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In this paper, we combine results on extensions of operators with recent results on the relation between the
M -function and the spectrum, to examine the spectral behaviour of boundary value problems. M -functions
are defined for general closed extensions, and associated with realisations of elliptic operators. In particular,
we consider both ODE and PDE examples where it is possible for the operator to possess spectral points that
cannot be detected by the M -function.
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1 Introduction

The extension theory for unbounded operators in Hilbert spaces has been studied since at least 1929 when von
Neumann discovered the so-called Kreı̆n extension. There are many applications of a general extension theory to
problems generated by both ODE and PDE examples. In the case of symmetric ODEs the book of Naı̆mark [36]
characterises the extensions of the minimal operator by means of a Cayley transform between the deficiency
spaces and determines all of these extensions by the imposition of explicit boundary conditions. For PDEs, adjoint
pairs of second order elliptic operators, their extensions and boundary value problems were studied in the paper
of Vishik [43] while Grubb [15] showed that all closed extensions of the minimal operator can be characterised
by nonlocal boundary conditions, building on work of Lions and Magenes [29, 30] (cf. also Hörmander [23]) for
elliptic operators.

The theory of boundary value spaces (also known as boundary triplets) associated with symmetric operators
has its origins in the work of Kočubeı̆ [24] and Gorbachuk and Gorbachuk [14] with developments from many
authors, (see [6, 25, 27, 28, 35, 37, 39, 41]). In this context, the theory of the Weyl-M -function was developed by
Derkach and Malamud [9, 10], where spectral properties of the operator were investigated via the M -function
and Kreı̆n-type resolvent formulae were established. For adjoint pairs of abstract operators, boundary triplets
were introduced by Vainerman [42] and Lyantze and Storozh [31]. Many of the results proved for the symmetric
case have subsequently been extended to this situation: see, for instance, Malamud and Mogilevski [32] for
adjoint pairs of operators, and Malamud and Mogilevski [33, 34] for adjoint pairs of linear relations. Amrein
and Pearson [1] generalised several results from the classical Weyl-m-function for the one-dimensional Sturm–
Liouville problem to the case of Schrödinger operators, calling themM -functions, in particular they were able to
show nesting results for families of M -functions on spherical exterior domains in R

3. For a recent contribution
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with applications to PDEs and characterisation of eigenvalues as poles of an operator valued Weyl-M -function,
we refer the reader to [7]. Further recent developments in this area can be found in [3, 8, 12, 38]. There has
also been extensive work on Dirichlet-to-Neumann maps, also sometimes known as Poincaré-Steklov operators,
especially in the inverse problems literature. These operators have physical meaning, associating, for instance,
a surface current to an applied voltage and are, in some sense, the natural PDE realisation of the abstract M -
function which appears in the theory of boundary triplets discussed above.

Systems of PDEs and even ODEs occur naturally in physical applications (reaction-diffusion equations, Max-
well systems, Dirac systems, Lamé systems) and there is much interest in the spectral properties of operators
generated by these. In Grubb [17] and Geymonat and Grubb [13] such systems are extensively discussed and
inter alia points of essential spectrum are characterised by failure of ellipticity of the operator or the boundary
condition. An alternative abstract approach for block operator matrices has also been developed (see for example
Atkinson et al. [2]).

In this paper, we shall combine results obtained by Grubb on extensions of operators, see for example [15],
with recent results obtained by Brown, Marletta, Naboko and Wood [7] on the relation between the M -function
and the spectrum, to examine the spectral behaviour of boundary value problems. M -functions are defined for
general closed extensions, and associated with realisations of elliptic operators. In particular, we shall consider
both ODE and PDE examples where it is possible for the operator to possess spectral points that can not be
detected by the M -function (unlike the classical Sturm–Liouville case).

In PDE cases, the kernel of the maximal realisation has infinite dimension; then unbounded operators between
boundary spaces must be allowed, and it is important to choose the representations of the boundary mappings
in an efficient way. We here rely on the calculus of pseudo-differential operators (ψdo’s), as introduced through
works of Calderon, Zygmund, Mihlin, Kohn, Nirenberg, Hörmander, Seeley and others around the 1960’s, as
well as the calculus of pseudo-differential boundary operators (ψdbo’s) introduced by Boutet de Monvel [4, 5]
and applied and extended by Grubb [17]– [21] and others.

Plan of the paper Section 2 contains a discussion of the abstract theory. We begin by recalling the universal
parametrization of closed extensions Ã established in [15], based on an invertible reference operator Aβ , and
show how it applies to operators Ã−λ (by use of techniques from [17]), giving rise to a Kreı̆n resolvent formula
and characterisations of kernels and ranges, in terms of an abstract boundary operator T λ : Vλ → Wλ̄. Next, we
connect this with the boundary triplets theory, as presented in [7]. We first show that for the realisationAB defined
by a boundary condition Γ1u = BΓ0u (for a special choice of Γ0,Γ1), the holomorphic operator family MB(λ)
defined for λ ∈ �(AB) is homeomorphic to the inverse of the holomorphic family T λ defined for λ ∈ �(Aβ),
when both exist. This takes care of a special class of boundary conditions. The idea is now developed further
to include general extensions by considering mappings between subspaces, as in [15]. In the present context,
this replaces the need to work with relations. M -functions are now defined for all closed extensions Ã, and the
operator families M �A(λ) and T λ together describe spectral properties of the operator.

In Section 3, the ideas are implemented for realisations of elliptic operators on smooth domains Ω in n-space.
For second-order strongly elliptic operators it is shown in detail how T λ andM �A(λ), for Neumann-type boundary
conditions γ1u = Cγ0u, are carried over to mappings Lλ and ML(λ) between Sobolev spaces over ∂Ω. The
general closed realisations give rise to operator families Lλ

1 and ML1(λ) between closed subspaces of L2(∂Ω).
For systems and higher-order operators, the normal elliptic boundary conditions give rise to M - and L-functions
between products of Sobolev spaces over ∂Ω.

Section 4 addresses the inverse question: Are the spectral properties fully described by M �A(λ) and T λ? The

answer is in the affirmative for λ ∈ �
(
Ã
) ∪ �(Aβ), and this is sufficiently informative in many situations. But

it is not so in general: We show, both by a PDE and an ODE matrix example, that there exist cases where the
M -function is holomorphic across points in the essential spectrum of Ã (and of Aβ).

The authors thank the referees for careful reading of this paper and useful suggestions for improvements.
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2 Universal parametrization and M-functions

2.1 A universal parametrization of closed extensions

It is assumed in this paper that there is given a pair of closed, densely defined operators Amin and A′
min in a

Hilbert space H (a so-called adjoint pair) such that the adjoint of A′
min is an extension ofAmin and the adjoint of

Amin is an extension of A′
min; we call these adjoints Amax resp. A′

max. Moreover we assume that there is given
a closed, densely defined operator Aβ lying between Amin and Amax and having a bounded everywhere defined
inverse. Thus we get:

Amin ⊂ Aβ ⊂ Amax, 0 ∈ �(Aβ), Amax = (A′
min)∗,

A′
min ⊂ A∗

β ⊂ A′
max, 0 ∈ �(A∗

β), A′
max = A∗

min; (2.1)

here �(B) denotes the resolvent set of B. We call Aβ the reference operator. Let M and M′ denote the sets of
operators Ã lying between Amin and Amax, resp. Ã′ lying between A′

min and A′
max. We write Au for Ãu when

Ã ∈ M, resp. A′v for Ã′v when Ã′ ∈ M′. When U is a closed subspace of H , we denote by fU the orthogonal
projection of f onto U ; the projection map is denoted prU .

Denote also

kerAmax = Z, kerA′
max = Z ′; (2.2)

and let

prβ = A−1
β Amax : D(Amax) −→ D(Aβ), prζ = I − prβ : D(Amax) −→ Z,

prβ′ = (A∗
β)−1A′

max : D(A′
max) −→ D(A∗

β), prζ′ = I − prβ′ : D(A′
max) −→ Z ′.

(2.3)

Then prβ and prζ , resp. prβ′ and prζ′ , are complementary projections defining the direct sum decompositions

D(Amax) = D(Aβ)+̇Z, resp. D
(
A′

max

)
= D

(
A∗

β

)
+̇Z ′. (2.4)

We also write prβ u = uβ , prζ u = uζ , etc.
The above statements are verified in [15], which also showed the abstract Green’s formula

(Au, v) − (u,A′v) = ((Au)Z′ , vζ′) − (uζ , (A′v)Z), for u ∈ D(Amax), v ∈ D(A′
max); (2.5)

and we recall that in that paper, all the closed operators in M were characterised by abstract boundary conditions:

Theorem 2.1 There is a one-to-one correspondence between all closed operators Ã ∈ M and all operators
T : V → W , where V and W are closed subspaces of Z resp. Z ′, and T is closed with domain D(T ) dense in
V . Here T : V →W is defined from Ã by

D(T ) = prζ D(Ã), V = D(T ), W = prζ′ D(Ã∗),

Tuζ = (Au)W for u ∈ D(Ã);
(2.6)

and Ã is defined from T : V → W by

D
(
Ã
)

= {u ∈ D(Amax) | uζ ∈ D(T ), (Au)W = Tuζ}; (2.7)

it can also be described by

u ∈ D(Ã) ⇐⇒ u = v + z +A−1
β (Tz + f), v ∈ D(Amin), z ∈ D(T ), f ∈ Z ′ �W. (2.8)

All closed subspaces V ⊂ Z and W ⊂ Z ′ and all closed densely defined operators T : V → W are reached
in this correspondence.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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When Ã corresponds to T : V →W ,

ker Ã = kerT,

ran Ã = ranT + (H �W ),
(2.9)

orthogonal sum. In particular, Ã is Fredholm if and only if T is so, with the same kernel and cokernel.

If Ã, hence also T , is injective, the inverse satisfies

Ã−1 = A−1
β + T−1 prW , defined on ran Ã. (2.10)

The adjoint Ã∗ corresponds to T ∗ : W → V in the analogous way. In particular, in the case where Amin =
A′

min and Aβ is self-adjoint (called the symmetric case), Ã is self-adjoint if and only if V = W and T is
self-adjoint.

Remark 2.2 The characterisation is related to that of Vishik [43], but differs in an important way: Vishik was
concerned with normally solvable operators Ã (those with closed range), and his operators between subspaces of
Z and Z ′ map in the opposite direction of those in [15], covering only a subset of them. In contrast, the theory
in [15] allowed the characterisation of all closed operators in M.

There are also some results in [15, Section II.3] on non-closed extensions.
Now consider the situation where a spectral parameter λ ∈ C is subtracted from the operators in M. When

λ ∈ �(Aβ), we have a similar situation as above:

Amin − λ ⊂ Aβ − λ ⊂ Amax − λ, A′
min − λ̄ ⊂ A∗

β − λ̄ ⊂ A′
max − λ̄, (2.11)

and we use the notation Mλ, M′̄
λ

, and

ker(Amax − λ) = Zλ, ker
(
A′

max − λ̄
)

= Z ′̄
λ
,

prλ
β = (Aβ − λ)−1(A− λ), prλ̄

β′ = (A∗
β − λ̄)−1(A′ − λ̄),

prλ
ζ = I − prλ

β , prλ̄
ζ′ = I − prλ̄

β′ .

(2.12)

Then we have an immediate corollary of Theorem 2.1:

Corollary 2.3 Let λ ∈ �(Aβ). There is a 1-1 correspondence between the closed operators Ã−λ in Mλ and
the closed, densely defined operators T λ : Vλ → Wλ̄, where Vλ and Wλ̄ are closed subspaces of Zλ resp. Z ′̄

λ
;

here

D
(
T λ
)

= prλ
ζ D
(
Ã
)
, Vλ = D(T λ), Wλ̄ = prλ̄

ζ′ D
(
Ã∗),

T λuλ
ζ = ((A− λ)u)Wλ̄

for u ∈ D(Ã),

D
(
Ã
)

=
{
u ∈ D(Amax) | uλ

ζ ∈ D
(
T λ
)
, ((A− λ)u)Wλ̄

= T λuλ
ζ

}
.

(2.13)

In this correspondence,

ker
(
Ã− λ

)
= kerT λ,

ran
(
Ã− λ

)
= ranT λ + (H �Wλ̄),

(2.14)

orthogonal sum. In particular, if λ ∈ �
(
Ã
)
,(

Ã− λ
)−1 = (Aβ − λ)−1 + iVλ→H

(
T λ
)−1 prWλ̄

. (2.15)

Here iX→Y denotes the injection X ↪→ Y .
The formula (2.15) can be regarded as a universal “Kreı̆n resolvent formula”. It relates the resolvents of

the arbitrary operator Ã and the reference operator Aβ in a straightforward way, such that information on the
spectrum of Ã can be deduced from information on T λ. Note also the formulas in (2.14), which give not only

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



318 Brown, Grubb, and Wood: M -functions for closed extensions

a correspondence between kernel dimensions and range codimensions, but an identification between kernels and
cokernels themselves.

The resolvent of Ã was studied in [17], from which we extract the following additional information. Define,
for λ ∈ �(Aβ), the bounded operators on H :

Eλ = Amax(Aβ − λ)−1 = I + λ(Aβ − λ)−1,

Fλ = (Amax − λ)A−1
β = I − λA−1

β ,

E′λ̄ = A′
max

(
A∗

β − λ̄
)−1 = I + λ̄

(
A∗

β − λ̄
)−1 =

(
Eλ
)∗
,

F ′λ̄ =
(
A′

max − λ̄
)(
A∗

β

)−1 = I − λ̄
(
A∗

β

)−1 =
(
Fλ
)∗;

(2.16)

then Eλ and Fλ are inverses of one another, and so are E′λ̄ and F ′λ̄. In particular, the operators restrict to
homeomorphisms

Eλ
Z : Z

∼−−→ Zλ, Fλ
Z : Zλ

∼−−→ Z,

E′λ̄
Z′ : Z ′ ∼−−→ Z ′̄

λ
, F ′λ̄

Z′ : Z ′̄
λ

∼−−→ Z ′.
(2.17)

Moreover, for u ∈ D(Amax), v ∈ D(A′
max),

prλ
ζ u = Eλ prζ u, prλ

β u = prβ u− λ(Aβ − λ)−1 prζ u,

prλ̄
ζ′ v = E′λ̄ prζ′ v, prλ̄

β′ v = prβ′ v − λ̄(A∗
β − λ̄)−1 prζ′ v.

(2.18)

This was shown in [17, Sect. 2], in the symmetric case, and the (elementary) proofs extend verbatim to the
general case. Similar mappings occur frequently in the literature on extensions. The following theorem extends
[17, Prop. 2.6], to the non-symmetric situation, with practically the same proof:

Theorem 2.4 For λ ∈ �(Aβ), define the operatorGλ from Z to Z ′ by

Gλz = −λprZ′ Eλz, z ∈ Z. (2.19)

Then

D
(
T λ
)

= EλD(T ), Vλ = EλV, Wλ̄ = E′λ̄W,(
T λEλv,E′λ̄w

)
= (Tv,w) +

(
Gλv, w

)
, for v ∈ D(T ), w ∈W.

(2.20)

P r o o f. The first line in (2.20) follows from (2.13) in view of (2.18). The second line in calculated as follows:
For u ∈ D

(
Ã
)
, w ∈W ,

(Tuζ, w) = (Au,w)

=
(
Au, F ′λ̄E′λ̄w

)
=
(
FλAu,E′λ̄w

)
=
(
(A− λ)(Aβ)−1Au,E′λ̄w

)
=
(
(A− λ)uβ , E

′λ̄w
)

=
(
(A− λ)u,E′λ̄w

)
−
(
(A− λ)uζ , E

′λ̄w
)

=
(
T λuλ

ζ , E
′λ̄w
)

+
(
λuζ , E

′λ̄w
)

=
(
T λEλuζ , E

′λ̄w
)

+
(
λEλuζ , w

)
.

This shows the equation in (2.20) when we set uζ = v.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Denote by Eλ
V the restriction of Eλ to a mapping from V to Vλ, with inverse Fλ

V , and let similarly E′λ̄
W be the

restriction of E′λ̄ to a mapping from W to Wλ̄, with inverse F ′λ̄
W . Then the second line of (2.20) can be written(

E′λ̄
W

)∗
T λEλ

V = T +Gλ
V,W on D(T ) ⊂ V, (2.21)

where

Gλ
V,W = prW Gλ iV →Z . (2.22)

Equivalently,

T λ =
(
F ′λ̄

W

)∗ (
T +Gλ

V,W

)
Fλ

V on D
(
T λ
) ⊂ Vλ. (2.23)

Then the Kreı̆n resolvent formula (2.15) can be made more explicit as follows:

Corollary 2.5 When λ ∈ �
(
Ã
) ∩ �(Aβ), T λ is invertible, and(

T λ
)−1 = Eλ

V

(
T +Gλ

V,W

)−1
(
E′λ̄

W

)∗
. (2.24)

Hence (
Ã− λ

)−1 = (Aβ − λ)−1 + iVλ→H Eλ
V

(
T +Gλ

V,W

)−1
(
E′λ̄

W

)∗
prWλ̄

. (2.25)

P r o o f. (2.24) follows from (2.23) by inversion, and insertion in (2.15) shows (2.25).

Note that Gλ
V,W depends in a simple way on V and W and is independent of T .

2.2 Connections between the universal parametrization and boundary triplets

The setting for boundary triplets in the non-symmetric case is the following, according to [7] (with reference
to [31], [34]): Amin, Amax, A′

min and A′
max are given as in the beginning of Section 2.1, and there is given a pair

of Hilbert spaces H, K and two pairs of “boundary operators”(
Γ1

Γ0

)
: D(Amax) −→ H×K,

(
Γ′

1

Γ′
0

)
: D(A′

max) −→ K×H, (2.26)

bounded with respect to the graph norm and surjective, such that

(Au, v) − (u,A′v) = (Γ1u,Γ′
0v)H − (Γ0u,Γ′

1v)K, for all u ∈ D(Amax), v ∈ D(A′
max), (2.27)

and

D(Amin) = D(Amax) ∩ ker Γ1 ∩ kerΓ0, D(A′
min) = D(A′

max) ∩ ker Γ′
1 ∩ ker Γ′

0.

Note that under the assumption of (2.1), the choice

H = Z ′, K = Z, Γ1 = prZ′ Amax, Γ0 = prζ , Γ′
1 = prZ A

′
max, Γ′

0 = prζ′ , (2.28)

defines in view of (2.4) and (2.5) a boundary triplet.
Following [7], the boundary triplet is used to define operators AB ∈ M and A′

B′ ∈ M′ for any pair of
operatorsB ∈ L(K,H), B′ ∈ L(H,K) by

D(AB) = ker(Γ1 −BΓ0), D(A′
B′) = ker(Γ′

1 −B′Γ′
0). (2.29)

In order to discuss resolvents, [7] assumes that �(AB) 
= ∅, which means that the situation with existence of
an invertibleAβ as in (2.1) can be obtained at least after subtraction of a spectral parameter λ0. Thus we can build
on the full assumption (2.1) from now on. (Theorem 2.1 shows that there is an abundance of different invertible
operators in M then.)

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



320 Brown, Grubb, and Wood: M -functions for closed extensions

Definition 2.6 For λ ∈ �(AB), the M -functionMB(λ) is defined by

MB(λ) : ran(Γ1 −BΓ0) −→ K, MB(Γ1 −BΓ0)u = Γ0u for all u ∈ Zλ;

and for λ ∈ �
(
A′

B′
)
, the M -functionM ′

B′(λ) is defined similarly by

M ′
B′(λ) : ran

(
Γ′

1 −B′Γ′
0

) −→ H, M ′
B′
(
Γ′

1 −B′Γ′
0

)
v = Γ′

0v for all v ∈ Z ′
λ.

It is shown in [7] that when �(AB) 
= ∅,

(AB)∗ = A′
B∗ . (2.30)

We shall set all this in relation to the universal parametrization, when the boundary triplet is chosen as in
(2.28). We assume (2.28) from now on.

ConcerningAB , note that B is taken as a bounded operator from Z to Z ′, and that

D(AB) = {u ∈ D(Amax) | (Au)Z′ = Buζ},
by definition. This shows that for the operator T : V →W that AB corresponds to by Theorem 2.1,

V = Z, W = Z ′, T = B.

Note that (2.30) follows from Theorem 2.1.
When Z and Z ′ are finite dimensional, all operators B will be bounded. But in the case where dimZ =

dimZ ′ = ∞, Theorem 2.1 shows that unbounded T ’s must be allowed, to cover general extensions. Therefore
we in the following take B closed, densely defined and possibly unbounded, and define AB by

D(AB) =
{
u ∈ D(Amax) | uζ ∈ D(B), (Au)Z′ = Buζ

}
. (2.31)

Lemma 2.7 ran(Γ1 − BΓ0) = Z ′. In fact, any f ∈ Z ′ can be written as f = (Γ1 − BΓ0)v = Γ1v for
v ∈ D(Aβ) taken equal to A−1

β f .

P r o o f. Let v run throughD(Aβ). Then Γ0v = prζ v = 0 ∈ D(B), andAv runs throughH = (ranAmin)⊕
Z ′, so Γ1v −BΓ0v = (Av)Z′ runs through Z ′. In other words, we can take v = A−1

β f , for any f ∈ Z ′.

Lemma 2.8 For any λ ∈ �(AB), MB(λ) is well-defined as a mapping from Z ′ to Z by

MB(λ)(Γ1 −BΓ0)u = Γ0u for all u ∈ Zλ with Γ0u ∈ D(B),

also when D(B) is a subset of Z . In fact,

MB(λ) = prζ(I − (AB − λ)−1(Amax − λ))A−1
β iZ′→H . (2.32)

P r o o f. In the defining equation, we can now only allow those u = zλ ∈ Zλ for which prζ z
λ ∈ D(B).

We first show: When f = (Γ1 − BΓ0)v for v = A−1
β f as in Lemma 2.7, then there is a zλ ∈ Zλ with

Γ0z
λ ∈ D(B) such that

f = (Γ1 −BΓ0)zλ. (2.33)

For, let x = (AB − λ)−1(A − λ)v, then v − x ∈ Zλ. Moreover, since x ∈ D(AB), prζ x ∈ D(B) in view of
(2.31), and prζ v = 0 ∈ D(B), as already noted. Hence

(Γ1 −BΓ0)(v − x) = (Γ1 −BΓ0)v = f ;

so we can take zλ = v − x. We conclude:{
(Γ1 −BΓ0)zλ | zλ ∈ Zλ, prζ z

λ ∈ D(B)
}

= Z ′.

Next, we note that the zλ in (2.33) is uniquely determined from f . For, if f = 0 and zλ solves (2.33), then
zλ ∈ D(AB) = D(AB − λ), which is linearly independent from Zλ since λ ∈ �(AB), so zλ = 0.

Thus we can for any f ∈ Z ′ set MB(λ)f = prζ z
λ where zλ is the unique solution of (2.33); this defines

a linear mapping MB(λ) from Z ′ to Z . The procedures used above to construct MB(λ) are summed up in
(2.32).

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Since B is closed, MB(λ) is closed, hence continuous, as a mapping from Z ′ to Z .
For a further analysis of MB(λ), assume λ ∈ �(Aβ). Then the maps Eλ, Fλ etc. in (2.16) are defined. Let

zλ ∈ Zλ, and consider the defining equation

MB(λ)
((
Azλ

)
Z′ −B prζ z

λ
)

= prζ z
λ, (2.34)

where prζ z
λ is required to lie in D(B). By (2.17) and (2.18), there is a unique z ∈ Z such that zλ = Eλ

Zz; in
fact

zλ = Eλ
Zz = prλ

ζ z, z = Fλ
Zz

λ = prζ z
λ,

so the requirement is that zλ ∈ Eλ
ZD(B).

Writing (2.34) in terms of z, and using that Azλ = λzλ, we find:

z = prζ z
λ

= MB(λ)
((
Azλ

)
Z′ −Bz

)
= MB(λ)

((
λzλ

)
Z′ −Bz

)
= MB(λ)

((
λEλz

)
Z′ −Bz

)
= MB(λ)

( −Gλ −B
)
z,

(2.35)

cf. (2.19). Here we observe that the operator to the right of MB(λ) equals T λ from Section 2.1 up to homeomor-
phisms:

−Gλ −B = −(Gλ + T
)

= −
(
E′λ̄

Z′

)∗
T λEλ

Z , (2.36)

by (2.21); here T λ is invertible from Eλ
ZD(B) onto Z ′

λ. We conclude that MB(λ) is the inverse of the operator
in (2.36). We have shown:

Theorem 2.9 When the boundary triplet is chosen as in (2.28) and λ ∈ �(AB)∩ �(Aβ), −MB(λ) equals the
inverse of B +Gλ = T +Gλ, also equal to the inverse of T λ modulo homeomorphisms:

−MB(λ)−1 = B +Gλ = T +Gλ =
(
E′λ̄

Z′

)∗
T λEλ

Z . (2.37)

In particular, MB(λ) has range D(B).
With this insight we have access to the straightforward resolvent formula (2.25), which implies in this case:

Corollary 2.10 For λ ∈ �(AB) ∩ �(Aβ),

(AB − λ)−1 = (Aβ − λ)−1 − iZλ→H Eλ
ZMB(λ)

(
E′λ̄

Z′

)∗
prZ ′̄

λ
. (2.38)

Remark 2.11 Other Kreı̆n-type resolvent formulae for realisations in the general framework of relations can
be found in [34, Section 5.2].

We also have the direct link between null-spaces and ranges (2.14), when merely λ ∈ �(Aβ).
Corollary 2.12 For any λ ∈ �(Aβ),

ker(AB − λ) = Eλ
Z ker

(
B +Gλ

)
,

ran(AB − λ) =
(
F ′λ̄

Z′

)∗
ran

(
B +Gλ

)
+ ran(Amin − λ).

(2.39)

For λ ∈ �(Aβ), this adds valuable information to the results from [7] on the connection between eigenvalues
of AB and poles of MB(λ).

The analysis moreover implies that MB(λ) and M ′
B∗(λ̄) are adjoints, at least when λ ∈ �(Aβ).

Observe that T + Gλ (and T λ) is well-defined for all λ ∈ �(Aβ), whereas MB(λ) is well-defined for all
λ ∈ �(AB); the latter fact is useful for other purposes. In this way, the two operator families complement each
other, and, together, contain much spectral information.

It is noteworthy that the widely studied boundary triplets theory leads to an operator family whose elements
are inverses of elements of the operator family generated by Theorem 2.1, compare with Remark 2.2 on the
connection with Vishik’s theory.
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2.3 The M -function for arbitrary closed extensions

The above considerations do not fully use the potential of Corollary 2.3, Theorem 2.4 and Corollary 2.5, which
allow much more general boundary operators T : V →W . But, inspired by the result in Theorem 2.9, we can in
fact establish useful M -functions in all these other cases, namely homeomorphic to the inverses of the operators
T λ that exist for λ ∈ �

(
Ã
) ∩ �(Aβ), and extended to exist for all λ ∈ �

(
Ã
)
.

Theorem 2.13 Let Ã be an arbitrary closed densely defined operator between Amin and Amax, and let T :
V → W be the corresponding operator according to Theorem 2.1. For any λ ∈ �

(
Ã
)

there is a bounded

operator M �A(λ) : W → V , depending holomorphically on λ ∈ �
(
Ã
)
, such that when λ ∈ �(Aβ), −M �A(λ) is

the inverse of T +Gλ
V,W , and is homeomorphic to T λ (as defined in Section 2.1). It satisfies

M �A(λ)
((
Azλ

)
W

− T prζ z
λ
)

= prζ z
λ, (2.40)

for all zλ ∈ Zλ such that prζ z
λ ∈ D(T ). Its definition extends to all λ ∈ �

(
Ã
)

by the formula

M �A(λ) = prζ

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

β iW→H . (2.41)

In particular, the resolvent formula(
Ã− λ

)−1 = (Aβ − λ)−1 − iVλ→H Eλ
V M �A(λ)

(
E′λ̄

W

)∗
prWλ̄

(2.42)

holds when λ ∈ �
(
Ã
) ∩ �(Aβ). For all λ ∈ �(Aβ),

ker
(
Ã− λ

)
= Eλ

V ker
(
T +Gλ

V,W

)
,

ran
(
Ã− λ

)
=
(
F ′λ̄

W

)∗
ran

(
T +Gλ

V,W

)
+H �Wλ̄.

(2.43)

P r o o f. Following the lines of proofs of Lemma 2.7 and 2.8, we define M �A(λ) satisfying (2.40) as follows:
Let f ∈W . Let v = A−1

β f ; then prζ v = 0 ∈ D(T ), and

(Av)W − T prζ v = Av = f. (2.44)

Next, let x =
(
Ã−λ

)−1(A−λ)v, then zλ = v− x lies in Zλ and satisfies prζ z
λ ∈ D(T ) (since prζ v = 0 and

prζ x ∈ D(T ), cf. (2.6)). This zλ satisfies(
Azλ

)
W

− T prζ z
λ = f, (2.45)

in view of (2.44) and the fact that x ∈ D
(
Ã
)
.

Next, observe that for any vector zλ ∈ Zλ with prζ z
λ ∈ D(T ) such that (2.45) holds, f = 0 implies zλ = 0,

since such a zλ lies in the two linearly independent spacesD
(
Ã−λ ) and Zλ. So there is indeed a mapping from

f to prζ z
λ solving (2.45), for any f ∈ W , defining M �A(λ). It is described by (2.41). The holomorphicity in

λ ∈ �
(
Ã
)

is seen from this formula.
The mapping is connected with T λ (cf. Corollary 2.3) as follows:
When λ ∈ �

(
Ã
) ∩ �(Aβ), then z = prζ z

λ = Fλ
V z

λ, and zλ = Eλ
V z, so the vectors zλ with prζ z

λ ∈ D(T )
constitute the space Eλ

V D(T ). Calculating as in (2.35) we then find that

z = prζ z
λ

= M �A(λ)
((
Azλ

)
W

− Tz
)

= M �A(λ)
((
λzλ

)
W

− Tz
)

= M �A(λ)
((
λEλz

)
W

−Bz
)

= M �A(λ)
( −Gλ

V,W − T
)
z,

so M �A(λ) is the inverse of −(T +Gλ
V,W

)
: D(T ) →W . The remaining statements follow from Corollaries 2.3

and 2.5.
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Note that when M �A(λ) is considered in a neighbourhood of a spectral point of Ã in �(Aβ), then we have

not only information on the possibility of a pole of M �A(λ), but an inverse T λ, from which ker
(
Ã − λ

)
and

ran
(
Ã− λ

)
can be read off.

3 Applications to elliptic partial differential operators

3.1 Preliminaries

For elliptic operators A defined over an open subset Ω of Rn, n > 1, the null-space of the maximal realisation
is infinite dimensional, so that there is much more freedom of choice of boundary spaces and mappings than in
ODE cases. It is necessary to allow unbounded operators between boundary spaces to obtain a theory covering the

well-known cases. Moreover, there is the problem of regularity of domains: For a given realisation Ã representing
a boundary condition, it is not always certain that Ã∗ represents an analogous boundary condition, but this can
often be assured if D

(
Ã
)

is known to be contained in the most regular Sobolev space Hm(Ω), where m is the
order of A; this holds when the boundary condition is elliptic.

The theory of pseudo-differential boundary operators (Boutet de Monvel [4], [5], and e.g. Grubb [20]– [22]) is
known as an efficient tool in the treatment of boundary value problems on smooth sets (we call it the ψdbo calcu-
lus for short, similarly to the customary use of ψdo for pseudo-differential operator). A guiding principle in the
construction of general theories would therefore be to make it possible to use the ψdbo calculus in applications to
concrete operators. The ψdbo calculus is a theory for genuine operators and their approximate solution operators,
with many structural refinements; it has not been customary to study relations in this context. We therefore find it
adequate to interpret the realisations of elliptic operators in terms of the theory based on [15], that characterises
the elements in M by operators, rather than relations.

Let Ω be a smooth subset of Rn, with C∞ boundary ∂Ω = Σ, let m be a positive integer, and let A =∑
|α|≤m aα(x)Dα be an m-th order differential operator on Ω with coefficients in C∞(Ω) and uniformly elliptic(

here the principal symbol a0(x, ξ) =
∑

|α|=m aα(x)ξα is invertible for all x ∈ Ω, all ξ ∈ R
n \ {0}). The

maximal and minimal realisations in H = L2(Ω) act like A in the distribution sense, with domains defined by

D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)}, D(Amin) = Hm
0 (Ω), (3.1)

and it is well-known (from ellipticity arguments) that

A∗
min = A′

max, A∗
max = A′

min, (3.2)

where A′
max and A′

min are the analogous operators for the formal adjoint A′ of A.
The operators belonging to M resp. M′ defined as in Section 2.1 are called the realisations of A resp. A′.
We denote byHs(Ω) the Sobolev space over Ω of order s, namely the space of restrictions to Ω of the elements

of Hs(Rn), which consists of the distributions u ∈ S′ such that
(
1 + |ξ|2)s/2

û ∈ L2(Rn). (S′ = S′(Rn) is
Schwartz’ space of temperate distributions.) ByHs

0(Ω) we denote the subspace ofHs(Rn) of elements supported
in Ω. For s > − 1

2 , s− 1
2 not integer, this space can be identified with the closure ofC∞

0 (Ω) inHs(Ω), also denoted
Hs

0 (Ω). Sobolev spaces over Σ, Hs(Σ), are defined by use of local coordinates. We denote γju =
(
∂j

nu
)∣∣

Σ
,

where ∂n is the derivative along the interior normal 	n at Σ. Here γj maps Hs(Ω) → Hs−j− 1
2 (Σ) for j < s− 1

2 .

For j < m there is an extension γj : D(Amax) → H−j− 1
2 (Σ), cf. e.g. Lions and Magenes [30].

Let us briefly recall the relevant elements of the ψdbo calculus. In its general form it treats operators

A =
(
P+ +G K
T S

)
:
C∞(Ω)N

×
C∞(Σ)M

−→
C∞(Ω)N ′

×
C∞(Σ)M ′

. (3.3)

Here T is a generalized trace operator, going from Ω to Σ; K is a so-called Poisson operator (called a potential
operator or coboundary operator in some other texts), going from Σ to Ω; S is a pseudo-differential operator
on Σ; and G is an operator on Ω called a singular Green operator, a non-pseudodifferential term that has to be
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included in order to have adequate composition rules. P is a ψdo defined on an open set Ω̃ ⊃ Ω, and P+ is
its truncation to Ω, defined by P+u = r+Pe+u, where r+ restricts D′(Ω̃) to D′(Ω), and e+ extends locally

integrable functions on Ω by zero on Ω̃ \ Ω. P is assumed to satisfy the so-called transmission condition at Σ;
this holds for the operators derived from elliptic differential operators that we consider here. There are suitable
Sobolev space mapping properties in terms of the orders of the entering operators.

A solvable elliptic PDE problem

Au = f on Ω, Tu = ϕ on Σ, (3.4)

enters in this framework by an operator (where we suppress the index + on A since it acts locally)

(
A
T

)
: C∞(Ω)N −→

C∞(Ω)N

×
C∞(Σ)M ′

(3.5)

(note that M = 0 and M ′ > 0), with the inverse

(
R K

)
:
C∞(Ω)N

×
C∞(Σ)M ′

−→ C∞(Ω)N ; R = Q+ +G, (3.6)

where Q+ + G solves the problem (3.4) with ϕ = 0 and K solves the problem (3.4) with f = 0. Here Q
is a parametrix of A on Ω̃

(
for example in case A = −Δ, Q is the convolution with cn|x|2−n on R

n when
n ≥ 3

)
, andG is the correction term needed to makeQ+ +G map into the functions satisfying the homogeneous

boundary condition.
Besides providing a convenient terminology, the ψdbo calculus has the advantage that it gives complete com-

position rules: When A and A′ are two systems as in (3.3), the composed operator AA′ again has this structure.
In particular, a composition TK gives a ψdo on Σ, and a composition KT gives a singular Green operator.
Compositions TP+, TG and ST give trace operators, compositions P+K , GK and KS give Poisson operators.
These are the facts that we shall mainly use in the present paper. Details on the ψdbo calculus are found e.g.
in [21], [22].

3.2 A typical second-order case

To give an impression of the theory, we begin by studying in some detail the case of a second-order strongly
elliptic operator A. This part is divided into five subsections. In the first one we introduce boundary triplets
for the operator A. In the next three subsections we concentrate on the case of “pure conditions”, i.e. when
T : Z → Z ′. For this case, we show in 3.2.2 how T can be identified with an operator L representing a
Neumann-type boundary condition. In 3.2.3, we study the corresponding M -function, proving, among other
things, a Kreı̆n-type resolvent formula. Subsection 3.2.4 takes a closer look at problems with elliptic boundary
conditions. Finally, in 3.2.5, we consider the general case when T : V → W and V,W are subspaces of Z and
Z ′, respectively.

3.2.1 Boundary triplets

We begin by introducing boundary triplets for the case of a second-order strongly elliptic operator A i.e., with
Re a0(x, ξ) ≥ c0|ξ|2 for x ∈ Ω and ξ ∈ Rn (c0 > 0), taking Ω bounded. Let s0(x) be the (nonvanishing)
coefficient of −∂2

n when A is written in normal and tangential coordinates at a boundary point x, then A has the
Green’s formula

(Au, v)L2(Ω) − (u,A′v)L2(Ω) = (s0γ1u, γ0v)L2(Σ) −
(
γ0u, s̄0γ1v + A′

0γ0v
)

L2(Σ)
, (3.7)

for u, v ∈ H2(Ω), with a suitable first-order differential operator A′
0 over Σ. We denote s0γ1 = ν1, s̄0γ1 = ν′1.

A simple example was explained in [7, Section 7], namely

A = −Δ + p(x) · grad, with formal adjoint A′v = −Δv − div(p̄v), (3.8)
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where p is an n-vector of functions in C∞(Ω).
We can assume, after addition of a constant to A if necessary, that the Dirichlet problem for A is uniquely

solvable.
The Dirichlet realisation Aγ is the operator lying in M with domain

D(Aγ) = D(Amax) ∩H1
0 (Ω) = H2(Ω) ∩H1

0 (Ω)

(the last equality follows by elliptic regularity theory); it has 0 ∈ �(Aγ). Let

Zs
λ(A) = {u ∈ Hs(Ω) | (A− λ)u = 0}, (3.9)

for s ∈ R. It is known from [30] that the trace operators γ0 and γ1, hence also ν1, extend by continuity to
continuous maps

γ0 : Zs
λ(A) −→ Hs− 1

2 (Σ), γ1 and ν1 : Zs
λ(A) −→ Hs− 3

2 (Σ), (3.10)

for all s ∈ R. When λ ∈ �(Aγ), let Kλ
γ : ϕ �→ u denote the Poisson operator solving the semi-homogeneous

Dirichlet problem

(A− λ)u = 0 in Ω, γ0u = ϕ. (3.11)

It maps continuously

Hs− 1
2 (Σ) −→ Hs(Ω), for all s ∈ R. (3.12)

Moreover, it maps Hs− 1
2 (Σ) homeomorphically onto Zs

λ(A) for all s ∈ R, with γ0 acting as an inverse there.
(We introduce below a special notation for the restricted operator when s = 0, see (3.21).) Analogously, there is
a Poisson operator K ′λ̄

γ solving (3.11) with A − λ replaced by A′ − λ̄, mapping Hs− 1
2 (Σ) homeomorphically

onto Zs
λ̄
(A′), with γ0 acting as an inverse there.

Now define the Dirichlet-to-Neumann operators for each λ ∈ �(Aγ),

Pλ
γ0,ν1

= ν1K
λ
γ , P ′λ̄

γ0,ν′
1

= ν′1K
′λ̄
γ . (3.13)

They are a first-order elliptic pseudo-differential operators over Σ, continuous and Fredholm from Hs− 1
2 (Σ) to

Hs− 3
2 (Σ) for all s ∈ R (details e.g. in [16]).

We shall use the notation for general trace maps β and η:

Pλ
β,η : βu �−→ ηu, u ∈ Zs

λ(A), (3.14)

when this operator is well-defined.
Introduce the trace operators Γ and Γ′ (from [15], where they were called M and M ′) by

Γu = ν1u− P 0
γ0,ν1

γ0u, Γ′u = ν′1u− P ′0
γ0,ν′

1
γ0u. (3.15)

Here Γ maps D(Amax) continuously onto H
1
2 (Σ) and can also be written Γ = ν1A

−1
γ Amax, and Γ′ has the

analogous properties. Moreover, a generalised Green’s formula is valid for all u ∈ D(Amax), v ∈ D(A′
max):

(Au, v)L2(Ω) − (u,A′v)L2(Ω) = (Γu, γ0v) 1
2 ,− 1

2
− (γ0u,Γ′v)− 1

2 , 12
, (3.16)

where (·, ·)s,−s denotes the duality pairing between Hs(Σ) and H−s(Σ). Furthermore,

(Au,w)L2(Ω) = (Γu, γ0w) 1
2 ,− 1

2
for all w ∈ Z0

0 (A′). (3.17)

(Cf. [15, Thm. III 1.2].)
To achieve L2(Σ)-dualities in the right-hand side of (3.16), one can choose the norms in H± 1

2 (Σ) to be
induced by suitable isometries from the norm in L2(Σ). There exists a family of pseudo-differential elliptic
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invertible operators Λs of order s ∈ R on Σ, symmetric with respect to the duality inL2(Σ) and with Λ−s = Λ−1
s ,

such that when each Hs(Σ) is provided with the norm for which Λs is an isometry from Hs(Σ) onto L2(Σ), Λs

also maps Ht(Σ) isometrically onto Ht−s(Σ), all t, and

(Λ−sϕ,Λsψ)s,−s = (ϕ, ψ)L2(Σ), ϕ, ψ ∈ L2(Σ). (3.18)

Then when we introduce composed operators

Γ1 = Λ 1
2
Γ, Γ′

1 = Λ 1
2
Γ′, Γ0 = Λ− 1

2
γ0 = Γ′

0; (3.19)

(3.16) takes the form (2.27) with H = K = L2(Σ):
Proposition 3.1 For the adjoint pair Amin and A′

min, (3.19) provides a boundary triplet with H = K =
L2(Σ):

(Au, v)L2(Ω) − (u,A′v)L2(Ω) = (Γ1u,Γ′
0v)L2(Σ) − (Γ0u,Γ′

1v)L2(Σ) (3.20)

holds when u ∈ D(Amax), v ∈ D(A′
max).

Such reductions to L2-dualities are made in [7] and [37]. [15] did not make the modification by composition
with Λ± 1

2
, but worked directly with (3.16).

(
This was in order to avoid introducing too many operators. Another

reason was that the Sobolev spacesHs(Σ) do not have a “preferred norm” when s 
= 0; only the duality (·, ·)s,−s

should be consistent with the self-duality of L2(Σ). Moreover, when the realisation Ã represents an elliptic
boundary condition, D

(
Ã
) ⊂ H2(Ω) and the boundary values are in L2(Σ). Various homeomorphisms were

used in [17] for the sake of numerical comparison.
)

In the rest of this section, we use the abbreviationHs forHs(Σ). We shall keep the formulation with dualities
in the study of pure Neumann-type boundary conditions, but return to (3.19) in connection with more general
boundary conditions.

3.2.2 Interpretation of the boundary conditions

Consider the set-up of Section 2.1 withAβ = Aγ , the projection prβ being denoted prγ . The realisationAγ itself
of course corresponds to the case V = W = {0} in Theorem 2.1.

Let Ã be a closed realisation which corresponds to an operator T with V = Z ,W = Z ′ by Theorem 2.1. Note
that;

Z = Z0
0 (A), Z ′ = Z0

0 (A′) and for λ ∈ �(Aγ), Zλ = Z0
λ(A), Z ′̄

λ = Z0
λ̄(A′)

they are closed subspaces of L2(Ω).
Denote the restrictions of γ0 to mappings from Zλ resp. Z ′̄

λ
to H− 1

2 by γZλ
resp. γZ ′̄

λ
; they are homeomor-

phisms

γZλ
: Zλ

∼−−→ H− 1
2 , γZ ′̄

λ
: Z ′̄

λ

∼−−→ H− 1
2 , (3.21)

and their inverses γ−1
Zλ

resp. γ−1
Z ′̄

λ

coincide with Kλ
γ resp. K ′λ̄

γ but have the restricted range space. Their adjoints
map

γ∗Zλ
: H

1
2

∼−−→ Zλ, γ∗Z ′̄
λ

: H
1
2

∼−−→ Z ′̄
λ.

When λ = 0, the λ-indications are left out.
We shall first interpret Ã in terms of a boundary condition using the maps with λ = 0; this stems from [15].

The above homeomorphisms allow “translating” an operator T : Z → Z ′ to an operator L : H− 1
2 → H

1
2 , as in

the diagram

Z
γZ � H− 1

2

Z ′

T

�

(γ∗
Z′)−1

� H
1
2

L

�

D(L) = γZD(T ), (3.22)
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where the horizontal maps are homeomorphisms. In other words,

L =
(
γ∗Z′
)−1

Tγ−1
Z , with D(L) = γZD(T ) (3.23)(

a closed densely defined operator from H− 1
2 to H

1
2
)
. Hereby we have, when ϕ = γZz ∈ D(L), ψ = γZ′w ∈

H− 1
2 ,

(Tz, w)Z′ =
(
Tγ−1

Z ϕ, γ−1
Z′ ψ

)
Z′ = (Lϕ,ψ) 1

2 ,− 1
2
.

Note that D(L) = γ0D(T ) = γ0 prζ D
(
Ã
)

= γ0D
(
Ã
)
, since γ0 vanishes on D(Aγ).

Recall the equation defining T from Ã:

(T prζ u,w) = (Au,w) for u ∈ D
(
Ã
)
, w ∈ Z ′. (3.24)

In view of (3.17), the right-hand side may be written

(Au,w) = (Γu, γ0w) 1
2 ,− 1

2
= (ν1u− Pγ0,ν1γ0u, γ0w) 1

2 ,− 1
2

for all w ∈ Z ′. (3.25)

For the left-hand side we have with L defined above, using that γZ prζ u = γ0(u− prγ u) = γ0u,

(T prζ u,w) = (LγZ prζ u, γZ′w) 1
2 ,− 1

2
= (Lγ0u, γ0w) 1

2 ,− 1
2
.

Then, when we write γ0w = ψ, (3.24) takes the form

(Lγ0u, ψ) 1
2 ,− 1

2
=
(
ν1u− P 0

γ0,ν1
γ0u, ψ

)
1
2 ,− 1

2
for all u ∈ D

(
Ã
)
, ψ ∈ H− 1

2 . (3.26)

Since ψ runs throughH− 1
2 , this may be written Lγ0u = ν1u− P 0

γ0,ν1
γ0u, or,

ν1u =
(
L+ P 0

γ0,ν1

)
γ0u, γ0u ∈ D(L). (3.27)

So in fact Ã represents a Neumann-type boundary condition (3.27).
Conversely, if we want Ã to represent a given Neumann-type boundary condition

ν1u = Cγ0u, (3.28)

where C is a ψdo over Σ, we see that L has to be taken to act like

L = C − P 0
γ0,ν1

. (3.29)

Now let us turn to the λ-dependent case. Here we consider the families Ã − λ and T λ and can proceed in a
very similar way. When working with the concrete boundary Sobolev spaces we find the advantage that Z and
Zλ are mapped by γ0 to the same space H− 1

2 . In fact,

γZλ
= γZF

λ
Z , γZ = γZλ

Eλ
Z , and similarly γZ ′̄

λ
= γZ′F ′λ̄

Z′ , γZ′ = γZ ′̄
λ
E′λ̄

Z′ , (3.30)

since, e.g., γ0F
λu = γ0(u− λA−1

γ u) = γ0u, cf. (2.16).
Let λ ∈ �(Aγ). In the defining equation for T λ,(

T λ prλ
ζ u,w

)
= ((A− λ)u,w) for u ∈ D

(
Ã
)
, w ∈ Z ′̄

λ, (3.31)

we rewrite the two sides as(
T λuλ

ζ , w
)

=
(
LλγZλ

uλ
ζ , γZ ′̄

λ
w
)

1
2 ,− 1

2

,

((A− λ)u,w) =
(
ν1u− Pλ

γ0,ν1
γ0u, γ0w

)
1
2 ,− 1

2
,
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where Lλ : H− 1
2 → H

1
2 is defined by

Lλ =
(
γ∗Z ′̄

λ

)−1

T λγ−1
Zλ
, D

(
Lλ
)

= γZλ
D
(
T λ
)
; (3.32)

note that

D
(
Lλ
)

= γ0D
(
T λ
)

= γ0E
λD(T ) = γ0D(T ) = D(L). (3.33)

Then since γZλ
uλ

ζ = γ0u, the operator Ã− λ represents the boundary condition

Lλγ0u = ν1u− Pλ
γ0,ν1

γ0u, γ0u ∈ D
(
Lλ
)

= D(L). (3.34)

Moreover, in view of Corollary 2.5, Lλ is related to T +Gλ as follows:

Z
Eλ

Z � Zλ
γZλ � H− 1

2

Z ′

T+Gλ

�

(F ′λ̄
Z′)∗

� Z ′̄
λ

T λ

�
�

γ∗
Z ′̄

λ

�−1
� H

1
2

Lλ

�

where the horizontal maps are homeomorphisms. In view of (3.30), they compose to γZ resp.
(
γ∗Z′
)−1

, so

Lλ =
(
γ∗Z′
)−1(

T +Gλ
)
γ−1

Z = L+
(
γ∗Z′
)−1

Gλγ−1
Z . (3.35)

Since D
(
Ã− λ

)
= D

(
Ã
)
, (3.34) and (3.27) define the same boundary condition, hence

Lλ = L+ P 0
γ0,ν1

− Pλ
γ0,ν1

on D(L). (3.36)

Remark 3.2 In particular, it can be inferred (e.g. from the caseL = 0) that
(
γ∗Z′
)−1

Gλγ−1
Z = P 0

γ0,ν1
−Pλ

γ0,ν1
.

Note how the operator family Lλ (in this case where V = Z , W = Z ′) is written as the sum of a λ-independent
operatorL (defining the domain of the realisation) and a λ-dependent operatorP 0

γ0,ν1
−Pλ

γ0,ν1
, which is universal

in the sense that it only depends on A, the set Ω, and λ. It is useful to observe that since Gλ is continuous from
Z to Z ′ for each λ, P 0

γ0,ν1
− Pλ

γ0,ν1
is continuous from H− 1

2 to H
1
2 , hence is of order −1, in contrast to its two

individual terms that are elliptic of order 1 (having the same principal symbol).

This analysis results in the theorem:

Theorem 3.3 For the second-order strongly elliptic operatorA introduced above, let Ã be a closed realisation
with prζ D

(
Ã
)

dense in Z and prζ′ D
(
Ã∗ ) dense in Z ′. Let T : Z → Z ′ be the operator it corresponds to by

Theorem 2.1.

(i) When Z and Z ′ are mapped to H− 1
2 by γ0 and Theorem 2.1 is carried over to the setting based on the

Green’s formula (3.16), Ã corresponds to a closed, densely defined operator L : H− 1
2 → H

1
2 with

domainD(L) = γ0D
(
Ã
)

such that Ã represents the boundary condition

ν1u = Cγ0u, where C = L+ P 0
γ0,ν1

. (3.37)

Here L is defined from T by (3.23).

(ii) For any λ ∈ �(Aγ), Ã− λ corresponds similarly to

Lλ = L+ P 0
γ0,ν1

− Pλ
γ0,ν1

: H− 1
2 −→ H

1
2 , (3.38)

with domain D
(
Lλ
)

= D(L). Ã− λ is the realisation of A− λ determined by the boundary condition

(3.37), whereC may also be writtenC = Lλ+Pλ
γ0,ν1

. Here, when Ã−λ corresponds to T λ by Corollary
2.3, Lλ is defined from T λ by (3.32). Moreover, (3.35) holds.
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(iii) Furthermore, for any λ ∈ �(Aγ),

ker
(
Ã− λ

)
= Kλ

γ kerLλ,

ran
(
Ã− λ

)
= γ∗Z ′̄

λ
ranLλ + ran(Amin − λ).

(3.39)

P r o o f. All has been accounted for above except point (iii), but this follows immediately from (2.14).

3.2.3 The M -function

We define an M -function in this representation, by use of Lemma 2.8. We have from (2.32) for λ ∈ �
(
Ã
)
:

M �A(λ) = prζ

((
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iZ′→H : Z ′ −→ Z. (3.40)

We know from Theorem 2.9 that the M -function should coincide with minus the inverse of the operator induced
from T λ in (2.36), when λ ∈ �

(
Ã
)∩ �(Aγ). So, applying the trace maps in (3.21) in a similar way as we did for

T , we get

ML(λ) = γZM �A(λ)γ∗Z′

= γZ prζ

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iZ′→H γ∗Z′

= γ0

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iZ′→H γ∗Z′ .

(3.41)

Here, when λ ∈ �
(
Ã
)∩ �(Aγ), −ML(λ) is the inverse of the operator translated from T +Gλ, namely, in view

of (3.35)–(3.36),

ML(λ) = − (L+ P 0
γ0,ν1

− Pλ
γ0,ν1

)−1
= −(Lλ)−1, (3.42)

bounded from H
1
2 to H− 1

2 , and then it has range D(L). Moreover, it has the extension to λ ∈ �
(
Ã
)

given in

(3.41), a holomorphic family of bounded operators from H
1
2 to H− 1

2 .
Note that when λ ∈ �

(
Ã
) ∩ �(Aγ), Lλ is surjective onto H

1
2 . These considerations lead to:

Theorem 3.4 For the realisation considered in Theorem 3.3, there is an M -function defined by

ML(λ) = γ0

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iZ′→H γ∗Z′ , (3.43)

a holomorphic family of bounded operators from H
1
2 to H− 1

2 . For λ ∈ �
(
Ã
) ∩ �(Aγ), it satisfies

ML(λ) = − (L+ P 0
γ0,γ1

− Pλ
γ0,γ1

)−1
= −(Lλ

)−1
. (3.44)

There is the following Kreı̆n resolvent formula, valid for all λ ∈ �
(
Ã
) ∩ �(Aγ):(

Ã− λ
)−1 = (Aγ − λ)−1 − iZλ→H γ−1

Zλ
ML(λ)

(
γ∗Z ′̄

λ

)−1

prZ ′̄
λ

= (Aγ − λ)−1 −Kλ
γML(λ)

(
K ′λ̄

γ

)∗
.

(3.45)

P r o o f. The definition of ML is accounted for above. The first line in the Kreı̆n formula follows from (2.42)
in the case V = Z , W = Z ′, by the calculation

Eλ
ZM �A(λ)

(
E′λ̄

Z′

)∗
= Eλ

Zγ
−1
Z ML(λ)

(
γ∗Z′
)−1

(
E′λ̄

Z′

)∗
= γ−1

Zλ
ML(λ)

(
γ∗Z ′̄

λ

)−1

,

using (3.41) and (3.30). The second line follows since iZλ→H γ−1
Zλ

= Kλ
γ : H− 1

2 → H ,
(
γ∗Z ′̄

λ

)−1

prZ ′̄
λ

=(
iZ ′̄

λ
→H γ−1

Z ′̄
λ

)∗
=
(
K ′λ̄

γ

)∗
: H → H

1
2 (recall that H = L2(Ω)).

Note that with the notation (3.14), Lλ = −Pλ
γ0,ν1−Cγ0

and ML(λ) = Pλ
ν1−Cγ0,γ0

, cf. (3.29).
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3.2.4 Elliptic boundary conditions

Further information can be obtained in elliptic cases. Using the Sobolev space mapping properties of γZ and its
inverse, one finds since D(Aγ) ⊂ H2(Ω) that D

(
Ã
) ⊂ H2(Ω) if and only if D(L) ⊂ H

3
2 . If L is given as an

arbitrary ψdo of order 1, it is not in general bounded from H− 1
2 to H

1
2 , but has a subset as domain.

Ellipticity of the boundary value problem defined from (3.28), (3.29) (the Shapiro–Lopatinskiı̆ condition)
holds precisely when L acts like an elliptic ψdo of order 1. Then ranL ⊂ H

1
2 implies D(L) ⊂ H

3
2 , and the

graph-norm on D(L) is equivalent with the H
3
2 -norm. Let �

(
Ã
) ∩ �(Aγ) 
= ∅ (a reasonable hypothesis in our

discussion) and let λ0 ∈ �
(
Ã
) ∩ �(Aγ). Then Lλ0 has kernel and cokernel {0} (since T λ0 has so, by Theorem

2.1
)

and is likewise elliptic of order 1, so the inverse −ML(λ0) is an elliptic ψdo of order −1; it is defined on

all of H
1
2 . It maps H

1
2 onto H

3
2
(
since the range of the operator from any Hs to Hs+1 has codimension 0

)
. It

follows that

D(L) = D
(
Lλ0

)
= H

3
2 . (3.46)

Then moreover,D
(
Ã
) ⊂ H2(Ω)

(
and D

(
Ã
)

is the largest subset of D(Amax) where (3.28) holds
)
.

In this case, the adjoint of
(
Lλ0

)−1 (
as a bounded operator from H

1
2 to H− 1

2
)

is
((
Lλ0

)∗)−1
, so the adjoint

of L
(
as an unbounded closed densely defined operator from H− 1

2 to H
1
2
)

is L∗ with domain H
3
2 . Then Ã∗ is

the realisation of A′ defined by the elliptic boundary condition

ν′1u =
(
L∗ + P ′0

γ0,ν′
1

)
γ0u, (3.47)

and D
(
Ã∗) ⊂ H2(Ω). Note that if A = A′ and L is elliptic of order 1 and symmetric, Ã is self-adjoint.

Before including these observations in a theorem we shall show that also prZλ
, prZ ′̄

λ
and their adjoints iZλ→H ,

iZ ′̄
λ
→H , belong to the ψdbo calculus; this will allow a discussion of ML(λ) for λ ∈ �

(
Ã
) \ �(Aγ).

Proposition 3.5 Let λ ∈ �(Aγ). Then prZ ′̄
λ

acts as the singular Green operator

prZ ′̄
λ

= I − (Amax − λ)R
((
A′ − λ̄

)
(A− λ), γ0, γ1

)(
A′

max − λ̄
)
, (3.48)

where R((A′ − λ̄)(A− λ), γ0, γ1) : g �→ u is the solution operator for the problem

(A′ − λ̄)(A− λ)u = g, γ0u = γ1u = 0. (3.49)

Similarly,

prZλ
= I − (A′

max − λ̄)R((A− λ)(A′ − λ̄), γ0, γ1)(Amax − λ). (3.50)

Moreover, iZλ→H acts like the adjoint of the operator in (3.50) in the ψdbo calculus, and iZ ′̄
λ
→H acts like the

adjoint of the operator in (3.48).

P r o o f. When f ∈ H , prZ ′̄
λ
f is the second component of f in the decomposition

H = ran(Amin − λ) ⊕ Z ′̄
λ.

Write f = f1 + f2 according to this decomposition, and note that

(A′ − λ̄)f = (A′ − λ̄)f1. (3.51)

Observe moreover, that v = (Aγ −λ)−1f1 is the unique element inD(Amin) = H2
0 (Ω) such that (A−λ)v = f1.

In view of (3.51), v moreover solves

(A′ − λ̄)(A− λ)v = (A′ − λ̄)f, γ0v = γ1v = 0, (3.52)
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and this solution is unique since (A′ − λ̄)(A− λ) is formally self-adjoint strongly elliptic with positive minimal
realisation, hence has a positive Friedrichs extension, representing its Dirichlet problem (3.49). Thus v is uniquely
determined as

v = R((A′ − λ̄)(A− λ), γ0, γ1)(A′ − λ̄)f,

and f2 is given by the formula (3.48). It should be noted that the operator in (3.48) has a good meaning on L2(Ω)
in the ψdbo calculus; first A′−λ maps L2(Ω) continuously intoH−2(Ω), thenR((A′− λ̄)(A−λ), γ0, γ1) maps
H−2(Ω) homeomorphically onto H2

0 (Ω), as is known for Dirichlet problems for positive operators, and finally
A − λ maps H2

0 (Ω) continuously into L2(Ω). (3.48) defines a singular Green operator since the ψdo part of the
second term cancels out with I .

The formula (3.50) follows by interchanging the roles of A− λ and A′ − λ̄.
Finally, as a technical point taken care of in [20], the operator in (3.48), although the factor to the right is of

order 2, is of class 0 since R((A′ − λ̄)(A − λ), γ0, γ1) is of class −2. Then it does have an adjoint in the ψdbo
calculus, so the assertion follows since the adjoint of prZλ

: H → Zλ is iZλ→H .

Theorem 3.6 For the operators considered in Theorems 3.3 and 3.4, one has:

(i) When L acts like an elliptic ψdo of order 1, then D(L) ⊂ H
3
2 and D

(
Ã
) ⊂ H2(Ω), and when

λ ∈ �
(
Ã
) ∩ �(Aγ), all the operators entering in the formulas belong to the ψdbo calculus, and ML(λ)

is elliptic of order −1. Moreover, if �
(
Ã
) ∩ �(Aγ) 
= ∅, D(L) = H

3
2 .

(ii) When the statements in (i) hold, we have moreover that Ã∗ is the realisation of A′ determined by the
elliptic boundary condition (3.47), and D(L∗) = H

3
2 , D

(
Ã∗) ⊂ H2(Ω). In particular, if A = A′ and

L is symmetric and elliptic of order 1, Ã is self-adjoint with D
(
Ã
) ⊂ H2(Ω).

(iii) When L is elliptic of order 1 with D(L) = H
3
2 , ML(λ) is an elliptic ψdo of order −1 for all λ ∈ �

(
Ã
)
.

P r o o f. The assertions in (i) and (ii) were shown above. For (iii), we use the formula (3.43) derived in (3.41)
from (2.32). When L is elliptic with D(L) = H

3
2 , the resolvent

(
Ã − λ

)−1
belongs to the ψdbo calculus and

maps L2(Ω) into H2(Ω); then the composition rules in the ψdbo calculus imply that ML(λ) is a ψdo over Σ.

Since
(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ mapsL2(Ω) continuously intoH2(Ω),ML(λ) mapsH
1
2 continuously

into H
3
2 , hence is of order −1, for all λ ∈ �

(
Ã
)
. Since the principal symbol of M �A(λ) (in the ψdbo calculus)

is independent of λ, also the principal symbol of the ψdo ML(λ) is independent of λ; it equals the inverse of the
principal symbol of L and is therefore elliptic.

Remark 3.7 The Kreı̆n resolvent formula (3.45) can be compared with the standard resolvent formula(
Ã − λ

)−1 = Qλ,+ + Gλ (cf. Seeley [40] and e.g. Grubb [21]), where Qλ is a parametrix (an approximate

inverse) of A − λ on a neighborhood Ω̃ of Ω, Qλ,+ is its truncation to Ω, and Gλ is a singular Green operator
adapted to the boundary condition (as in (3.6)). This has been used e.g. to show asymptotic kernel and trace
expansions (also for the associated heat operator). Formula (3.45) gives more direct eigenvalue information.

Remark 3.8 The operatorsL andML(λ) can be pseudo-differential also in non-elliptic cases. A striking case
is where L = 0 as an operator from H− 1

2 to H
1
2 , so that Ã represents the boundary condition

ν1u = P 0
γ0,ν1

γ0u. (3.53)

This is Kreı̆n’s “soft extension” [26], namely the realisation AM with domain

D(AM ) = D(Amin)+̇Z, (3.54)

as described in [15]. Its domain is not contained in anyHs(Ω) with s > 0. HereML(λ) = −(P 0
γ0,ν1

−Pλ
γ0,ν1

)−1

when this inverse exists; cf. (3.44). Spectral properties of AM are worked out in [19].
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3.2.5 The general case

The previous subsections cover the cases where T goes from Z to Z ′ in Theorem 2.1 (called “pure conditions”
in [15]). The family M moreover contains the operators corresponding to closed, densely defined operators
T : V → W with arbitrary closed subspaces V ⊂ Z , W ⊂ Z ′. In [15], it was shown that these correspond
to operators L : X → Y ∗, X = γ0V and Y = γ0W

(
subspaces of H− 1

2
)
; then Ã represents the boundary

condition

γ0u ∈ X, (Lγ0u, ψ)Y ∗,Y = (Γu, ψ) 1
2 ,− 1

2
, for all ψ ∈ Y. (3.55)

The equation is also written Lγ0u = Γu|Y (restriction as a functional on Y ).
Let us show how this looks when we use the modified trace operators in (3.19) mapping the maximal domains

to L2(Σ). Setting

X1 = Γ0V = Λ− 1
2
X,

Y1 = Γ0W = Λ− 1
2
Y,

L1 =
(
Γ∗

0,W

)−1
TΓ−1

0,V with D(L1) = Γ0D(T ),

(3.56)

where Γ0,V resp. Γ0,W denote the restrictions of Γ0 as mappings from V to X1 resp. from W to Y1, we have the
following diagram:

V
Γ0,V � X1

W

T

�

(Γ∗
0,W )−1

� Y1

L1

�

(3.57)

We find as in (3.25)–(3.27) that the statements prζ u ∈ D(T ), Tuζ = (Au)W , carry over to the statements

Γ0u ∈ D(L1) ⊂ X1, L1Γ0u = prY1
Γ1u; (3.58)

this is then the boundary condition represented by Ã. Note that the condition Γ0u ∈ X1 enters as an important
part of the boundary condition, compensating for the fact that L1 acts between smaller spaces than in the case
V = Z , W = Z ′.

Since prY1
Γ1u = prY1

Λ 1
2

(
ν1u − P 0

γ0,ν1
γ0u
)
, (3.58) may also be written in terms of the standard traces γ0u

and ν1u, as

Λ− 1
2
γ0u ∈ D(L1), prY1

Λ 1
2
ν1u =

(
L1 + prY1

Λ 1
2
P 0

γ0,ν1
Λ 1

2
iX1→L2

)
Λ− 1

2
γ0u. (3.59)

Such formulations can likewise be pursued for Ã − λ, allowing an extension of Theorems 3.3 and 3.4. Let
λ ∈ �(Aγ). Now Γ0,Vλ

= Γ0,V F
λ
V : Vλ

∼→ X1, and Γ0,Wλ̄
= Γ0,WF ′λ̄

W : Wλ̄
∼→ Y1. The defining equation for

T λ is: (
T λ prλ

ζ u,w
)

= ((A− λ)u,w) for u ∈ D
(
Ã
)
, w ∈ Wλ̄. (3.60)

We define

Lλ
1 =

(
Γ∗

0,Wλ̄

)−1

T λΓ−1
0,Vλ

, with D
(
Lλ

1

)
= Γ0,Vλ

D
(
T λ
)

= Γ0,VD(T ) = D(L1), (3.61)

and then rewrite the two sides as follows, denoting Γλ
1 = Λ 1

2

(
ν1 − Pλ

γ0,ν1
γ0

)
:(

T λuλ
ζ , w

)
=
(
Lλ

1Γ0,Vλ
uλ

ζ ,Γ0,Wλ̄
w
)

L2(Σ)
=
(
Lλ

1Γ0u,Γ0w
)

Y1
,
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((A− λ)u,w) =
(
Γλ

1u,Γ0w
)

L2(Σ)
=
(
prY1

Γλ
1u,Γ0w

)
Y1
.

When w runs throughWλ̄, Γ0w runs through Y1, so we see that Ã− λ represents the boundary condition

Γ0u ∈ D(L1) ⊂ X1, Lλ
1Γ0u = prY1

Γλ
1u. (3.62)

It can also be written in terms of the standard trace maps as

Λ− 1
2
γ0u ∈ D(L1) ⊂ X1, Lλ

1Λ− 1
2
γ0u = prY1

Λ 1
2

(
ν1u− Pλ

γ0,ν1
γ0u
)
, (3.63)

where the equation can be rewritten as

prY1
Λ 1

2
ν1u =

(
Lλ

1 + prY1
Λ 1

2
Pλ

γ0,ν1
Λ 1

2
iX1→L2

)
Λ− 1

2
γ0u. (3.64)

Since D
(
Ã− λ

)
= D

(
Ã
)
, we have in view of (3.59):

Lλ
1 = L1 + prY1

Λ 1
2

(
P 0

γ0,ν1
− Pλ

γ0,ν1

)
Λ 1

2
iX1→L2 , when λ ∈ �(Aγ). (3.65)

All this leads to:

Theorem 3.9 For the second-order strongly elliptic operatorA introduced above, let the closed realisation Ã
correspond to T : V →W by Theorem 2.1.

(i) DefineX1, Y1 and L1 by (3.56); then Ã represents the boundary condition (3.58), more explicitly written
as (3.59).

(ii) For any λ ∈ �(Aγ), Ã− λ corresponds to the operator Lλ
1 : X1 → Y1 defined in (3.61), and represents

the boundary condition (3.62), also written as in (3.63), (3.64). Here Lλ
1 and L1 are related by (3.65),

and

ker
(
Ã− λ

)
= Kλ

γ Λ 1
2

kerLλ
1 ,

ran
(
Ã− λ

)
= Γ∗

0,Wλ̄
ranLλ

1 + (H �Wλ̄).
(3.66)

P r o o f. In view of the preparations before the theorem, it remains to account for (3.66), which follows by
application of the various transformation maps to (2.43).

The M -function in this set-up is defined from formula (2.41), in a similar way as in (3.41):

ML1(λ) = Γ0,VM �A(λ)Γ∗
0,W

= Λ− 1
2
γV M �A(λ)Γ∗

0,W

= Λ− 1
2
γV prζ

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iW→H Γ∗
0,W

= Λ− 1
2
γ0

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iW→H Γ∗
0,W .

(3.67)

Here, when λ ∈ �
(
Ã
) ∩ �(Aγ), −ML1(λ) is the inverse of Lλ

1 . We therefore have the following:

Theorem 3.10 Once again, let A be the second-order strongly elliptic operator introduced above and let the
closed realisation Ã correspond to T : V →W by Theorem 2.1. The M -function in this setting is

ML1(λ) = Λ− 1
2
γ0

(
I − (Ã− λ

)−1(Amax − λ)
)
A−1

γ iW→H Γ∗
0,W , (3.68)

a family of bounded operators from Y1 to X1, depending holomorphically on λ ∈ �
(
Ã
)
. For λ ∈ �

(
Ã
)∩�(Aγ),

it satisfies

ML1(λ) = −
(
L1 + prY1

Λ 1
2

(
P 0

γ0,ν1
− Pλ

γ0,ν1

)
Λ 1

2
iX1→L2

)−1

. (3.69)
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The following resolvent formula holds for all λ ∈ �
(
Ã
) ∩ �(Aγ):

(
Ã− λ

)−1 = (Aγ − λ)−1 − iVλ→H Γ−1
0,Vλ

ML1(λ)
(
Γ∗

0,Wλ̄

)−1

prWλ̄

= (Aγ − λ)−1 −Kλ
γ,X1

ML1(λ)
(
K ′λ̄

γ,Y1

)∗
,

(3.70)

where Kλ
γ,X1

: X1 → H acts like the composition of Λ 1
2

: X1 → X , i
X→H− 1

2
and Kλ

γ : H− 1
2 → H .

P r o o f. It remains to show (3.70), which follows from (2.42).

The analysis of the realisations corresponding to operators T : Z → Z ′ covers all the most frequently studied
boundary conditions for second-order scalar elliptic operators, whereas the cases where T acts between nontrivial
subspaces of Z and Z ′ are more exotic. For example, the Zaremba problem, where Dirichlet resp. Neumann
conditions are imposed on two closed subsets ΣD resp. ΣN of Σ with common boundary and covering Σ, leads

to the subspace V = K0
γH

− 1
2

0 (ΣN ), which presents additional technical difficulties not covered by the ψdbo
calculus.

But when we go beyond the scalar second-order case, subspace situations have a primary interest; see the next
section.

3.3 Higher order operators and systems

Let us now consider systems (matrix-formed operators) and higher order elliptic operators. Here one finds that
subspace cases occur very naturally and allow studies within the ψdbo calculus, with much the same flavour as
in Theorems 3.3, 3.4 and 3.6. For even-order operators, a general and useful framework was worked out in [17],
normal boundary conditions for operators acting between vector bundles, which could be the point of departure
for ample generalisations. Scalar operators are covered by a simpler analysis in [16]. We shall here show in detail
how the analysis of [16] can be used, and illustrate systems cases by examples.

Example 3.11 Let A =
(
Ajk

)
be an p× p-matrix of second-order differential operators on Ω, elliptic in the

sense that the determinant of the principal symbol is nonzero for x ∈ Ω, ξ 
= 0. We here have a Green’s formula
like (3.7), but where s0(x) is a regular p× p-matrix and s̄0(x) is replaced by s0(x)∗. There is again a Dirichlet
realisation Aγ , and if it is elliptic and 0 ∈ �(Aγ), we can repeat the study of Section 3.2, now for p-vectors. That
will cover boundary conditions of the form (3.28), and give a somewhat abstract treatment of the more general
cases.

Now one can also consider boundary conditions where a Dirichlet condition is imposed on some components
of γ0u and a Neumann condition is imposed on other components of ν1u. This is very simple to explain when
s0(x) = I , so let us consider that case. Let Ã be determined by a boundary condition of the type

γ0uN0 = 0, γ1uN1 − Cγ0uN1 = 0, (3.71)

whereN0 andN1 are complementing subsets of the index setN = {1, 2, . . . , p} with p0 resp. p1 elements. Using
the homeomorphism γZ : Z ∼→ ∏

1≤j≤p H
− 1

2 (Σ) and similar vector valued versions of the other mappings in
Section 3.2, one finds that realisations of boundary conditions (3.71) correspond to operators

L :
∏

j∈N1

H− 1
2 (Σ) −→

∏
j∈N1

H
1
2 (Σ), L = C − prN1

P 0
γ0,γ1i iN1 , (3.72)

where prN1
projects {ϕj}j∈N onto {ϕj}j∈N1 , and iN1 injects vectors {ϕj}j∈N1 into vectors indexed by N by

supplying with zeroes at the places indexed by N0. Again, ellipticity makes the realisation regular, and there are
formulas very similar to those in Section 3.2:

Lλ = L+ prN1

(
P 0

γ0,γ1
− Pλ

γ0,γ1

)
iN1 = C − prN1

Pλ
γ0,γ1

iN1 ,

ML(λ) = −(Lλ
)−1

,(
Ã− λ

)−1 = (Aγ − λ)−1 −Kλ
γ iN1 ML(λ) prN1

(
K ′λ̄

γ

)∗
,

(3.73)
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where Lλ and ML(λ) are elliptic ψdo’s when the boundary condition is elliptic.
Notation gets a little more complicated if s0 is not in diagonal form, or if prN1

is replaced by a projection onto
a p1-dimensional subspace of Cp that varies with x ∈ Σ. Then it is useful to apply vector bundle notation, as
in [17], where fully general boundary conditions are treated.

Next, consider the case where A is a 2m-order operator A =
∑

|α|≤2m aα(x)Dα (scalar or matrix-formed),

elliptic on Ω. The Cauchy data are the boundary values

�u = {γ0u, . . . , γ2m−1u}, (3.74)

which one can split into the Dirichlet data and the Neumann data

γu = {γ0u, . . . , γm−1u}, νu = {γmu, . . . , γ2m−1u}. (3.75)

There is a Green’s formula for u, v ∈ H2m(Ω):

(Au, v) − (u,A′v) = (χu, γv) − (γu, χ′v), χu = A1νu, χ′v = A′
1νv + A′

0γv, (3.76)

where A1 and A′
1 (both invertible) and A′

0 are suitable m × m matrices of differential operators over Σ. Here
χ = {χ0, . . . , χm−1} with χj of order 2m− j − 1, and the trace maps are continuous,

γ : Zs
λ(A) −→

∏
0≤j≤m−1

Hs−j− 1
2 (Σ), χ : Zs

λ(A) −→
∏

0≤j≤m−1

Hs−2m+j+ 1
2 (Σ), (3.77)

for s ∈ R. If the Dirichlet problem is uniquely solvable, one can again use Aγ as reference operator, and set

Pλ
γ,χ = χKλ

γ , P ′λ̄
γ,χ′ = χ′K ′λ̄

γ , (3.78)

with Kλ
γ resp. K ′λ̄

γ denoting the Poisson operator solving

(A− λ)u = 0 resp. (A′ − λ̄)u = 0 in Ω, γu = ϕ. (3.79)

Now

Γ = χ− P 0
γ,χγ and Γ′ = χ′ − P ′0

γ,χ′γ (3.80)

are defined as continuous maps fromD(Amax), resp.D(A′
max) to

∏
j<m Hj+ 1

2 (Σ), and there is a generalisation
of (3.76) valid for all u ∈ D(Amax), v ∈ D(A′

max):

(Au, v) − (u,A′v) = (Γu, γv){j+ 1
2},{−j− 1

2 } − (γu,Γ′v){−j− 1
2},{j+ 1

2 } (3.81)(
where (·, ·){sj},{−sj} indicates the duality pairing between

∏
j<m Hsj (Σ) and

∏
j<m H−sj (Σ)

)
.

It should be noted that Pλ
γ,χ is a mixed-order system:

Pλ
γ,χ =

(
Pjk

)
j,k=0,...,m−1

, Pjk of order 2m− 1 − j − k,

and the principal symbol and possible ellipticity is defined accordingly. Such systems (with differential operator
entries) were first considered by Douglis and Nirenberg [11] and by Volevich [44]; in the elliptic case they are
called Douglis–Nirenberg elliptic.

Formula (3.81) can be turned into a boundary triplet formula with H = K = L2(Σ)m by composition of Γ
and Γ′ with a symmetric ψdo defining the norms:

Θ =
(
δklΛk+ 1

2

)
k,l=0,...,m−1

:
∏

0≤j<m

Hj+ 1
2 (Σ) ∼−−→ L2(Σ)m, (3.82)

and composition of γ with Θ−1, setting

Γ1 = ΘΓ, Γ′
1 = ΘΓ′, Γ0 = Θ−1γ = Γ′

0; (3.83)
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this leads to a word-for-word generalisation of Proposition 3.1, with

(Au, v)L2(Ω) − (u,A′v)L2(Ω) = (Γ1u,Γ′
0v)L2(Σ)m − (Γ0u,Γ′

1v)L2(Σ)m , (3.84)

for u ∈ D(Amax), v ∈ D(A′
max).

The straightforward continuation of what we did in Section 3.2 is the study of boundary conditions of the
type χu = Cγu, that are the ones obtained when Ã corresponds to T : Z → Z ′. When Ã corresponds to
T : V → W , we find that it represents a boundary condition similar to (3.58). Since the proofs in Section 3.2
generalise immediately to this situation, we can state:

Corollary 3.12 Theorems 3.3, 3.4 and 3.6 extend to the present situation for elliptic operators of order 2m,
when H− 1

2 (Σ) is replaced by
∏

j<mH−j− 1
2 (Σ), and γ0 and ν1 are replaced by γ and χ.

Theorems 3.9 and 3.10 likewise extends when, moreover, L2(Σ) is replaced by L2(Σ)m and (3.84) is used.

Whereas the statements in the case of general subspaces V and W will be somewhat abstract, there are now
also formulations where the subspaces are represented by products of Sobolev spaces, and the operators belong
to the ψdbo calculus. We shall demonstrate this on the basis of the treatment of normal boundary value problems
in [16], which we now recall. Denote

M = {0, . . . , 2m− 1}, M0 = {0, . . . ,m− 1}, M1 = {m, . . . , 2m− 1}.

A general normal boundary condition is given as

γju+
∑
k<j

Bjkγku = 0, j ∈ J, (3.85)

where J is a subset ofM with m elements and the Bjk are differential operators on Σ of order j− k. (It is called
normal since the highest-order trace operators γj have coefficient 1.) Let K = M \ J , and set

J0 = J ∩M0, J1 = J ∩M1, K0 = K ∩M0, K1 = K ∩M1,

γJ0 = {γj}j∈J0 , νJ1= {γj}j∈J1 , γK0 = {γj}j∈K0 , νK1= {γj}j∈K1 ,

then (3.85) can be reduced to the form

γJ0u = F0γK0u, νJ1u = F1γK0u+ F2νK1u, (3.86)

with suitable matrices of differential operators F0, F1, F2. To reformulate this in terms of {γ, χ}, we use the
convention for reflected sets:

N ′ = {j | 2m− 1 − j ∈ N}, (3.87)

considered as an ordered subset of M . Then χ = {χj}j∈M0 splits into χ = {χJ1
′ , χK1

′}, where

χJ1
′ = {χj}j∈J1

′ , χK1
′ = {χj}j∈K1

′ .

We can now reformulate (3.86) as

γJ0u = F0γK0u, χJ1
′u = G1γK0u+G2χK1

′u, (3.88)

whereG1 andG2 are matrices of differential operators derived from those in (3.86) and the coefficients in Green’s
formula (more details in [16]).

When Ã is the realisation of A determined by the boundary condition (3.88)
(
i.e., D

(
Ã
)

consists of the

u ∈ D(Amax) satisfying (3.88)
)
, and ellipticity holds, then D

(
Ã
) ⊂ H2m(Ω), and the adjoint realisation Ã∗ is

determined by the likewise elliptic boundary condition

γK1
′v = −G∗

2γJ1
′v, χ′

K0
v = G∗

1γJ1
′v − F ∗

0 χ
′
J0
v. (3.89)

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 282, No. 3 (2009) 337

Setting

Φ =

(
IK0K0

F0

)
, Ψ =

(
IJ1

′J1
′

−G∗
2

)
,

we have that

γD
(
Ã
) ⊂ X = Φ

( ∏
k∈K0

H−k− 1
2 (Σ)

)
, γD

(
Ã∗) ⊂ Y = Ψ

⎛⎝ ∏
j∈J1

′
H−j− 1

2 (Σ)

⎞⎠ .

HereX is the graph of F0 and naturally homeomorphic to its “first component”
∏

k∈K0
H−k− 1

2 (Σ), and similarly

Y is homeomorphic to
∏

j∈J1
′ H−j− 1

2 (Σ). The operator T : V → W that Ã corresponds to by Theorem 2.1
carries over to an operator L : X → Y ∗ by use of γ, and this is further reduced to an operator

L1 :
∏

k∈K0

H−k− 1
2 (Σ) −→

∏
j∈J1

′
Hj+ 1

2 (Σ), L1 = G1 − Ψ∗P 0
γ,χΦ,

with domain D(L1) =
∏

k∈K0
H2m−k− 1

2 (Σ). This representation is used in [16] to find criteria for the operator
to bem-accretive, and the ideas are further pursued in [17] for systems of operators (where vector bundle notation
is needed).

For the present study of resolvents, we now find that Ã− λ can be represented by

Lλ
1 = G1 − Ψ∗Pλ

γ,χΦ :
∏

k∈K0

H−k− 1
2 (Σ) −→

∏
j∈J1

′
Hj+ 1

2 (Σ), D
(
Lλ

1

)
=
∏

k∈K0

H2m−k− 1
2 (Σ), (3.90)

when λ ∈ �(Aγ). The correspondingM -function and Kreı̆n formula are:

M(λ) = − (G1 − Ψ∗Pλ
γ,χΦ

)−1
:
∏

j∈J1
′
Hj+ 1

2 (Σ) −→
∏

k∈K0

H−k− 1
2 (Σ),

(
Ã− λ

)−1 = (Aγ − λ)−1 −Kλ
γ ΦM(λ)

(
K ′λ̄

γ Ψ
)∗

;
(3.91)

when λ ∈ �
(
Ã
) ∩ �(Aγ). M(λ) extends holomorphically to �

(
Ã
)

(note that the spectrum of �(Aγ) is discrete
in this case). As a mixed-order operator with entries of order 2m − 1 − j − k (k ∈ K0, j ∈ J1

′), Lλ
1 is

Douglis–Nirenberg elliptic, and M(λ) is so in the opposite direction.
The two functionsM(λ) and Lλ

1 together give a tool to analyse the spectral properties of Ã in terms of ψdo’s
on Σ, M(λ) being holomorphic on �

(
Ã
)

and Lλ
1 containing information on null-spaces and ranges. We have

hereby obtained:

Theorem 3.13 Let A be a 2m-order elliptic differential operator with coefficients in C∞(Ω), and let Ã be the
realisation defined by the normal boundary condition (3.85), reformulated as (3.88); assume that the boundary
problem is elliptic. Let Aγ be the Dirichlet realisation, assumed elliptic and invertible. For λ ∈ �(Aγ), the
operator corresponding to Ã− λ by Corollary 2.3 carries over to (3.90). The associated M -function and Kreı̆n
resolvent formula are described in (3.91);M(λ) extends to an operator family holomorphic in λ ∈ �

(
Ã
)
.

When A is scalar of order 2m, this analysis covers all the elliptic problems to which Seeley’s resolvent con-
struction [40] applies, for it is known that normality of the boundary condition is necessary for the parameter-
ellipticity required there (cf. e.g. [21, Section 1.5]). When p × p-systems are considered, each line in (3.85)
can moreover be composed with a multiplication map to the sections of a subbundle of Σ × Cp, as indicated in
Example 3.11; here normality means surjectiveness of the coefficient of the highest normal derivative γj , for each
j. For such cases, the treatment can be based on [17].

Example 3.14 For a simple example, consider the biharmonic operator A = Δ2, which has the Green’s
formula (

Δ2u, v
)− (u,Δ2v

)
= (χu, γv) − (γu, χv), χu =

(
−γ1Δu

γ0Δu

)
; (3.92)
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note that linear conditions on γ0u, γ1u, γ2u and γ3u can be written as conditions on γ0u, γ1u, γ0Δu and γ1Δu,
hence on γu and χu. The operator Pλ

γ,χ is a ψdo from Hs− 1
2 ×Hs− 3

2 to Hs− 7
2 ×Hs− 5

2 (note the reverse order
of the Sobolev exponents in the target space).

Let Ã be defined by an elliptic boundary condition with a first-order differential operator C,

γ0u = 0, γ0Δu = Cγ1u; (3.93)

then Ã∗ represents the likewise elliptic boundary condition

γ0u = 0, γ0Δu = C∗γ1u, (3.94)

and the domains of Ã and Ã∗ are contained in H4(Ω). For the corresponding operator T : V →W according to
Theorem 2.1, V = W = K0

γ

({0} ×H− 3
2
)
. This carries over to the operator

L = C − pr2 P
0
γ,χ i2 : H− 3

2 −→ H
3
2 , (3.95)

where pr2 = (0 1) and i2 =
(

0
1

)
. Thanks to the ellipticity, D(L) = H

5
2 , and L is an elliptic ψdo of order 1. We

here find that

Lλ = L+ pr2
(
P 0

γ,χ − Pλ
γ,χ

)
i2 = C − pr2 P

λ
γ,χ i2,

ML(λ) = −(Lλ
)−1

,(
Ã− λ

)−1 = (Aγ − λ)−1 −Kλ
γ i2ML(λ) pr2

(
K ′λ̄

γ

)∗
.

(3.96)

It is also possible to take another realisationAβ than the Dirichlet realisation as reference operator, preferably
one defined by an elliptic boundary condition, as in [15]. For strongly elliptic operators, using Aγ as reference
operator has the advantage that semiboundedness properties are preserved in correspondences between Ã and T ,
see [16, 17].

There do exist even-order operators for which the Dirichlet problem is not elliptic; a well-known example is
the operator −ΔI + 2 graddiv on subsets of R

2, studied by Bitsadze.

Example 3.15 The operatorA need not be of even order. For example, first-order p×p-systems, such as Dirac
operators, have received much attention. In this case the Cauchy data are {γ0u1, . . . , γ0up}. Elliptic boundary
conditions require p to be even. In “lucky” cases, one can get an elliptic boundary value problem by imposing the
vanishing of half of the boundary values; this will then give a reference problem, allowing the discussion of other
realisations. More systematically, one can impose the condition Π+γ0u = 0 for a certain ψdo projection Π+

over the boundary (the Atiyah–Patodi–Singer condition), which defines a Fredholm realisation. If it is invertible,
it can be used as a reference operator.

Similar considerations can be worked out for elliptic operators on suitable unbounded domains, and on man-
ifolds. More specifically, the calculus of ψdbo’s is extended in [21] to the manifolds called “admissible” there;
they have finitely many unbounded ends with good control over coordinate diffeomorphisms. They include com-
plements in R

n as well as R
n

+ of smooth bounded domains.

Example 3.16 We shall here make concrete the considerations in Example 3.14 for the biharmonic operator
on the half space

R
n
+ = {x = {x′, xn} ∈ R

n | xn > 0},
where we denote {x1, . . . , xn−1} = x′. This constant-coefficient case can be viewed as a model for variable-
coefficient cases, giving an example of the pointwise symbol calculations entering in the ψdbo theory. (A detailed
introduction to the ψdbo calculus is found e.g. in [22].)

It is well-known that since Δ2 is symmetric nonnegative, the resolvent of the Dirichlet realisation in L2

(
Rn

+

)
exists for λ ∈ C \ R+. We shall write

λ = −μ4, μ ∈ Vπ/4, where Vθ = {z ∈ C \ {0} | | arg z| < θ}.
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We fix a λ0 < 0, then the realisations of A = Δ2 −λ0 fit into the general set-up, with the Dirichlet realisation
Aγ of Δ2 − λ0 as reference operator. However, for simplicity in formulas (avoiding addition and subtraction of
λ0), we keep the parameter λ for the operator families defined relative to Δ2 − λ.

In the following calculations, one can think of a μ > 0; the considerations extend holomorphically to Vπ/4.
To find the Poisson operatorKλ

γ solving the problem(
Δ2 − λ

)
u(x′, xn) = 0 on R

n
+, u(x′, 0) = ϕ0(x′), ∂nu(x′, 0) = ϕ1(x′),

we perform a Fourier transformation in the x′-variable, and then have to find solutions of((|ξ′|2 − ∂2
n

)2 + μ4
)
ú(ξ′, xn) = 0 for xn > 0,

ú(ξ′, 0) = ϕ̂0(ξ′),

∂nú(ξ′, 0) = ϕ̂1(ξ′),

(3.97)

that are in S(R+) = r+S(R) (the restriction to R+ of the Schwartz space of rapidly decreasing functions on R).
Write ((|ξ′|2 − ∂2

n

)2 + μ4
)

=
(|ξ′|2 + iμ2 − ∂2

n

)(|ξ′|2 − iμ2 − ∂2
n

)
= (σ+ + ∂n)(σ+ − ∂n)(σ− + ∂n)(σ− − ∂n),

σ+ =
(|ξ′|2 + iμ2

) 1
2 , σ− =

(|ξ′|2 − iμ2
) 1

2 ,

where z
1
2 is defined for z ∈ Vπ to be real positive for z ∈ R+; note that μ2 ∈ Vπ/2 so that |ξ′|2 ± iμ2 ∈ Vπ , and

Reσ± > 0. Then the general solution in S(R+) of the first line in (3.97) is

v(xn) = c1e
−σ+xn + c2e

−σ−xn .

It is adapted to the boundary conditions by solution of

c1 + c2 = ϕ̂0(ξ′), −σ+c1 − σ−c2 = ϕ̂1(ξ′),

with respect to (c1, c2); this gives

ú(ξ′, xn) =
1

σ+ − σ−

(
e−σ+xn e−σ−xn

)(−σ− −1
σ+ 1

)(
ϕ̂0

ϕ̂1

)
≡ k̃λ

γ

(
ϕ̂0

ϕ̂1

)
.

Here k̃λ
γ (ξ′, xn) is the so-called symbol-kernel of the Poisson operatorKλ

γ ; it acts like

Kλ
γ

(
ϕ0

ϕ1

)
= (2π)1−n

∫
Rn−1

eix′·ξ′
k̃λ

γ (ξ′, xn)
(
ϕ̂0(ξ′)
ϕ̂1(ξ′)

)
dξ′,

and mapsHs− 1
2
(
Rn−1

)×Hs− 3
2
(
Rn−1

)
to {u ∈ Hs(Rn

+) | (A−λ)u = 0} for all s ∈ R. (In variable-coefficient
cases, k̃ would moreover depend on x′.)

The symbol pλ(ξ′) of the Dirichlet-to-Neumann operator Pλ
γ,χ with χ chosen as in (3.92) is found by the

calculation

pλ(ξ′) = γ0

(
∂n

(|ξ′|2 − ∂2
n

)
−|ξ′|2 + ∂2

n

)
k̃λ

γ (ξ′, xn)

=
1

σ+ − σ−

(−iσ+μ
2 iσ−μ2

iμ2 −iμ2

)(−σ− −1
σ+ 1

)
=

iμ2

σ+ − σ−

(
2σ+σ− σ+ + σ−

−(σ+ + σ−) −2

)
=

1
4
(σ+ + σ−)

(
2σ+σ− σ+ + σ−

−(σ+ + σ−) −2

)
=
(
pλ
00 pλ

01

pλ
10 pλ

11

)
;

(3.98)
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here we used that (σ+ − σ−)−1 = (σ+ + σ−)/
(
σ2

+ − σ2−
)

= (σ+ + σ−)/
(
4iμ2

)
.

The operator Pλ
γ,χ is Op(pλ), where we use the notation for ψdo’s

Op(q)f = (2π)1−n

∫
Rn−1

eix′·ξ′
q(x′, ξ′)f̂(ξ′) dξ′.

Let us consider a model boundary condition (3.93) for Δ2 − λ0 with a first-order differential operator C =
b1∂1 + · · · + bn−1∂n−1 with constant coefficients; it defines the realisation Ã, and C has symbol c(ξ′) = ib · ξ′.

Then the operators Lλ0 and Lλ defined similarly to (3.95) and (3.96) are the ψdo’s with symbol

lλ0(ξ′) = c(ξ′) − pλ0
11 (ξ′),

resp.

lλ(ξ′) = lλ0(ξ′) + pλ0
11 (ξ′) − pλ

11(ξ
′) = c(ξ′) − pλ

11(ξ
′) = c(ξ′) +

1
2
(σ+ + σ−).

When lλ is invertible for all ξ′, ML(λ) is the ψdo with symbol

m(ξ′, λ) = −
(
c(ξ′) +

1
2
(σ+ + σ−)

)−1

= −
(
c(ξ′) +

1
2
(|ξ′|2 + iμ2

) 1
2 +

1
2
(|ξ′|2 − iμ2

) 1
2

)−1

. (3.99)

This shows how ML(λ) is found. As an additional observation, we remark that when b is real nonzero, then
C∗ = −C 
= 0, so Ã is non-selfadjoint, cf. (3.94). However, ML(λ) is well-defined for all λ ∈ C \ R+

(since c(ξ′) ∈ iR). On the other hand, Lλ0 has numerical range ν
(
Lλ0

)
approximately equal to the sector

V = {z ∈ C | | Im z| ≤ |b|Re z}, and ν
(
Lλ0

)
is contained in the numerical range of Ã, by [15, Thm. III 4.3].

This gives an example where Ã has a large numerical range outside the spectrum.

Remark 3.17 One can ask whether the considerations extend to Douglis–Nirenberg elliptic systems (systems
of mixed order). But it may not be easy. Consider for example a 2 × 2-system

Aw =
(
A11 A12

A21 A22

)(
u
v

)
(3.100)

on a smooth bounded open set Ω ⊂ R
n, where u and v are scalar, andAij is of order 4− i− j. There is a Green’s

formula for A:

(Aw,w′) − (w,A∗w′) = (κw, γ0u
′) − (γ0u, κ

′w′),

where κw = χu + b1γ0v, κ′w′ = χ′u′ + b2γ0v
′, with first-order trace operators χ and χ′; {γ0u, κw} are the

reduced Cauchy data according to [13, 18]. Assume that the principal symbol is uniformly positive definite; in
particular, the function A22(x) ≥ c > 0, the symbol a0

11(x, ξ) ≥ c|ξ|2 and the determinant a0
11(x, ξ)A22(x) −

a0
12(x, ξ)a

0
21(x, ξ) ≥ c|ξ|2. Then the Dirichlet problem for A (with boundary condition γ0u = 0) is well-posed,

with domain D(Aγ) =
(
H2(Ω) ∩H1

0 (Ω)
)×H1(Ω).

When 0 ∈ �(Aγ), there is the following parametrization of null-spaces of A (cf. also [18, Thm. 2.11]):

γ0 pr1 : Zs,s−1
0 (A) = {w ∈ Hs(Ω) ×Hs−1(Ω) | Aw = 0} ∼−−→ Hs− 1

2 (Σ),

all s ∈ R; but this does not in general lead to a nice parametrization of

Z0
0 (A) =

{
w ∈ L2(Ω)2 | Aw = 0

}
,

which would be required to get a good interpretation of the abstract theory for A as an operator in L2(Ω)2.
This regularity problem is not present in the one-dimensional situation, where the maximal domain isH2×H1;

an example is considered in Section 4.2.
In the example in Section 4.1 we consider an n-dimensional case of (3.100), where the off-diagonal terms are

of order 0; this allows an easier parametrization of the null-space.
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4 Examples

We have seen that the family M �A(λ) is holomorphic on �
(
Ã
)

so that

σ
(
Ã
) ⊃ {λ ∈ C |M �A(λ) singular at λ

}
. (4.1)

Among the singular points, we have very good control of those outside �(Aβ) by Corollary 2.12 and (2.43), for
the null-space and range of Ã− λ are fully clarified by the same concepts for T λ

(
a holomorphic operator family

on �(Aβ) which is homeomorphic to the inverse of M �A(λ) on �
(
Ã
) ∩ �(Aβ)

)
; it gives the information:

σ
(
Ã
) ∩ �(Aβ) =

{
λ ∈ �(Aβ) | kerT λ 
= {0} or ranT λ 
= Wλ̄

}
. (4.2)

So the only spectral points of Ã whose spectral nature may not be controlled by M �A(λ) and T λ are those that
lie in σ(Aβ). For many scalar equations it has long been known that the M -function allows full control of the
spectrum. However, when considering systems, it is easy to see that uncontrolled points may exist by considering
equations which are decoupled. In [7], an example involving a coupled system of ODEs was given where M �A
was regular at a point λ0 belonging to the essential spectrum of Ã (and of Aβ). We shall here show a similar
phenomenon for PDEs and for a system of ODEs with first order off-diagonal entries.

4.1 PDE counterexample

Consider the 2 × 2 matrix-formed operator

A =
(
A0 a(x)
b(x) c(x)

)
, (4.3)

acting on 2-vector functions w = {u, v} on Ω, such that A0 is a second-order elliptic operator as studied in
Section 3.2 and a, b, c ∈ C∞(Ω). The set ran c is a compact subset of C. We assume that it has a connected
componentK with more than one point, that C \ (ran c) is connected, and that

a(x)b(x) vanishes on supp c. (4.4)

The maximal and minimal operators are

Amax =
(
A0,max a(x)
b(x) c(x)

)
, Amin =

(
A0,min a(x)
b(x) c(x)

)
, (4.5)

with

D(Amax) = D(A0,max) × L2(Ω), D(Amin) = D(A0,min) × L2(Ω), (4.6)

and there is the Green’s formula(
A

(
u
v

)
,

(
u′

v′

))
−
((

u
v

)
, A′

(
u′

v′

))
= (ν1u, γ0u

′) − (γ0u, ν
′
1u

′ + A′
0γ0u

′)L2(Σ),

with notation as in (3.7) ff.

Proposition 4.1 Let Aγ be the Dirichlet realisation defined by the Dirichlet condition γ0u = 0.

(i) Aγ is lower semibounded with domain
(
H2(Ω) ∩H1

0 (Ω)
)× L2(Ω), and the spectrum is contained in a

half space {Reλ ≥ α}.

(ii) The operator Aγ has a nonempty essential spectrum, namely

σess(Aγ) = ran c. (4.7)

(iii) Outside the essential spectrum, the spectrum is discrete, consisting of eigenvalues of finite multiplicity.
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P r o o f. (i) follows from standard results for elliptic operators and the fact that the adjoint ofAγ is the Dirich-
let realisation of A′ with similar properties. Hence, the spectrum is contained in a half space {Reλ ≥ α}.

(ii) follows from Geymonat–Grubb [13], where it was shown that the essential spectrum of the realisation of a
mixed-order system A defined by a differential boundary condition βu = 0 consists exactly of the points λ ∈ C

where ellipticity of {A− λ, β} fails. The current operator A is a mixed-order system with orders 2 and 0 for the
diagonal terms, order 1 for the off-diagonal terms (to fit with the rules of Douglis, Nirenberg and Volevich for
mixed-order systems). The principal symbol of A− λ is(

a0(x, ξ) 0
0 c(x) − λ

)
, (4.8)

so ellipticity of the Dirichlet problem for A− λ fails precisely when λ ∈ ran c.
For (iii), we note that the resolvent set is nonempty, so for λ /∈ ran c, Aγ − λ is a Fredholm operator (by the

ellipticity) with index 0 (since the index depends continuously on λ). Then all spectral points outside ran c are
eigenvalues with finite dimensional eigenspaces. Since these eigenspaces are linearly independent, there can only
be countably many, so there is at most a countable set of eigenvalues outside ran c. They can only accumulate at
points of ran c.

Consider another boundary condition for A,

ν1u = Cγ0u, (4.9)

with C a first-order differential operator, and such that the system {A0, ν1 − Cγ0} is elliptic, defining the real-
isation Ã0. Then {A, (ν1 − Cγ0) pr1} is likewise elliptic, and we define Ã to be the realisation of A under the
boundary condition (4.9). Again, the essential spectrum equals ran c.

It is well-known that Ã0 satisfies a 1-coerciveness inequality (hence is lower bounded) if and only if the real
part of the principal symbol of L = C − P 0

γ0,ν1
is ≥ c0|ξ′| with c0 > 0, and that the adjoint then has similar

properties (cf. e.g. [16], [17]). Assuming this, we have that the spectrum lies in a half plane {Reλ ≥ α1}, and
the spectrum is discrete outside ran c.

We next want to discussM -functions for the comparison of the Dirichlet realisation and the realisation defined
by (4.9). Let k be a point in �(Aγ); then the general analysis of Section 2 works for the realisations of A − k,
with reference operator Aγ − k. So the holomorphic families T λ and M( �A−k)(λ) are well-defined relative to

this set-up. Note that c(x) is now replaced by ck(x) = c(x) − k; the essential spectra of Aγ − k and Ã − k are
contained in ran ck = ran c− k.

Let λ /∈ ran ck. The solutions of the Dirichlet problem with non-homogeneous boundary condition are the
solutions of

(A0 − k − λ)u + av = 0,

bu+ (c− k − λ)v = 0,
γ0u = ϕ.

(4.10)

The second line is solved by v = b(λ+ k − c)−1u, which by insertion in the first line gives(
A0 − k − λ+ ab(λ+ k − c)−1)u = 0,
γ0u = ϕ.

(4.11)

When λ ∈ �(Aγ−k), the problem (4.11) has a unique solution u = Kk,λ
γ ϕ ∈ ker

(
A0−k−λ+ab(λ+k−c)−1

)
for each ϕ ∈ H− 1

2 , and (4.10) has the solution
{
u, b(k + λ − c)−1u

} ∈ ker(Aγ − k − λ). The Dirichlet-to-
Neumann operator family for A− k is

P k,λ = ν1 pr1K
k,λ
γ , (4.12)

which identifies with the Dirichlet-to-Neumann operator family P k,λ
γ0,ν1

for A0 − k.
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As above, let Ã be the realisation of A under the boundary condition (4.9). It corresponds as in Section 3.2 to

Lλ = C − P k,λ = L+ P k,0 − P k,λ : H− 1
2 −→ H

1
2 , where L = C − P k,0, D(L) = H

3
2 .

Then there is an M -function going in the opposite direction and satisfying

ML(λ) = −(L+ P k,0 − P k,λ
)−1

(4.13)

when λ ∈ �
(
Ã− k

) ∩ �(Aγ − k). With a notation similar to (3.14),ML(λ) acts as follows:

ML(λ) = P k,λ
ν1−Cγ0,γ0

. (4.14)

Proposition 4.2 There exists a point belonging to the essential spectrum of Ã − k (and of Aγ − k) at which
ML(λ) is holomorphic.

P r o o f. Let λ0 = c(x0) − k, for some x0 where c0(x) ∈ K \ {0}. Then λ0 belongs to σess(Aγ − k) and to
σess

(
Ã− k

)
. We shall show that ML(λ) can be extended holomorphically across λ0 or a neighbouring point.

In view of (4.4),

a(x)b(x)(λ + k − c(x))−1 = a(x)b(x)(λ + k)−1, for all x ∈ Ω, λ 
= −k. (4.15)

This implies that the problem (4.11) takes the form(
A0 − k − λ+ ab(λ+ k)−1

)
u = 0,

γ0u = ϕ,
(4.16)

for λ 
= −k, and this is obtained by reduction from the problem

(A0 − k − λ)u + av = 0,

bu− (λ + k)v = 0,
γ0u = ϕ,

(4.17)

a Dirichlet problem for

A1 =
(
A0 − k a(x)
b(x) −k

)
. (4.18)

Similarly, the problem

(A− k − λ)w = 0, ν1u− Cγ0u = ψ, (4.19)

is equivalent with

(A1 − λ)w = 0, ν1u− Cγ0u = ψ. (4.20)

So, ML(λ) defined above coincides with the analogous operator for A1:

ML(λ) = Pλ
ν1−Cγ0,γ0

(A1). (4.21)

It is holomorphic on �
(
Ã1

)
, where Ã1 is the realisation of A1 defined by the boundary condition (4.9).

This detour via A1 gives information about the possible holomorphic extensions of the ML(λ)-function for
Ã− k. We infer from the general result of [13] that the Dirichlet realisationA1,γ of A1, as well as the realisation
Ã1, have essential spectra equal to {−k}. Moreover, their spectra are contained in a half space, and are discrete
outside the point {−k}.

So λ0 = c(x0)−k is either in �
(
Ã1

)
or is one of the discrete eigenvalues of Ã1, and in any case there is a disk

B(λ0, δ) around it such that ML(λ) is holomorphic on B(λ0, δ) \ {λ0}. Since c(x0) − k is not the only point in
the connected set K − k, there will be a point x′0 such that c(x′0) − k ∈ B(λ0, δ) \ {λ0}.

We can conclude thatML(λ) is holomorphic at λ′0 = c(x′0)−k, but the point belongs to the essential spectrum
of Ã− k (and of Aγ − k).
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Remark 4.3 The hypothesis (4.4) can be replaced by a weaker hypothesis as follows: Assume that K is
a compact connected subset of ran c containing more than one point. Let ω, ω′, ω′′ be subsets of Ω with
dist(ω,Ω \ ω′) > 0, dist(ω′,Ω \ ω′′) > 0, such that K ⊂ c(ω) and dist(K, c (Ω \ ω′)) > 0. Assume that
ab vanishes on ω′′. Let η ∈ C∞ with η = 1 on Ω \ ω′′ and η = 0 on ω′, and set c′ = ηc. Then, for all
λ /∈ ran c′ − k, ab(λ + k − c)−1 = ab(λ+ k − c′)−1. The problems (4.10) and (4.19) can now be replaced by
problems where c is replaced by c′ , whose range is disjoint from K , so that there will be points in K − k where
the M -function is holomorphic.

4.2 ODE counterexample

Consider the 2 × 2 matrix-formed operator

A

(
u
v

)
(x) =

( −u′′(x) a(x)v′(x)
b(x)u′(x) c(x)v(x)

)
, (4.22)

acting on pairs of functions u, v on the interval [0, 1] and a, b, c ∈ C∞([0, 1]). Its formal adjoint is given by

A′
(
u
v

)
(x) =

(
−u′′(x) (b(x)v(x))′

(a(x)u(x))′ c(x)v(x)

)
, (4.23)

and there is the Green’s formula(
A

(
u1

u2

)
,

(
v1
v2

))
−
((

u1

u2

)
, A′

(
v1
v2

))
=
(
Γ1u,Γ′

0v
)− (Γ0u,Γ′

1v
)

where

Γ1u =
(−u′1(1) + a(1)u2(1)
u′1(0) − a(0)u2(0)

)
,

Γ0u = Γ′
0u =

(
u1(1)
u1(0)

)
,

Γ′
1v =

(−v′1(1) − b(1)v2(1)
v′1(0) + b(0)v2(0)

)(
v1(1)
v1(0)

)
,

(4.24)

and u, v ∈ D(Amax) = H2(0, 1) ×H1(0, 1).
Proposition 4.4 We introduce the quantities

Q(x, λ) =
a(x)

(
b(x)

λ−c(x)

)′
−1 + a(x)b(x)

λ−c(x)

, α(x) = exp
(∫ x

0

Q(s, λ) ds
)
, β(x) =

α(x)

−1 + a(x)b(x)
λ−c(x)

, (4.25)

and let y1 and y2 be two linearly independent solutions of

ϕ′′ +
1
α

[
α′2

4α
− α′′

2
− βλ

]
ϕ = 0 (4.26)

satisfying the initial conditions y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1. Note that y1 and y2 depend on λ,
but we suppress this in the notation.

(i) We have

ker(Amax − λ) =

{(
c1y1 + c2y2

b
λ−c (c1y′1 + c2y

′
2)

) ∣∣∣ c1, c2 ∈ C

}
.
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(ii) Consider the operator A1, the restriction of Amax to ker Γ1, i.e., subject to Neumann boundary condi-
tions. The matrix of the M -function has the entries

m11 =
y1(1)[

a(1)b(1)
λ−c(1) − 1

]
y′1(1)

, m12 =
1[

1 − a(0)b(0)
λ−c(0)

]
y′1(1)

,

m21 =
1[

a(1)b(1)
λ−c(1) − 1

]
y′1(1)

, m22 =
y′2(1)[

1 − a(0)b(0)
λ−c(0)

]
y′1(1)

.

(4.27)

(iii) Assume in addition that the function b vanishes identically on an open interval I ⊆ (0, 1). Then there is
a second operator Ã with different essential spectrum to A1, but giving rise to the same M -function.

Remark 4.5 Note that if y′1(1) = 0, then y1 is a Neumann eigenfunction for (4.26), and λ is an eigenvalue of
the operator A1. Apart from this case, singularities of the M -function only occur when the coefficient in (4.26)
blows up, as terms of the form a(x)b(x)

λ−c(x) − 1 also appear there.

P r o o f. (i) (A− λ)u = 0 can be written as

−u′′1 − λu1 + au′2 = 0, bu′1 + (c− λ)u2 = 0.

Solving the second equation for u2 and substituting this into the first gives

−u′′1 + a

(
bu′1
λ− c

)′
− λu1 = 0. (4.28)

Introducing α and β as in (4.25), Equation (4.28) simply becomes (αu′1)
′ − βλu1 = 0. Moreover, introducing

ϕ(x) = exp
∫ x α′

2α
u1(x),

the equation can be written as

ϕ′′ +
1
α

[
α′2

4α
− α′′

2
− βλ

]
ϕ = 0 (4.29)

and the kernel of Amax − λ has the form

ker(Amax − λ) =

{(
c1y1 + c2y2

b
λ−c (c1y′1 + c2y

′
2)

) ∣∣∣ c1, c2 ∈ C

}
.

(ii) We now calculate the M -function for the operator subject to Neumann boundary conditions. For any
(u1, u2) ∈ ker(Amax − λ) we have(

m11 m12

m21 m22

)(−u′1(1) + a(1)u2(1)
u′1(0) − a(0)u2(0)

)
=
(
u1(1)
u1(0)

)
.

A simple calculation then gives (4.27).
(iii) We first note that the determinant of the principal symbol ofA−λ is given by ξ2(ab+c−λ) which is zero

if λ ∈ ran (ab+ c). Hence ellipticity of the system fails for λ ∈ ran (ab+ c) and by [13], the essential spectrum
of the operator equals ran (ab + c). Under the additional assumption that the function b vanishes identically on
an open interval I ⊆ (0, 1), we have that ran (c|I) is contained in the essential spectrum of the operator. Let c̃ be
a C∞-function on [0, 1] that coincides with c on [0, 1] \ I . This gives rise to another operator Ã with

Ã

(
u
v

)
(x) =

(
−u′′(x) a(x)v′(x)

b(x)u′(x) c̃(x)v(x)

)
. (4.30)
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Let Ã1 be the realisation of Ã subject to Neumann boundary conditions. Then ran (c̃ |I) will lie in σess

(
Ã1

)
.

Therefore, in general the essential spectrum of the operators A1 and Ã1 will differ. However, for the calculation
of the M -function, c only appears in terms of the form b(x)

λ−c(x) and by our assumptions,

b(x)
λ− c(x)

=
b(x)

λ− c̃(x)
,

so the M -functions for A1 and Ã1 coincide. Thus, we have another example where two operators with differing
essential spectra give rise to the same M -function.

References

[1] W. O. Amrein and D. B. Pearson, M operators: a generalisation of Weyl–Titchmarsh theory, J. Comput. Appl. Math.
171, 1–26 (2004).

[2] F. V. Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov, The essential spectrum of some matrix operators,
Math. Nachr. 167, 5–20 (1994).

[3] J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains,
J. Funct. Anal. 243, 536–565 (2007).
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[24] A. N. Kočubeı̆, Extensions of symmetric operators and symmetric binary relations, Math. Notes 17, No. 1, 25–28 (1975).

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 282, No. 3 (2009) 347

[25] N. D. Kopachevskiı̆ and S. G. Kreı̆n, An abstract Green formula for a triple of Hilbert spaces, and abstract boundary
value and spectral problems, Ukr. Mat. Visn. 1, No. 1, 69–97 (2004) (in Russian); English transl. in: Ukr. Math. Bull. 1,
No. 1, 77–105 (2004).

[26] M. G. Kreı̆n, Theory of self-adjoint extensions of symmetric semi-bounded operators and applications I, Mat. Sb. (N. S.)
l20, No. 62, 431–495 (1947) (in Russian).

[27] A. V. Kuzhel, Canonical extensions of Hermitian operators. Dynamical systems 14, J. Math. Sci. (New York) 103, No.
1, 135–138 (2001).

[28] A. V. Kuzhel and S. A. Kuzhel, Regular Extensions of Hermitian Operators, translated from the Russian by P. Malyshev
and D. Malyshev (VSP, Utrecht, 1998).
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