeta(A, P, s) \sim \frac{1}{s} C_{-1}(A, P)+C_{0}(A, P)+\sum_{l \geq 1} C_{l}(A, P) s^{l} .
$$

Then

(I) res $A=m \cdot C_{-1}(A, P)$, the residue at $s=0$.
(II) In the cases (1)-(4) (with P even-even for (3)-(4)),
$C_{-1}(A, P)=0$ and

$$
\operatorname{TR} A=C_{0}(A, P)
$$

NB! Independent of P !

Three operator families:
P : strongly elliptic ps.d.o. on X of even order $m>0$.
Resolvent $(P-\lambda)^{-1}$,
Heat operator $e^{-t P}$,
Power operator P^{-s} (defined as 0 on ker P).
Can be obtained from one another:

Cauchy int.
Resolvent $(P-\lambda)^{-1} \underset{\rightleftarrows}{\rightleftarrows} \quad e^{-t P}$ Heat operator Laplace transf.

Cauchy int. $\searrow \sim \sim \swarrow$ Mellin transf.

$$
\Gamma(s) P^{-s}
$$

Power operator

Example of Cauchy integral:

$$
P^{-s}=\frac{i}{2 \pi} \int_{\mathcal{C}} \lambda^{-s}(P-\lambda)^{-1} d \lambda
$$

Three equivalent asymptotic Trace expansions:

The resolvent trace expansion:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\operatorname{Tr}\left(A(P-\lambda)^{-N}\right) \sim \sum_{j \geq 0} \tilde{c}_{j}(-\lambda)^{-\frac{\nu+n-j}{m}-N} \\
\\
+\sum_{k \geq 0}\left(\tilde{c}_{k}^{\prime} \log (-\lambda)+\tilde{c}_{k}^{\prime \prime}\right)(-\lambda)^{-k-N}
\end{array} \\
& \text { for } \lambda \rightarrow \infty \text { in } \mathbb{C} \backslash \overline{\mathbb{R}}_{+} \cdot(N>(\nu+n) / m .)
\end{aligned}
$$

The heat trace expansion:

$$
\operatorname{Tr}\left(A e^{-t P}\right) \sim \sum_{j \geq 0} c_{j} t^{\frac{j-\nu-n}{m}}+\sum_{k \geq 0}\left(-c_{k}^{\prime} \log t+c_{k}^{\prime \prime}\right) t^{k}
$$

for $t \rightarrow 0+$.

The complex power trace expansion:

$$
\Gamma(s) \operatorname{Tr}\left(A P^{-s}\right) \sim \sum_{j \geq 0} \frac{c_{j}}{s+\frac{j-\nu-n}{m}}+\sum_{k \geq 0}\left(\frac{c_{k}^{\prime}}{(s+k)^{2}}+\frac{c_{k}^{\prime \prime}}{s+k}\right)
$$

where the right-hand side gives the pole structure of the meromorphic extension. Division by $\Gamma(s)$ gives simple poles, and

$$
C_{-1}(A, P)=\tilde{c}_{0}^{\prime}=c_{0}^{\prime}, \quad C_{0}(A, P)=\tilde{c}_{n+\nu}+\tilde{c}_{0}^{\prime \prime}=c_{n+\nu}+c_{0}^{\prime \prime}
$$

where we set $\tilde{c}_{n+\nu}=c_{n+\nu}=0$ if $n+\nu \notin \mathbb{N}$. In cases (1)-(4),

$$
C_{0}(A, P)=c_{0}^{\prime \prime}=\operatorname{TR} A
$$

Moreover, in cases (1)-(4),

$$
c_{0}^{\prime \prime}=\operatorname{TR}(A)=\int_{X} f \operatorname{tr} a(x, \xi) d \xi d x
$$

it has a coordinate invariant meaning. Here $f f(x, \xi) d \xi$ is a partie finie integral, defined as follows: When $f(x, \xi)$ is a classical symbol of order ν, then
$\int_{|\xi| \leq R} f(x, \xi) d \xi \sim \sum_{j \in \mathbb{N}, j \neq n+\nu} a_{j}(x) R^{n+\nu-j}+a_{0}^{\prime}(x) \log R+a_{0}^{\prime \prime}(x)$ for $R \rightarrow \infty$, and one sets $f f(x, \xi) d \xi=a_{0}^{\prime \prime}(x)$.

Instead of considering powers $A P^{-s}$, one can deduce these results directly from trace expansions of resolvents $A(P-\lambda)^{-1}$, using the calculus of G-Seeley '95. Details in vol. 366 of AMS Comtemp. Math. Proc., 2005.

II. Trace defect formulas.

Consider $C_{0}(A, P)$ in general. When (1)-(4) do not hold, $C_{0}(A, P)$ will depend on P and need not vanish on $\left[A, A^{\prime}\right]$. However, there are formulas for the trace defects:
(a) $\quad C_{0}(A, P)-C_{0}\left(A, P^{\prime}\right)=-\frac{1}{m} \operatorname{res}\left(A\left(\log P-\log P^{\prime}\right)\right)$,
(b) $\quad C_{0}\left(\left[A, A^{\prime}\right], P\right)=-\frac{1}{m} \operatorname{res}\left(A\left[A^{\prime}, \log P\right]\right)$,
showing in particular that they are local. ((a) by Okikiolu ‘95, Konts.-V. ‘95, (a)+(b) by Melrose-Nistor ‘96 unpublished.) Their proofs go via the holomorphic family P^{-s}, with

$$
\left.\frac{d}{d s} P^{-s}\right|_{s=0}=-\log P .
$$

$\log P$ has symbol $m \log |\xi|+b(x, \xi)$, where b is classical of order 0 . Thus
$A\left(\log P-\log P^{\prime}\right)$ is classical of order ν, $A\left(A^{\prime} \log P-\log P A^{\prime}\right)$ is classical of order ν, so res is defined.

Question: Do similar formulas hold for manifolds with boundary?

A reasonable ψ do boundary operator calculus containing elliptic differential boundary problems and their solution operators is the Boutet de Monvel calculus. Can we show similar formulas for such operators?

Problematic fact: Even for $P_{T}=(-\Delta)_{\text {Dirichlet }}$, the complex powers $\left(P_{T}\right)^{s}$ and the logarithm $\log \left(P_{T}\right)$ are not in the BdM calculus. But the resolvent $\left(P_{T}-\lambda\right)^{-1}$ does belong to a parameter-dependent version of the BdM calculus.

Subquestion: Can we prove the formulas (a) and (b) using only resolvent information?

III. Some applications of res, TR and $C_{0}(A, P)$.

Recall: res A is proportional to the residue of $\zeta(A, P, s)$ at $s=$ 0 , so
res $A=0 \Longleftrightarrow \zeta(A, P, s)$ is regular at 0.
Holds when A is a diff. op., in particular for $\zeta(I, P, s) \equiv \zeta(P, s)$.
The eta function of a selfadjoint, not semibounded elliptic ψ do:

$$
\eta(P, s)=\sum_{\lambda \mathrm{ev} . \neq 0} \operatorname{sign} \lambda|\lambda|^{-s}=\zeta\left(P|P|^{-1},|P|, s\right)
$$

is not covered by this. Deep result by Atiyah-Patodi-Singer and Gilkey:

$$
\text { (*) } \quad \operatorname{res}\left(P|P|^{-1}\right)=0,
$$

i.e., $\eta(P, s)$ is regular at $s=0$. For a Dirac operator D, with $D=\sigma\left(\partial_{x_{n}}+A\right)$ near $\partial X, A$ tangential selfadjoint, the value $\eta(A, 0)$ for A on ∂X is a nonlocal term entering in the index formula for the APS realization of D.

From $\left(^{*}\right.$) one can moreover deduce that res $\Pi=0$ for any classical ψ do projection Π, a fact with various applications.

Concerning TR and $C_{0}(A, P)$:
Some people call $C_{0}(A, P)$ a regularized trace of A, with notation e.g. $\overline{\operatorname{Tr}}(A)$ (Melrose). Enters in an index formula for A : When B is an approximate inverse (a parametrix),

$$
\text { ind } \begin{aligned}
A & =\operatorname{Tr}(A B-I)-\operatorname{Tr}(B A-I) \\
& =C_{0}(A B-I, P)-C_{0}(B A-I, P)=C_{0}([A, B], P) \\
& =-\frac{1}{m} \operatorname{res}(A[B, \log P]),
\end{aligned}
$$

by the trace defect formula. This is a point of departure for further calculations.

IV. Manifolds with boundary.

Now let X be a compact n-dimensional manifold with smooth boundary $X^{\prime}=\partial X$ (itself a closed manifold).

Typical operators when $X \subset \mathbb{R}^{n}$:

$$
\binom{1-\Delta}{\gamma_{0}} \text { and its inverse }\left(\begin{array}{ll}
Q_{+}+G & K
\end{array}\right) ;
$$

γ_{0} is the trace operator $\left.u \mapsto u\right|_{X^{\prime}}$,
$Q=(1-\Delta)^{-1}=\mathrm{Op}\left(\frac{1}{1+|\xi|^{2}}\right)$ on \mathbb{R}^{n},
$Q_{+}=r^{+} Q e^{+}\left(e^{+}\right.$extends by $0, r^{+}$restricts to $\left.X\right)$,
G is a singular Green operator (the "boundary correction"),
K is a Poisson operator.
Here $R=Q_{+}+G$ and K solve the respective semi-homogeneous problems:

$$
\left\{\begin{array} { c l }
{ (1 - \Delta) u } & { = f \text { in } X , } \\
{ \gamma _ { 0 } u } & { = 0 \text { on } X ^ { \prime } ; }
\end{array} \quad \left\{\begin{array}{cl}
(1-\Delta) u & =0 \text { in } X, \\
\gamma_{0} u & =g \text { on } X^{\prime} .
\end{array}\right.\right.
$$

Boutet de Monvel ' 71 defined pseudodifferential boundary operators (ψ dbo's) in general as systems (Green operators):

$$
\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{array}{ccc}
C^{\infty}(X, E) & & C^{\infty}\left(X, E^{\prime}\right) \\
\times & \rightarrow & \times \\
C^{\infty}\left(X^{\prime}, F\right) & & C^{\infty}\left(X^{\prime}, F^{\prime}\right)
\end{array}
$$

where
P is a ψ do on a closed manifold $\widetilde{X} \supset X, \quad P_{+}=r^{+} P e^{+}$,
G is a singular Green operator,
T is a trace operator from X to X^{\prime},
K is a Poisson operator from X^{\prime} to X,
S is a ψ do on X^{\prime}.
P must satisfy the transmission condition at X^{\prime}, assuring that P_{+}preserves smoothness on X. Consider operators of order ν with polyhomogeneous symbols of suitable types.

Traces can be studied when $E=E^{\prime}, F=F^{\prime}$; the new object is $A=P_{+}+G: C^{\infty}(X, E) \rightarrow C^{\infty}(X, E)$. Transmission requires integer order. For G alone one can study all real orders.

Technical condition: G should be of class 0 (well-defined on $L_{2}(X)$), for otherwise, order $<-n$ does not assure trace-class.

The noncommutative residue was defined by Fedosov, Golse, Leichtnam and Schrohe ' 96 for $A=P_{+}+G$ by:

$$
\begin{aligned}
\operatorname{res}(A)=\int_{X} \int_{|\xi|=1} & \operatorname{tr} p_{-n}(x, \xi) d S(\xi) d x \\
& +\int_{X^{\prime}} \int_{\left|\xi^{\prime}\right|=1} \operatorname{tr}\left(\operatorname{tr}_{n} g\right)_{1-n}\left(x^{\prime}, \xi^{\prime}\right) d S\left(\xi^{\prime}\right) d x^{\prime}
\end{aligned}
$$

here tr_{n} takes the trace in the normal direction to X^{\prime}; in fact $\operatorname{tr}_{n} G$ is a classical ψ do on X^{\prime}.

That this is indeed a residue was shown by G-Schrohe ' 01 : As auxiliary operator we can take an elliptic differential operator P_{1} of order $m>n+\nu$ on \tilde{X} having a sector V around \mathbb{R}_{-} in its resolvent set. Then

$$
\begin{aligned}
& \operatorname{Tr}\left(A\left(P_{1}-\lambda\right)_{+}^{-1}\right) \sim \sum_{0 \leq j \leq n+\nu} c_{j}(-\lambda)^{\frac{n+\nu-j}{m}-1} \\
& +\left(c_{0}^{\prime} \log (-\lambda)+c_{0}^{\prime \prime}\right)(-\lambda)^{-1}+O\left(\lambda^{-1-\varepsilon}\right), \text { for } \lambda \rightarrow \infty \text { in } V .
\end{aligned}
$$

There is a corresponding expansion for $\Gamma(s) \operatorname{Tr}\left(A\left(P_{1}^{-s}\right)_{+}\right)$. In particular,

$$
\operatorname{Tr}\left(A\left(P_{1}^{-s}\right)_{+}\right)=\frac{1}{s} C_{-1}\left(A, P_{1,+}\right)+C_{0}\left(A, P_{1,+}\right)+O(s)
$$

for $s \rightarrow 0$, with $C_{-1}\left(A, P_{1,+}\right)=c_{0}^{\prime}, C_{0}\left(A, P_{1,+}\right)=c_{n+\nu}+c_{0}^{\prime \prime}$ (as usual, we set $c_{n+\nu}=0$ if $\nu+n \notin \mathbb{N}$). By G-Schrohe ' 01 ,

$$
\operatorname{res}(A)=m \cdot C_{-1}\left(A, P_{1,+}\right) .
$$

Searching for a canonical trace, G-Schrohe '04 showed:
(i) $C_{0}\left(A, P_{1,+}\right)$ is a quasi-trace, in the sense that

$$
C_{0}\left(A, P_{1,+}\right)-C_{0}\left(A, P_{2,+}\right) \text { and } C_{0}\left(\left[A, A^{\prime}\right], P_{1,+}\right) \text { are local. }
$$

(ii) The value of $C_{0}\left(A, P_{1,+}\right)$ is a finite part integral

$$
\int_{X} f \operatorname{tr} p(x, \xi) d \xi d x+\int_{X^{\prime}} f \operatorname{tr}\left(\operatorname{tr}_{n} g\right)\left(x^{\prime}, \xi^{\prime}\right) d \xi^{\prime} d x^{\prime}
$$

modulo local contributions.
But $C_{0}\left(A, P_{1,+}\right)$ is rarely a canonical trace. Yes, if $\nu<-n$. Yes, if $\nu \notin \mathbb{Z}$, but then only G enters. When $\nu \in \mathbb{Z}$ and $P \neq 0$, parity does not help much, for both dimensions n and $n-1$
enter at the same time. Cf. the closed manifold conditions:
(3) n odd and A even-even, or (4) n even and A even-odd.

So, $C_{0}\left(A, P_{1,+}\right)$ itself becomes the important object!
Trace defect formulas? (See slide 9 for closed manifolds.)

By a proof that completely avoids the issue of how the operators $\left(P_{1}^{-s}\right)_{+}$and $\left(\log P_{1}\right)_{+}$really act, relying instead on resolvent formulations, we have managed to show (G'05):

Theorem. Let $A=P_{+}+G, A^{\prime}=P_{+}^{\prime}+G^{\prime}$ be given, with two auxiliary elliptic differential operators P_{1} and P_{2}.

One can construct ψ do's S and S^{\prime} on X^{\prime} in a specific way from the given operators such that
(a) $C_{0}\left(A, P_{1,+}\right)-C_{0}\left(A, P_{2,+}\right)$

$$
=-\frac{1}{m} \operatorname{res}_{X}\left(\left(P\left(\log P_{1}-\log P_{2}\right)\right)_{+}\right)-\frac{1}{m} \operatorname{res}_{X^{\prime}}(S)
$$

(b) $\quad C_{0}\left(\left[A, A^{\prime}\right], P_{1,+}\right)$

$$
=-\frac{1}{m} \operatorname{res}_{X}\left(\left(P\left[P^{\prime}, \log P_{1}\right]\right)_{+}\right)-\frac{1}{m} \operatorname{res}_{X^{\prime}}\left(S^{\prime}\right)
$$

V. Ingredients in the proofs.

P is assumed elliptic with \mathbb{R}_{-}in the resolvent set.
$Q_{\lambda}=(P-\lambda)^{-1}$ defined in sector V around \mathbb{R}_{-}, symbol $q(x, \xi, \lambda) \sim \sum_{j \geq 0} q_{-m-j}(x, \xi, \lambda)$. Then
P^{-s} is a classical ψ do of order $-m s$ (Seeley ‘ 67), symbol

$$
\begin{aligned}
& p^{(-s)}(x, \xi) \sim \sum_{j \geq 0} p_{-m s-j}^{(-s)}(x, \xi), \text { where } \\
& \quad p_{-m s-j}^{(-s)}(x, \xi)=\frac{i}{2 \pi} \int_{\mathcal{C}} \lambda^{-s} q_{-m-j}(x, \xi, \lambda) d \lambda ;
\end{aligned}
$$

\mathcal{C} a closed curve in $\mathbb{C} \backslash \mathbb{R}_{-}$encircling the eigenvalues of $p_{m}(x, \xi)$.

$$
\begin{aligned}
& \log P=\operatorname{Op}(m \log [\xi]+b(x, \xi)) ; \quad[\xi]=|\xi| \text { for }|\xi| \geq 1 ; \\
& b(x, \xi) \sim \sum_{j \geq 0} b_{-j}(x, \xi) \text { classical of order } 0, \\
& \quad b_{-j}(x, \xi)=\frac{i}{2 \pi} \int_{\mathcal{C}} \log \lambda q_{-m-j}(x, \xi, \lambda) d \lambda \text { for } j>0 .
\end{aligned}
$$

Note that $\operatorname{res}(\log P)=\int_{X} \int_{|\xi|=1} \operatorname{tr} b_{-n}(x, \xi) d S(\xi) d x$
$=\int_{X} \int_{|\xi|=1} \frac{i}{2 \pi} \int_{\mathcal{C}} \log \lambda \operatorname{tr} q_{-m-n}(x, \xi, \lambda) d \lambda d S(\xi) d x$.

Remarkable fact (Scott '04, partially known earlier):

$$
C_{0}(I, P)=-\frac{1}{m} \operatorname{res}(\log P)
$$

We can show it without using complex powers, by observing:
Lemma 1. The strictly homogeneous symbol $q_{-m-n}^{h}(x, \xi, \lambda)$ is integrable at $\xi=0$ and ∞, and

$$
C_{0}(I, P)=\int_{X} c_{n}(x), \text { with } c_{n}(x)=\int_{\mathbb{R}^{n}} q_{-m-n}^{h}(x, \xi,-1) d \xi
$$

Lemma 2. When $f(x, \xi, \lambda)$ is holomorphic in λ on a nbd. of $\overline{\mathbb{R}}_{-}$, with suitable bounds, then (with a curve \mathcal{C} in $\mathbb{C} \backslash \overline{\mathbb{R}}_{-}$)

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} \log \lambda f(x, \xi, \lambda) d \lambda=\int_{-\infty}^{0} f(x, \xi, t) d t
$$

For, $\log \lambda$ gives a jump of $2 \pi i$ at \mathbb{R}_{-}; the contributions from $\log |\lambda|$ cancel out.

Combine this with homogeneity, polar coordinates:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} q_{-m-n}^{h}(x, \xi,-1) d \xi=\frac{1}{m} \int_{|\eta|=1} \int_{-\infty}^{0} q_{-m-n}^{h}(x, \eta, t) d t d S(\eta) \\
& \quad=-\frac{1}{m} \int_{|\eta|=1} \frac{i}{2 \pi} \int_{\mathcal{C}} \log \lambda q_{-m-n}^{h}(x, \eta, \lambda) d \lambda d S(\eta) \\
& \quad=-\frac{1}{m} \int_{|\eta|=1} b_{-n}(x, \eta) d S(\eta)
\end{aligned}
$$

the inner integral in the residue of $\log P$!

The trace defect formulas in the closed manifold case can be proved by calculations where this type of argument is central; we never need to consider P^{-s}, and $\log P$ enters only in a very rudimentary way.

Finally, for the case with boundary, this argument is again central, but a lot of extra efforts are needed to master the contributions from the boundary.

Application e.g. to index formulas:
If $A=P_{+}+G: C^{\infty}(X, E) \rightarrow C^{\infty}(X, F)$ is elliptic of order and class 0 , and B is a parametrix, then with auxiliary elliptic operators P_{1} in E and P_{2} in F,

$$
\text { ind } \begin{aligned}
A= & C_{0}\left(A B-I, P_{2,+}\right)-C_{0}\left(B A-I, P_{1,+}\right) \\
= & C_{0}\left(A B, P_{2,+}\right)-C_{0}\left(B A, P_{1,+}\right) \\
& +\frac{1}{m} \operatorname{res}\left(\left(\log P_{2}\right)_{+}\right)-\frac{1}{m} \operatorname{res}\left(\left(\log P_{1}\right)_{+}\right)
\end{aligned}
$$

Here $C_{0}\left(A B, P_{2,+}\right)-C_{0}\left(B A, P_{1,+}\right)$ is a res with ψ do part $\operatorname{res}\left(\left(B \log P_{2} A-B A \log P_{1}\right)_{+}\right)$.

References

[B] L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), 11-51.
[FGLS] B. V. Fedosov, F. Golse, E. Leichtnam, E. Schrohe, The noncommutative residue for manifolds with boundary, J. Funct. Anal. 142 (1996), 1-31.
[G] G. Grubb, On the logarithm component in trace defect formulas, Comm. Part. Diff. Equ. (2005), arXiv: math.AP/0411483, to appear.
[GSc1] G. Grubb and E. Schrohe, Trace expansions and the noncommutative residue for manifolds with boundary, J. Reine Angew. Math. 536 (2001), 167-207.
[GSc2] , Traces and quasi-traces on the Boutet de Monvel algebra, Ann. Inst. Fourier 54 (2004), 1641-1696.
[GS1] G. Grubb and R. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), 481-529.
[Gu] V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math. 102 (1985), 184-201.
[KV] M. Kontsevich and S. Vishik, Geometry of determinants of elliptic operators, Functional Analysis on the Eve of the 21'st Century (Rutgers Conference in honor of I. M. Gelfand 1993), Vol. I (S. Gindikin et al., eds.), Progr. Math. 131, Birkhäuser, Boston, 1995, pp. 173-197.
[MN] R. Melrose and V. Nistor, Homology of pseudodifferential operators I. Manifolds with boundary, manuscript, arXiv: functan/9606005.
[O] K. Okikiolu, The multiplicative anomaly for determinants of elliptic operators, Duke Math. J. 79 (1995), 723-750.
[Sco] S. Scott, The residue determinant, arXiv: math.AP/0406268, to appear in Comm. Part. Diff. Equ.
[S] R. T. Seeley, Complex powers of an elliptic operator, AMS Proc. Symp. Pure Math. X, 1966, Amer. Math. Soc., Providence, 1967, pp. 288-307.
[W] M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984), 143-178.

