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For a second-order symmetric strongly elliptic differential operator on an
exterior domain in R

n, it is known from the works of Birman and Solomiak
that a change in the boundary condition from the Dirichlet condition to
an elliptic Neumann or Robin condition leaves the essential spectrum
unchanged, in such a way that the spectrum of the difference between the
inverses satisfies a Weyl-type asymptotic formula. We show that one can
increase, but not diminish, the essential spectrum by imposition of other
Neumann-type nonelliptic boundary conditions. The results are extended
to 2m-order operators, where it is shown that for any selfadjoint realization
defined by an elliptic normal boundary condition (other than the Dirichlet
condition), one can augment the essential spectrum at will by adding a
suitable operator to the mapping from free Dirichlet data to Neumann
data. We also show here an extension of the spectral asymptotics formula
for the difference between inverses of elliptic problems. The proofs rely on
Kreı̆n-type formulae for differences between inverses, and cutoff techni-
ques, combined with results on singular Green operators and their spectral
asymptotics.

Keywords: exterior domain; essential spectrum; singular Green operator;
Schatten class; Krein formula; spectrally negligible cutoffs

AMS Subject Classifications: 35J40; 35P20; 35S15; 47A10

1. Introduction

Let A be a uniformly strongly elliptic differential operator on R
n (n� 2)

A ¼ �
Xn
j,k¼1

@jajkðxÞ@k þ a0ðxÞ, ð1Þ

with real bounded smooth coefficients with bounded derivatives satisfying ajk¼ akj
and X

j,k

ajkðxÞ�j�k � c1j�j
2, a0ðxÞ � c2, for x, �2R

n,
ð2Þ
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with c1, c24 0. We denote by A0 the maximal realization in L2(R
n ); it is selfadjoint

positive. Let �þ�R
n be the exterior of a bounded smooth open set ��, with

boundary denoted � (¼@�þ¼ @��), and let A1, A2 and A3 be the selfadjoint lower

bounded realizations in L2(�þ) determined by the Dirichlet condition

(�0u� uj�¼ 0), the oblique Neumann condition (�Au¼ 0, see (12) below), resp. a

Robin condition (�Au¼ b(x)�0u) with b real and smooth. The coefficient a0 is

assumed to be taken so large positive that all four operators have positive lower

bound.
It is known that the operators Aj have an unbounded essential spectrum,

consisting of an interval [c,1[ if the coefficients converge to a limit for jxj!1, and

more generally being a subset of [c,1[ with possible gaps (e.g. when the coefficients

are periodic).
Birman showed in [1] a general principle concerning the stability of the essential

spectrum:

A�10 � A�1j � 0L2ð��Þ 2T2=n, ð3Þ

A�1j � A�1k 2T2=ðn�1Þ, for j, k ¼ 1, 2, 3, ð4Þ

where T� denotes the class of compact operators whose characteristic values sl are

O(l��) for l!1 . (When �1[�2 is a disjoint union of open sets, and Pi acts in

L2(�i), we denote by P1�P2 the operator in L2(�1[�2) that acts like Pi on L2(�i),

naturally injected in L2(�1[�2).) In particular, all four operators have the same

essential spectrum �ess(A0); this extends a result of Povzner, as referred to in [1].

(Birman’s paper also allowed unbounded coefficients and limited smoothness, but we

shall not follow up on those aspects here.)
The result (4) was refined by Birman and Solomiak in [2], where a Weyl-type

spectral asymptotics formula was obtained (sll
2/(n�1) converges to a limit for l!1).

In Grubb [3], similar spectral asymptotics formulae were shown by methods of

pseudodifferential boundary problems, and refinements with a spectral resolvent

parameter were studied in [4]. Spectral estimates of resolvent differences have been

taken up again in recent works of Alpay and Behrndt [5], Gesztesy and Malamud [6].
This article extends the results to higher order operators, but aims in particular

for a slightly different question, namely of how much one can perturb the essential

spectrum of A3 by replacing the Robin condition by a more general Neumann-type

boundary condition (not necessarily elliptic)

�Au ¼ C�0u: ð5Þ

Let eA denote the realization of A on �þ determined by (5), i.e. with domain

DðeAÞ ¼ fu2L2ð�þÞ j Au2L2ð�þÞ, �Au ¼ C�0ug: ð6Þ

The outcome is as follows:

(1) For any nonzero a2R n �ess(A0), C can be chosen as a pseudodifferential

operator of order 1 such that eA is selfadjoint with

�essðeAÞ ¼ �essðA0Þ [ fag: ð7Þ
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More generally, when T0 is an invertible selfadjoint operator in a separable
infinite-dimensional Hilbert space Z0, one can choose an operator C such
that eA is selfadjoint and

�essðeAÞ ¼ �essðA0Þ [ �essðT0Þ: ð8Þ

(2) For any choice of an operator C in (5) defining a selfadjoint invertible

realization eA, �ess(A0) remains in the essential spectrum of eA.
We also reprove the spectral asymptotics formulae, and extend the results to

strongly elliptic operators of order 2m for positive integer m.
The question of whether points of �ess(A0) can be removed by a perturbation of

the boundary condition was brought up in a conversation with Marletta, Brown and
Wood in Cardiff in May 2008; the author thanks these colleagues for useful
discussions.

2. Description of the operators in the second-order case

Let us first recall some well-known facts. The Sobolev space Hs(Rn ) (s2R) can be
provided with the norm kuks¼kF

�1(h�isFu)kL2(R
n ); here, F is the Fourier transform

and h�i ¼ ð1þ j�j2Þ
1
2. There is a standard construction from this of Sobolev spaces

over an open subset and over the boundary manifold. We denote by Amax resp. Amin

the operators acting like A with domains

DðAmaxÞ ¼ fu2L2ð�þÞ j Au2L2ð�þÞg, DðAminÞ ¼ H2
0ð�þÞ,

here, Amin is closed symmetric, and Amax ¼ A�min. The operators eA satisfying
Amin � eA � Amax are called the realizations of A.

The symmetric sesquilinear forms

sRnðu, vÞ ¼

Z
R

n

Xn
j,k¼1

ðajk@ku@jvþ a0uvÞdx,

sðu, vÞ ¼

Z
�þ

Xn
j,k¼1

ðajk@ku@jvþ a0uvÞdx, ð9Þ

are bounded on H1(Rn ) resp. H1(�þ) and satisfy

sRn ðu, uÞ � ckuk2H1ðRnÞ resp: sðu, uÞ � ckuk2H1ð�þÞ
ð10Þ

there, with c¼min{c1, c2}. Moreover,

ðAu, vÞL2ð�þÞ
¼ sðu, vÞ þ ð�Au, �0vÞL2ð�Þ

, u2H2ð�þÞ, v2H
1ð�þÞ, ð11Þ

where

�Au ¼
X
j,k

ajk�j�0@ku, ð12Þ

with (�1(x), . . . , �n(x)) denoting the interior unit normal to �þ at x2�. Hence,
the standard variational construction (the Lax–Milgram lemma) applied to the
triples (L2(R

n ), H1(Rn ), sRn), ðL2ð�þÞ,H
1
0ð�þÞ, sÞ, resp. (L2(�þ), H

1(�þ), s) defines

Applicable Analysis 105

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
u
b
b
,
 
G
e
r
d
]
[
T
h
e
 
R
o
y
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
1
:
5
6
 
1
0
 
J
a
n
u
a
r
y
 
2
0
1
1



the positive selfadjoint operators A0 in L2(R
n ), A1 and A2 in L2(�þ) mentioned in the

introduction. (The variational construction is known, for example from Lions and

Magenes [7], and is also explained in Grubb [8].) In view of elliptic regularity theory

and the uniform symbol estimates, the domains are in fact contained in H2.

Moreover, the operators representing the nonhomogeneous boundary value

problems (cf e.g. [7])

A1 ¼
A

�0

� �
: Hsþ2ð�þÞ !

Hsð�þÞ

�

Hsþ3
2ð�Þ

,

A2 ¼
A

�A

� �
: Hsþ2ð�þÞ !

Hsð�þÞ

�

Hsþ1
2ð�Þ

,

ð13Þ

where s4�3
2 resp. s4�1

2, have solution operators, continuous in the opposite

direction:

A
�1
1 ¼ R1 K1

� �
, A�12 ¼ R2 K2

� �
: ð14Þ

In modern terminology,

R1 ¼ Qþ � K1�0Qþ, R2 ¼ Qþ � K2�AQþ, ð15Þ

where Q is the pseudodifferential operator Q ¼ A�10 on R
n and Q	¼ r	Qe	 is its

truncation to �	 (here e
	 extends to R

n by 0 on �
, r
	 restricts from R

n to �	 ). The

operators K1 and K2 are Poisson operators solving the respective boundary value

problems with nonzero boundary data, zero data in the interior of �þ; their mapping

properties extend to the full scale of Sobolev spaces with s2R. R1 and R2 act in

L2(�þ) as the inverses of the realizations A1 resp. A2 of A with domains

DðA1Þ ¼ fu2H
2ð�þÞ j �0u ¼ 0g, resp: DðA2Þ ¼ fu2H

2ð�þÞ j �Au ¼ 0g: ð16Þ

The operator A3 representing the Robin condition �Au¼ b�0u is defined similarly

from the sesquilinear form

sbðu, vÞ ¼ sðu, vÞ þ ðb�0u, �0vÞL2ð�Þ ð17Þ

on H1(�þ) and has similar properties as A2: its domain is D(A3)¼ {u2H2(�þ) j

(�A� b�0)u¼ 0}, and the operator

A3¼
A

�A�b�0

� �
has inverse R3 K3

� �
, withR3¼Qþ�K3ð�A�b�0ÞQþ: ð18Þ

The above facts have been known for many years, although the emphasis was not
always placed on including low values of s. Instead of accounting for this aspect in

detail here, we mention that the results are covered by the construction in the book

by Grubb [9, Chapter 3], and that the general 2m-order case will be treated below in

Section 5.
We shall now regard the realization defined by (5) from the point of view of

general nonlocal boundary value problems. The basic theory was presented in

Grubb [10] and was taken up again and further developed in a joint work with
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Brown et al. [11]; applications to exterior domains are included in [12]. (An
introduction is also given in [8].) The fundamental result is that the closed
realizations eA are in a 1–1 correspondence with the closed, densely defined operators
T :V!W, where V and W are closed subspaces of Z, the nullspace of Amax.
Many properties are carried along in this correspondence, for example eA is invertible
if and only if T is so, and in the affirmative case one has the Kreı̆n-type formulaeA�1 ¼ A�11 þ iVT

�1prW, ð19Þ

where iV denotes the injection V ,! H and prV denotes the orthogonal projection
onto V, in H¼L2(�þ). We have here taken the Dirichlet realization A1 as the
reference operator for the correspondence theorem.

Consider in particular a realization eA corresponding to an operator T :Z!Z
(i.e. with V¼W¼Z).

As shown in the mentioned references, eA can be interpreted as representing a
boundary condition. To describe that boundary condition, we first recall that (11)
implies Green’s formula valid for u, v2H2(�þ),

ðAu, vÞL2ð�þÞ
� ðu,AvÞL2ð�þÞ

¼ ð�Au, �0vÞL2ð�Þ
� ð�0u, �AvÞL2ð�Þ

: ð20Þ

We denote by �Z the restriction of �0 to Z,

�Z : Z!
�
H�

1
2ð�Þ, ð21Þ

with adjoint ��Z : H
1
2ð�Þ!

�
Z (recall that for s2R, H�s(�) identifies with the antidual

(conjugate dual) space (Hs(�))* of Hs(�), with a duality consistent with the scalar
product in L2(�)). Moreover, we set

P�0,�A ¼ �AK1, � ¼ �A � P�0,�A�0, also equal to �AA
�1
1 Amax, ð22Þ

here, P�0,�A is a first-order elliptic pseudodifferential operator over � , and � is
a (nonlocal) trace operator. There holds a generalized Green’s formula for all u,
v2D(Amax),

ðAu, vÞL2ð�þÞ
� ðu,AvÞL2ð�þÞ

¼ ð�u, �0vÞ1
2,�

1
2
� ð�0u,�vÞ�1

2,
1
2
, ð23Þ

where (�, �)s,�s indicates the (sesquilinear) duality pairing between Hs(�) and H�s(�).

The boundary condition that eA represents is then found to be

�u ¼ L�0u, ð24Þ

where L is the closed, densely defined operator from H�
1
2ð�Þ to H

1
2ð�Þ defined

from T by

L ¼ ð��ZÞ
�1T��1Z , DðLÞ ¼ �0DðT Þ: ð25Þ

Since �¼ �A�P�0,�A�0, the condition (24) can also be written

�Au ¼ ðLþ P�0,�A Þ�0u, ð26Þ

so it is of the form (5) with C acting like LþP�0,�A. To sum up:

PROPOSITION 2.1 When eA corresponds to T :Z!Z, it equals the realization defined
by the Neumann-type boundary condition (5), where

C ¼ Lþ P�0,�A , L ¼ ð��ZÞ
�1T��1Z ,DðC Þ ¼ DðLÞ ¼ �0DðT Þ: ð27Þ
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Assume in the following that 02 %ðeAÞ, equivalently T has a bounded, everywhere
defined inverse T�1 :Z!Z, and L has a bounded everywhere defined inverse
L�1 : H

1
2ð�Þ ! H�

1
2ð�Þ. Then (19) takes the form:

eA�1 ¼ A�11 þ iZT
�1prZ ¼ A�11 þ K1L

�1K�1: ð28Þ

Here K1 is the Poisson operator for the Dirichlet problem (cf (14)), considered as a
mapping from H�

1
2ð�Þ to L2(�þ) (also equal to iZ�

�1
Z ); its adjoint K�1 goes from

L2(�þ) to H
1
2ð�Þ. The formula (28) can clearly be used to examine eA�1 as a

perturbation of A�11 ; we pursue this fact below in our analysis of essential spectra.

Remark 1 We are interested in cases where T has an essential spectrum outside of 0.
As a specific example, one can think of

T ¼ aI on Z, with a2R n f0g, ð29Þ

its essential spectrum is {a}, since dim Z¼1. In this case,

L ¼ að��ZÞ
�1��1Z ¼ a�ð�1Þ, where �ð�1Þ : H�

1
2ð�Þ!

�
H

1
2ð�Þ ð30Þ

is a pseudodifferential operator elliptic of order �1, and invertible. (This is in
contrast to those boundary conditions (5) that satisfy the Shapiro–Lopatinskiı̆
condition; they have L elliptic of order þ1.) Since this L is defined on all of H�

1
2ð�Þ,

which is mapped by P�0,�A to H�
3
2ð�Þ, C maps D(L) into H�

3
2ð�Þ; it is only the

difference L¼C�P�0,�A that is assured to map into H
1
2ð�Þ. The realization eA defined

by this choice has Z � DðeAÞ, so DðeAÞ is not contained in Hs(�þ) for any s4 0. It is a
variant of Kreı̆n’s ‘soft extension’.

3. Cutoff techniques

For the analysis of the operators on exterior domains we shall need to study cutoffs, by
multiplication either by a smooth function or by a ‘rough’ characteristic function
supported at a distance from the boundary. In [3,4], smooth cutoffs were used and the
exterior singular Green operators estimated by a commutator argument based on a
series of nested cutoff functions. We give here a simpler argument based on rough
cutoffs.

Let �4 be a smooth open subset of �þ such that �� � C�4, and denote
�þ \ C�4¼ �5. So �þ¼�4[�5[ @�4. We denote by r4 resp. r5 the restriction
operators from �þ to �4 resp. �5, and by e4 resp. e5 the extension operators
extending a function given on �4 resp. �5 to a function on �þ by zero on the
complement in �þ.

In the following, we draw on the analysis of singular numbers of compact
operators as presented in Gohberg and Kreı̆n [13]. The operators lying in the
intersection of Schatten classes

T
r40 Cr (also equal to

T
r40 Tr) will be called spectrally

negligible.

PROPOSITION 3.1 Let K1 be the Poisson operator entering in (14), continuous from
Hs�1

2ð�Þ to Hs(�þ) for all s2R, and consider the operators K1,4 ¼ r4K1 :

H�
1
2ð�Þ ! L2ð�4Þ and K�1,4 ¼ ðr

4K1Þ
�
¼ K�1e

4 : L2ð�4Þ ! H
1
2ð�Þ. Then r4K1 in

fact maps continuously

r4K1 : Hs�1
2ð�Þ ! Hs0 ð�4Þ, any s, s0 2R: ð31Þ
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Moreover, the operators K1,4 and K�1,4 are compact and spectrally negligible.
Similar statements hold for Kj,4 ¼ r4Kj : H�

3
2ð�Þ ! L2ð�4Þ and K�j,4 ¼ K�j e

4 :

L2ð�4Þ ! H
3
2ð�Þ for j¼ 2, 3.

Proof Denote by �40 the operator restricting to @�4. When ’2H�
1
2ð�Þ, it follows

by the interior regularity for solutions of the Dirichlet problem for A on �þ that

�40 K1’2C
1ð@�4Þ. Then r4K1’ is a null-solution of the Dirichlet problem for A on

�4 with C1-boundary value. This will also hold if ’2Hs�1
2ð�Þ, any s2R. We know

from the variational theory and the regularity theory for the Dirichlet problem on

�4 that a null-solution with C1-boundary value lies in Hs0(�4) for any s0; hence,

(31) holds. It follows by duality that

K�1e
4 : ðHs0 ð�4ÞÞ

�
! H�sþ

1
2ð�Þ, any s0, s2R, ð32Þ

here, (Hs0(�4))*¼H�s
0

(�4) when js0j5 1
2 (generally it equals the space H�s

0

0 ð�4Þ of

distributions in H�s
0

(Rn ) supported in �4). Taking s0 ¼ 0, we see that

K�1e
4r4K1 : Hsð�Þ ! Hs00 ð�Þ, for all s, s00, ð33Þ

so since � is compact, this operator is compact (from Hs(�) to Hs0(�), any s, s0), and

lies in
T

r40 Cr, i.e. is spectrally negligible. Then K1,4 is compact from Hs(�) to

L2(�4) for any s, in particular for s ¼ 1
2, so K1,4K�1,4 is compact in L2(�4), and

hence K�1,4 : L2ð�4Þ ! H
1
2ð�Þ is compact. In view of the identity sl ðK

�
1,4K1,4Þ ¼

sl ðK1,4K�1,4Þ, all l, all four operators are spectrally negligible.
The proofs for K2,4 and K3,4 follow the same pattern. g

COROLLARY 3.2 Let �2C10 ðR
n,RÞ be such that �¼ 1 on a neighbourhood of �5.

Then the operators Kj,�¼ (1� �)Kj from H�
1
2ð�Þ to L2(�þ) for j¼ 1, resp. from H�

3
2ð�Þ

to L2(�þ) for j¼ 2, 3, map continuously

ð1� �ÞKj : Hs�1
2ð�Þ ! Hs0 ð�þÞ, any s, s0 2R, ð34Þ

and are spectrally negligible.

Proof We can write Kj,�¼ (1� �)Kj¼ e4(1� �)Kj,4, where Proposition 3.1 applies

to Kj,4, and e4(1� �) is bounded from Hs0(�4) to Hs0(�þ), any s0. g

COROLLARY 3.3 Consider the singular Green operators Gj¼�KjTjQþ as in (15),

(18) with

T1 ¼ �0, T2 ¼ �A, T3 ¼ �A � b�0: ð35Þ

For � as in Corollary 3.2, the operators (1� �)Gj are spectrally negligible.

Proof This follows since TjQþ is bounded from L2(�þ) to H
3
2ð�Þ for j¼ 1, and from

L2(�þ) to H
1
2ð�Þ for j¼ 2, 3, and the (1� �)Kj map into C1 and are spectrally

negligible by Corollary 3.2. g

Remark 1 The proofs given above rely on the solvability properties of the exterior

problems for A. The properties can also be inferred from a general principle shown in

[9, Lemma 2.4.8], on cutoffs of Poisson operators, prepared for the definition on

admissible manifolds (which include exterior domains). Moreover, the lemma deals

with a parameter-dependent pseudodifferential boundary operator calculus,
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including a spectral parameter �. In this setting, when we consider the Poisson

operator family K	j for {A� 	,Tj}, 	 on a ray {	¼��2ei
} in C nRþ, it is of

regularity �¼þ1. Lemma 2.4.8 then implies that ð1� �ÞK	j is of order �1 and

regularity þ1, hence maps Hs,�(�)!Hs0,�(�þ) for all s, s0 2R. Then

ðK	j Þ
�
ð1� �Þ2K	j maps Hs,�(�)!Hs00,�(�) for all s, s00 2R. (The Hs,�-norms are

based on the definition of the norm on Hs,�(Rn ), namely kuks,�¼

kF
�1(h(�,�)isFu)kL2(R

n ).) From this we can conclude both Corollary 3.2 and the

fact that any Schatten norm of ð1� �ÞK	j is O(	�N) (any N ) for 	!1 on the ray, as

first shown in [4]. Proposition 3.1 follows from this if we replace � by �1 supported in

C�4 and equal to 1 on a neighbourhood of ��; then r4K	j ¼ r4ð1� �1ÞK
	
j . Also here

we get the rapid decrease in 	 of the Schatten norms.

We use the results first to reprove the theorems of Birman [1] and Birman–

Solomiak [2] with a slight elaboration, essentially as in [3,4].

THEOREM 3.4 For j, k¼ 1, 2, 3, let

Pj ¼ A�10 � A�1j � 0L2ð��Þ, G0j ¼ A�10 � A�1j � ðA
�1
0 Þ�, Gjk ¼ A�1j � A�1k : ð36Þ

Then

Pj 2T2=n, G0j and Gjk 2T2=ðn�1Þ: ð37Þ

Moreover, there are spectral asymptotics formulae for l!1:

sl ðPj Þl
2=n! C0, sl ðGjkÞl

2=ðn�1Þ ! Cjk, ð38Þ

where the constants are determined from the principal symbols. Here C0 is the constant

in the spectral asymptotics formula for ðA�10 Þ�, namely C0 ¼ liml!1 sl ððA
�1
0 Þ�Þl

2=n,

defined from the principal symbol of A0 on ��.

Proof We use the notation in (15) ff. and Corollary 3.3; in particular, A�10 ¼ Q. It is

well-known that Q� is compact, with the asserted spectral asymptotics.
Consider first Gjk; in view of (15) it can be written

Gjk ¼ �KjTjQþ þ KkTkQþ: ð39Þ

Let � be as in Corollary 3.2 and let �0 2C10 ðR
n,RÞ, supported in a smooth bounded

set �0 and with �0 ¼ 1 on a neighbourhood of supp �. We can rewrite �Gj¼KjTjQþ
as follows:

KjTjQþ ¼ KjTj�Qþ ¼ �
0KjTj�Qþ�

0 þ �0KjTj�Qþð1� �
0Þ þ ð1� �0ÞKjTj�Qþ: ð40Þ

Here the first term is a singular Green operator on �0 \�þ to which the calculus for

bounded domains can be applied, and the two other terms are spectrally negligible.

In fact, (1� �0)Kj is so by Corollary 3.2, and for �Q(1� �0) we can use that it maps

Hs(Rn ) continuously into Hs0(�0) for all s and s0 since supp �\ supp(1� �0)¼; so

that the operator is of order �1. Then since �0 is bounded, the operator is spectrally

negligible, and so are its compositions with bounded operators.
The same arguments apply to KkTkQþ, so we find that

Gjk ¼ �
0ð�KjTj þ KkTkÞ�Qþ�

0 þ R, ð41Þ
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where R is spectrally negligible and the first term is a singular Green operator in

�0 \�þ. To the first term we apply [3, Theorem 4.10], which shows that this term is

in T2/(n�1) and satisfies a spectral asymptotics formula as in (38); these facts are

preserved when the spectrally negligible term R is added on. This shows the

assertions for the Gjk.
The treatments of KjTjQþ in [3] (with misprints) and [4] are a bit more

complicated in their use of commutators and nested sequences of cutoff functions.
Next, consider G0j. Here, since Qþ� 0¼ eþrþQeþrþ and 0�Q�¼ e�r�Qe�r�,

G0j ¼ A�10 � A�1j � ðA
�1
0 Þ� ¼ Q� ðQþ � KjTjQþÞ �Q�

¼ Q�Qþ �Q� þ KjTjQþ � 0 ¼ eþrþQe�r� þ e�r�Qeþrþ þ KjTjQþ � 0:

For ~G ¼ eþrþQe�r� þ e�r�Qeþrþ we proceed as in [3, Theorem 5.1]: consider

~G2 ¼ eþrþQe�r�Qeþrþ þ e�r�QeþrþQe�r�: ð42Þ

The second term acts like 0�L��
(Q,Q), where L��ðQ,QÞ ¼ Q2

� �Q�Q� is the

‘leftover operator’ for the composition of Q� with Q�; it is a singular Green operator

and has a spectral asymptotics formula with exponent 4/(n� 1), by [3, Theorem 4.10].

(It was in the quoted paper that the analysis of leftover operators in terms of

eþrþQe�r� and e�r�Qeþrþ was first introduced.)
The first term in (42) identifies similarly with a leftover operator on �þ, hence a

singular Green operator, but since �þ is unbounded, we need more argumentation to

show that it is a compact operator with the desired spectral asymptotics. With � and
�0 as above, we can write:

L�þðQ,QÞ ¼ L�þðQ�, �QÞ

¼ L�þð�
0Q�, �Q�0Þ þ L�þðð�

0Q�, �Qð1� �0ÞÞ þ L�þðð1� �
0ÞQ�, �QÞ:

ð43Þ

Here �Q(1� �0) is spectrally negligible as noted above, and its adjoint (1� �0)Q� is

likewise spectrally negligible. So L�þ
(Q, Q) is the sum of a spectrally negligible part

and L�þ
(�0Q�, �Q�0), a singular Green operator in �0 \�þ.

Thus ~G2 ¼ L�þð�
0Q�, �Q�0Þ � L��ðQ,QÞ plus spectrally negligible terms, so it

follows from [3, Theroem 4.10] that ~G2 has a spectral asymptotics behaviour

sl ð ~G2Þl4=ðn�1Þ ! C, and then ~G satisfies sl ð ~GÞl 2=ðn�1Þ ! C
1
2.

We still have to include the term KjTjQþ� 0, but the nontrivial part was already

treated further above, and is seen to have a similar spectral asymptotics behaviour.

Adding all contributions and using the rules for s-numbers, we find that G0j 2T2=ðn�1Þ.
For Pj, we simply use that

Pj ¼ G0j þ 0L2ð�þÞ �Q�, ð44Þ

where perturbation formulae as in [3] show that the spectral asymptotics formula

for Q� dominates the behaviour. One could moreover give remainder estimates

(as done in [3]). g

Remark 2 The estimates also hold when b for A3 is replaced by a first-order

differential operator B such that the realization is elliptic and invertible. Related

results are found for G
ðNÞ
jk ¼ A�Nj � A�Nk , which is a singular Green operator on �þ of

Applicable Analysis 111

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
r
u
b
b
,
 
G
e
r
d
]
[
T
h
e
 
R
o
y
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
1
:
5
6
 
1
0
 
J
a
n
u
a
r
y
 
2
0
1
1



the form of a sum of Poisson operators composed with trace operators; this leads to

asymptotic estimates for all positive integers N: sl ðG
ðNÞ
jk Þl

2N=ðn�1Þ ! C
ðNÞ
jk for l!1.

4. Perturbations

We shall now investigate the question of perturbations of the essential spectrum.
When f2L2(�þ), we also write r5f¼ f5, r4f¼ f4. Let us rewrite the action ofeA�1 on f2L2(�) in terms of its action on the parts f5 and f4, with matrix notation.

When u ¼ eA�1f, we have that

u ¼
u5

u4

� �
¼ eA�1 f5

f4

� �
¼

r5eA�1e5 r5eA�1e4
r4 eA�1e5 r4 eA�1e4

 !
f5

f4

� �
: ð45Þ

Recalling (28), we shall decompose the operators A�11 and K1LK
�
1 in a similar

way. For A�11 we have:

A�11 ¼
r5A�11 e5 r5A�11 e4

r4A�11 e5 r4A�11 e4

 !

¼
r5A�11 e5 r5A�11 e4

r4A�11 e5 0

 !
þ

0 0

0 r4A�11 e4

� �
: ð46Þ

The entries in the first matrix are compact in L2-norm, since r5A�11 e5 maps L2(�5)

into H2(�5) and r5A�11 e4 maps L2(�4) into H2(�5), where the injection

H2(�5) ,! L2(�5) is compact, and e4 r4A�11 e5 r5 is the adjoint of e5r5A�11 e4r4

in L2(�þ). Since a compact perturbation leaves the essential spectrum invariant,

the second matrix has the same essential spectrum as A�11 , and we know from

Theorem 3.4 that this equals �essA
�1
0 . In other words,

A�11 ¼ 0L2ð�5Þ � ðr
4A�11 e4Þ þ S1, ð47Þ

where S1 is compact in L2(�þ) and �essA
�1
1 ¼ �essA

�1
0 .

Next, we write

K1L
�1K�1 ¼

r5K1L
�1K�1e

5 r5K1L
�1K�1e

4

r4K1L
�1K�1e

5 r4K1L
�1K�1e

4

 !

¼
r5K1L

�1K�1e
5 0

0 0

� �
þ

0 r5K1L
�1K�1e

4

r4K1L
�1K�1e

5 r4K1L
�1K�1e

4

 !
: ð48Þ

In the last matrix, every nonzero element is the composition of a bounded operator

with either r4K1 or K�1e
4 , hence is spectrally negligible in view of Proposition 3.1.

So this whole matrix is spectrally negligible. In other words,

K1L
�1K�1 ¼ ðr

5K1L
�1K�1e

5Þ � 0L2ð�4Þ þ S2, ð49Þ

where S2 is spectrally negligible. In particular, r5K1L
�1K�1e

5 � 0L2ð�4Þ has the same

essential spectrum as K1L
�1K�1.
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Recall, furthermore, that

K1L
�1K�1 ¼ iZT

�1prZ,

where Z is infinite dimensional, hence

�essðr
5K1L

�1K�1e
5Þ [ f0g ¼ �essðK1L

�1K�1Þ ¼ �essT
�1 [ f0g: ð50Þ

Adding (47) and (49), setting S¼S1þS2, and observing that 02 �essA
�1
0 ,

02 �esseA�1 (A0 and eA are unbounded operators), we conclude with the following
theorem.

THEOREM 4.1 Let eA be as in Proposition 2.1, and assume that 02 %ðeAÞ. Then eA�1 can
be written as the sum of a compact operator S in L2(�þ) and an operator decomposed
into a part acting in L2(�5) and a part acting in L2(�4):eA�1 ¼ ðr5K1L

�1K�1e
5Þ � ðr4A�11 e4Þ þ S: ð51Þ

Here,

�essðr
5K1L

�1K�1e
5Þ [ f0g ¼ �essT

�1 [ f0g, �essðr
4A�11 e4Þ [ f0g ¼ �essA

�1
0 , ð52Þ

and hence

�esseA�1 ¼ �essT�1 [ �essA�10 : ð53Þ

Since the essential spectrum of eA itself is the reciprocal set of the nonzero
essential spectrum of eA�1, we also have the following corollary.

COROLLARY 4.2 When eA is as in Theorem 4.1,

�esseA ¼ �essA0 [ �essT: ð54Þ

In particular, �esseA contains all points of �essT, and the points in �essA0 cannot be
removed from �esseA.

The statements in Section 1 follow: in case (1) we take T as in Remark 1 of
Section 2 in order to add a point {a}; when T acts like aI, C acts like a�(�1)þP�0,�A .
A general choice of a selfadjoint invertible T0 in a separable infinite-dimensional
Hilbert space Z0 gives rise to a selfadjoint invertible T in the Hilbert space Z with
the same essential spectrum, by the use of a unitary operator from Z0 to Z. The
statement in (2) follows since we have covered all possibilities for T in the case of
Neumann-type boundary conditions.

5. Higher order cases

Similar results can be shown for higher order elliptic operators. The selfadjoint
strongly elliptic even-order case is the natural generalization of the case considered in
the preceding sections; here, there is a solvable Dirichlet problem, and a selfadjoint
invertible realization defined by another boundary condition can be related to the
Dirichlet realization by a Kreı̆n-type formula generalizing (28) as in [10,11,14].

Invertible realizations exist in greater generality, though, so to save later
repetitions, we consider to begin with a more general class assuring existence of
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resolvents ðeA� 	Þ�1 at least when 	 is large, lying in a suitable subset of C. We take

for A an elliptic operator A¼
P
j�j2m a�(x)D

� of order 2m, m integer, with complex

C1 coefficients on R
n that are bounded with bounded derivatives and with the

principal symbol a0(x, �)¼
P
j�j¼2m a��

� satisfying (with c14 0)

Re a0ðx, �Þ � c1j�j
2m, for x, �2R

n, ð55Þ

uniform strong ellipticity. Here D� ¼ D�1
1 � � �D

�n
n , Dj¼�i@/@xj. Denote by A0 the

maximal realization of A in L2(R
n ); the uniform ellipticity implies that

D(A0)¼H2m(Rn ).
A satisfies a Gårding inequality, for which we include a quick proof:

LEMMA 5.1 There are constants c04 0 and k2R such that

ReðAu, uÞ � c0kuk
2
m � kkuk20, for all u2H2mðR

n
Þ: ð56Þ

Proof Using the calculus of globally estimated pseudodifferential operators as in

[15, Section 18.1], and [9], we can write

A1 ¼ ��mA��m, ReA1 ¼
1

2
ðA1 þ A�1Þ ¼ P�Pþ B,

where �s
¼Op(h�is), A1 is of order 0 with principal symbol a01ðx, �Þ satisfying

Re a01ðx, �Þ � c01 4 0,

P is of order 0 with principal symbol p0 ¼ ðRe a01Þ
1
2, and B is of order �1. Since P is

elliptic, it has a parametrix Q of order 0 so that I�QP is of order �1; hence,

kvk20 ¼ kQPvþ ðI�QPÞvk20  CkPvk20 þ C 0kvk2�1

¼ CðP�Pv, vÞ þ C 0kvk2�1  CReðA1v, vÞ þ C 00kvk2
�1

2
,

for v2S(Rn ) (the Schwartz space of rapidly decreasing functions, dense in any

Hs(Rn )). It follows that (with kuks¼k�
sukL2(R

n ))

ReðAu, uÞ ¼ ReðA1�
mu,�muÞ

� C�1kuk2m � C�1C 00kuk2m�1
2
�

1

2
C�1kuk2m � kkuk20,

where we used that kuk2
m�1

2
 "kuk2m þ Cð"Þkuk20, any "4 0. g

Since jðAu, uÞj  C1kuk
2
m and kukm�kuk0, we can infer from (56) that

jImðAu, uÞj  jðAu, uÞj  C1kuk
2
m  C1c

�1
0 ðReðAu, uÞ þ kkuk20Þ

ReðAu, uÞ � c0kuk
2
0 � kkuk20 ¼ ðc0 � kÞkuk20,

hence, the numerical range of A0, �ðA0Þ ¼ fðA0u, uÞ=kuk
2
0 j u2DðA0Þ n f0gg, is

contained in a sectorial region V,

�ðA0Þ � V � f	2C j Re 	 � c0 � k, jIm 	j  c2ðRe 	þ kÞg, ð57Þ
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with c2 ¼ C1c
�1
0 . The numerical range of the adjoint A�0 is likewise contained in V,

and V contains the spectrum of A0. (The elementary functional analysis used here is

explained e.g. in [8, Chapter 12].)
For simplicity we add kI to A, so that we can use the information with k¼ 0 in

the following, replacing V by

V0 ¼ f	2C j Re 	 � c0, jIm 	j  c2Re 	g: ð58Þ

The Dirichlet trace �u is in the 2m-order case defined by

�u ¼ f�0u, . . . , �m�1ug,

with � ju¼ �0(
P
�kDk)

ju. For the Dirichlet problems on smooth exterior or interior

subsets of R
n, the variational construction gives a realization with numerical range

and spectrum likewise contained in V0. Moreover, there are Sobolev space mapping

properties of the solution operator; this is extremely well-known for bounded

domains, and for exterior domains it is covered e.g. by Corollary 3.3.3 in [9]

(the differential operator A� 	 is uniformly parameter-elliptic on all rays {	¼ rei
 j

r� 0} outside V0, and parameter-ellipticity of the boundary problem holds uniformly

for x0 in the boundary).
Let us specify the result for �þ and � defined as in Section 1. We denote

A�10 ¼ Q. Then

A� ¼
A

�

� �
: Hsþ2mð�þÞ !

Hsð�þÞ

�Q
0 j5mH

sþ2m�j�1
2ð�Þ

ð59Þ

has for s4�m� 1
2 the solution operator, continuous in the opposite direction,

A
�1
� ¼ R� K�

� �
, with R� ¼ Qþ � K��Qþ: ð60Þ

Here, R� is the inverse of the Dirichlet realization A�, which acts like A with domain

DðA�Þ ¼ H2mð�þÞ \H
m
0 ð�þÞ.

The general theory in [10,11] is here interpreted by the use of the Poisson

operator K� :
Q

0 j5mH
�j�1

2ð�Þ ! L2ð�þÞ (and variants with 	-dependence). K� acts
as an inverse of

�Z : Z!
� Y

0 j5m
H�j�

1
2ð�Þ, ð61Þ

Z denoting the L2(�þ) nullspace of A. The formulae are exactly the same as in

[11, Section 3.3].
We shall compare A� with the realization AB% of a general normal boundary

condition, defined as in [11,16, (3.85)]. Let

M ¼ f0, 1, . . . , 2m� 1g, denoting %u ¼ f�jugj2M,

the Cauchy data. Let J be a subset of M with m elements, and let B be a J�M-

matrix of differential operators Bjk on � of order j� k:

B ¼ ðBjkÞj2 J,k2M with Bjk ¼ 0 for k4 j, Bjj ¼ I: ð62Þ
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The boundary condition [11, (3.85)]: � juþ
P

k5jBjk�ku¼ 0 for j2 J, can then be

written

B%u ¼ 0,

it defines the realization AB% with domain

DðAB%Þ ¼ fu2DðAmaxÞ j B%u ¼ 0g:

Special examples are the cases where J¼M0 or M1,

M0 ¼ f0, 1, . . . ,m� 1g, M1 ¼ fm,mþ 1, . . . , 2m� 1g, denoting �u ¼ f�jugj2M1
,

they define Dirichlet-type resp. Neumann-type conditions.
Let us assume that {A� 	,B%} is uniformly parameter-elliptic for 	 on a ray

outside V0; then for large 	 on the ray, {A� 	,B%} is invertible. Take a 	0 where this
invertibility holds (assuming invertibility of A0� 	0 and A�� 	0 also), and denote in

the rest of this section A� 	0 by A; then, we are in the situation where

AB% ¼
A

B%

� �
: Hsþ2mð�þÞ !

Hsð�þÞ

�Q
j2JH

sþ2m�j�1
2ð�Þ

ð63Þ

for s4� 1
2 has the solution operator, continuous in the opposite direction,

A
�1
B% ¼ RB% KB%

� �
, with RB% ¼ Qþ � KB%B%Qþ: ð64Þ

Here RB% is the inverse of the realization AB%, which acts like A with domain

D(AB%)¼ {u2H2m(�þ) jB%u¼ 0}.
The difference between A�1� and A�1B% , and more generally between two solution

operators A�1B% and A�1~B%
, can be described spectrally very much like in Section 3. First,

there is a generalization of Proposition 3.1 and its corollaries. Define �?, r
? and e?

as in Section 3.

PROPOSITION 5.2

(1)� The operators KB%,4¼ r4KB% :
Q

j2JH
�j�1

2ð�Þ ! L2ð�4Þ and ðKB%,4Þ
�
¼

K�B%e
4 : L2ð�4Þ !

Q
j2JH

jþ1
2ð�Þ map continuously

r4KB% :
Y

j2J
Hs�j�1

2ð�Þ ! Hs0 ð�4Þ, any s, s0 2R,

K�B%e
4 : ðHs0 ð�4ÞÞ

�
!
Y

j2J
H�sþjþ

1
2ð�Þ, any s0, s2R, ð65Þ

and are spectrally negligible.
(2)� When � is a function in C10 ðR

n,RÞ that is 1 on a neighbourhood of �5, the

operators ð1� �ÞKB% :
Q

j2JH
�j�1

2ð�Þ ! L2ð�þÞ and K�B%ð1� �Þ : L2ð�þÞ !Q
j2JH

jþ1
2ð�Þ map continuously

ð1� �ÞKB% :
Y

j2J
Hs�j�1

2ð�Þ ! Hs0 ð�þÞ, any s, s0 2R,

K�B%ð1� �Þ : ðHs0 ð�þÞÞ
�
!
Y

j2J
H�sþjþ

1
2ð�Þ, any s0, s2R, ð66Þ

and are spectrally negligible.
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Proof Denote by �4 the Dirichlet trace operator for 2m-order operators on �4.

When ’2
Q

j2JH
�j�1

2ð�Þ, KB%’ is C
1 on �þ, hence �

4KB%’2C
1(@�4). Then r4KB%’

is a null-solution of the Dirichlet problem for A on �4 with C1-boundary value.

This will also hold if ’2Hs�1
2ð�Þ, any s2R. We now use that the Dirichlet problem

on �4 has a solution operator with mapping properties similar to the problem for

�þ, and the proof is completed in the same way as the proofs of Proposition 3.1 and

Corollary 3.2. g

Remark 1 It may be observed as in Remark 1 of Section 3 that the proofs can also

be inferred from [9, Lemma 2.4.8], and this moreover implies a rapid decrease in 	
of any Schatten norm.

With Proposition 5.2 it is easy to generalize Theorem 3.4 as follows:

THEOREM 5.3 For B% and ~B% as above, defining invertible elliptic realizations, let

P ¼ A�10 � A�1B% � 0L2ð��Þ, G0 ¼ A�10 � A�1B% � ðA
�1
0 Þ�, G00 ¼ A�1B% � A�1~B%

: ð67Þ

Then

P2T2m=n, G0 and G00 2T2m=ðn�1Þ: ð68Þ

Moreover, there are spectral asymptotics formulae for l!1:

sl ðPÞl
2m=n! C, sl ðG

00Þl2m=ðn�1Þ ! C 00, ð69Þ

where the constants are determined from the principal symbols. Here C is the same

constant as for ðA�10 Þ�, namely C ¼ liml!1 sl ððA
�1
0 Þ�Þl

2m=n.

Proof We proceed as in the proof of Theorem 3.4. First,

G00 ¼ �KB%B%Qþ þ K ~B%
~B%Qþ

is written as a singular Green operator on �0 \�þ plus a spectrally negligible term,

by a version of (40) applied to both terms. The assertions for G00 then follow

from [3, Theorem 4.10]. Next, G0 is treated similarly to G0j in Theorem 3.4, noting that

the operators of order 2 have been replaced by operators of order 2m. Finally,

P¼G0 þ 0L2(�þ)
�Q�, where the spectral asymptotics behaviour of Q� dominates

the sum, in view of the rules for s-numbers. g

It is here allowed to take the set J for B% different from the corresponding set ~J

for ~B%. There are similar results for differences between higher powers A�NB% � A�N~B%
,

as in Remark 2 of Section 3.
A result of the type A�NB% � A�N~B%

2T2mN=ðn�1Þ has been announced by Gesztesy

and Malamud in [6], apparently based on a consideration of M-functions.
In all the calculations, A can be taken to be a (p� p)-system, acting on p-vectors.

When A is scalar, the boundary conditions with (62) are the most general ones for

which parameter-ellipticity can hold (cf [9, Section 1.5]); in the systems case there

exist more general normal boundary conditions, as studied in [14]. The above

analysis can be extended to include these, mainly at the cost of a more complicated

notational apparatus. Pseudodifferential Bjk could be allowed as in [9].
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Remark 2 For bounded domains, the result for G00 has been known since 1984,
since A�1B% � A�1~B%

is then itself a singular Green operator of order �2m on a bounded
domain, to which [3, Theorem 4.10] applies. For selfadjoint cases, see also
[14, Section 8].

6. Spectral perturbations in higher order cases

For the study of perturbations of essential spectra, we restrict the attention to
selfadjoint realizations. First of all, this requires that A equals its formal adjoint A0

moreover, it restricts the sets J and matrices B that can be allowed. With the notation
N0 ¼ {k j 2m� k� 12N}, we have as a necessary condition on J is that it should
equal its reversed complement:

J ¼ K0, where K ¼M n J: ð70Þ

To explain further, we recall some details from [16]. From Green’s formula

ðAu, vÞ � ðu,AvÞ ¼ ðA%u, %vÞ ¼
AM0M0

AM0M1

AM1M0
0

� �
�u

�u

� �
,
�u

�u

� �� �
,

where A is skew-selfadjoint and invertible, it is seen that when we set

�u ¼ AM0M1
�uþ

1

2
AM0M0

�u, ð71Þ

(taking 1
2 of the contribution from AM0M0 along), we get the symmetric formula

ðAu, vÞL2ð�þÞ
� ðu,AvÞL2ð�þÞ

¼ ð�u, �vÞL2ð�Þ
m � ð�u,�vÞL2ð�Þ

m , ð72Þ

valid for u, v2H2m(�þ). Here � is indexed by M0, �¼ {�j}j2M0
with �j of order

2m� j� 1; it replaces � in systematic considerations and maps from Hs(�þ) toQ
j2M0

Hs�2mþjþ1
2ð�Þ. Green’s formula has the extension to u2D(Amax), v2H

2m(�þ):

ðAu, vÞL2ð�þÞ
� ðu,AvÞL2ð�þÞ

¼ ð�u, �vÞf�2mþjþ1
2g, f2m�j�

1
2g
� ð�u,�vÞf�j�1

2g, f jþ
1
2g
,

where (�, �){�sj},{sj} denotes the duality between
Q
H�sj(�) and

Q
Hsj(�). With �

replaced by the ‘reduced Neumann trace operator’ � , one has for u, v2D(Amax):

ðAu, vÞL2ð�þÞ
� ðu,AvÞL2ð�þÞ

¼ ð�u, �vÞf jþ1
2g, f�j�

1
2g
� ð�u,�vÞf�j�1

2g, f jþ
1
2g
, ð73Þ

here,

P�,� ¼ �K� , � ¼ �� P�,�� ¼ �A
�1
� Amax: ð74Þ

Now when J satisfies (70), the subsets

J0 ¼ J \M0, J1 ¼ J \M1, K0 ¼ K \M0, K1 ¼ K \M1,

satisfy

K 01 ¼ J0, J 01 ¼ K0: ð75Þ

We set

�J0 ¼ f�jgj2 J0 , �K0
¼ f�jgj2K0

, �J0 ¼ f�jgj2 J0 , �K0
¼ f�jgj2K0

:
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As shown in [16] and recalled in [11], the boundary condition B%u¼ 0 may then be

rewritten in the form, with differential operators F0, G1, G2,

�J0u ¼ F0�K0
u, �K0

u ¼ G1�K0
uþ G2�J0u, ð76Þ

when we take (75) into account. Here the first condition �J0u¼F0�K0
u can be viewed

as the ‘Dirichlet part’, purely concerned with �u, whereas the second condition

�K0
u¼G1�K0

uþG2�J0u can be viewed as the ‘Neumann-type part’, where part

of the Neumann data �K0
u is given as a function of the other data. Note that G1 links

the free Dirichlet data �K0
u to Neumann data and has entries of positive order, and

G2 has entries of order5m.
The boundary condition for the adjoint realization is then

�J0u ¼ �G
�
2�K0

u, �K0
u ¼ G�1�K0

u� F �0 �J0u: ð77Þ

If J¼M0, the condition B%u¼ 0 reduces to the Dirichlet condition �u¼ 0. To get

a different condition we must take J 6¼M0; this means that K0 6¼ ;.
We assume in the following that {A� 	,B%} is uniformly parameter-elliptic on a

ray outside V0 as in the preceding section, so that D(AB%)�H2m(�þ). Then

G�2 ¼ �F0, G�1 ¼ G1 ð78Þ

are necessary and sufficient for selfadjointness of AB%. Equation (78) is assumed from

now on.
The operator AB% corresponds to a selfadjoint operator T :V!V by the general

theory, where V is the L2(�þ)-closure of pr� D(AB%) (here pr� ¼ I� A�1� Amax). V is

mapped by � onto the closure X of �D(AB%) in
Q

k2M0
H�k�

1
2ð�Þ. Here X is the graph

of F0, so it is homeomorphic to
Q

k2K0
H�k�

1
2ð�Þ, by the mappings

� ¼
IK0K0

F0

� �
, pr1 ¼ I 0

� �
, ð79Þ

� :
Y

k2K0
H�k�

1
2ð�Þ!

�
X, pr1 : X!

� Y
k2K0

H�k�
1
2ð�Þ, ð80Þ

as shown in [16] and recalled in [11]. Here V ¼ K�X ¼ K��
Q

k2K0
H�k�

1
2ð�Þ.

The restriction of � to a mapping from V to X is denoted �V, so we have:

�V : V!
�
X, pr1�V : V!

� Y
k2K0

H�k�
1
2ð�Þ, ��1V � :

Y
k2K0

H�k�
1
2ð�Þ!

�
V:

With these definitions, (76) may be written (using (78))

�u ¼ ��K0
u, ���u ¼ G1�K0

u: ð81Þ

The operator T in V is carried over to an operator

L ¼ ð��VÞ
�1T��1V : X! X�, ð82Þ

which is further translated to an operator

L1 ¼ ��L� :
Y

k2K0
H�k�

1
2ð�Þ !

Y
k2K0

Hkþ1
2ð�Þ: ð83Þ
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We now recall from [16] how the form of L1 is determined (this detail was not

repeated in [11]). Consider the condition defining the correspondence between AB%

and T (cf [10,11,16]):

ðAu, zÞ ¼ ðTpr� u, zÞ for all u2DðAB%Þ, z2V: ð84Þ

Here the right-hand side is rewritten as

ðTpr� u, zÞ ¼ ðL�u, �zÞfkþ1
2g, f�k�

1
2g
¼ ðL1�K0

u, �K0
zÞfkþ1

2g, f�k�
1
2g
,

whereas the left-hand side takes the form, in view of (73) and (81):

ðAu, zÞ ¼ ð�u, �zÞ ¼ ð�u� P�,��u,��K0
zÞfkþ1

2g, f�k�
1
2g

¼ ð���u���P�,���K0
u, �K0

zÞfkþ1
2g, f�k�

1
2g

¼ ððG1 ���P�,��Þ�K0
u, �K0

zÞfkþ1
2g, f�k�

1
2g
:

Since �K0
z runs in a dense subset of

Q
k2K0

H�k�
1
2ð�Þ, (84) implies

L1�K0
u ¼ ðG1 ���P�,��Þ�K0

u, ð85Þ

so L1 acts like G1��*P�,��. The boundary condition may then be rewritten as

�u ¼ ��K0
u, ���u ¼ ðL1 þ��P�,��Þ�K0

u: ð86Þ

Since {A,B%} is elliptic, L1 is an elliptic selfadjoint mixed-order pseudodifferential

operator; its domain is DðL1Þ ¼
Q

k2K0
H2m�k�1

2ð�Þ.
When AB% is invertible, so are T, L and L1, and [10, Theorem II.1.4] implies

A�1B% ¼ A�1� þ iVT
�1prV ¼ A�1� þ K��L�11 ��K�� : ð87Þ

(It is used here that iV�
�1
V � ¼ K��.)

All this is just the implementation of the known results to operators defined for

the unbounded set �þ. But now we are in a position to consider interesting

perturbations.
We replace T :V!V for AB% by an operator eT : V! V, selfadjoint invertible

with a nonempty essential spectrum, and want to see how this effects the realization.

As above, eT carries over to

eL1 ¼ ��ð��VÞ
�1eT��1V � :

Y
k2K0

H�k�
1
2ð�Þ !

Y
k2K0

Hkþ1
2ð�Þ, ð88Þ

with DðeL1Þ ¼ pr1�DðeT Þ, and the boundary condition now takes the form

�u ¼ ��K0
u, ���u ¼ eG1�K0

u, �K0
u2DðeL1Þ,

where eG1 ¼ eL1 þ��P�,�� ¼ G1 þ eL1 � L1: ð89Þ

Here

eA�1 ¼ A�1� þ iVeT�1prV ¼ A�1� þ K��eL�11 ��K�� : ð90Þ

THEOREM 6.1 Consider the realization AB% of A in L2(�þ) defined by a normal

boundary condition B%u¼ 0 (cf (62)) with J 6¼M0, and assume that ellipticity and
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selfadjointness holds, cf (76)–(78). AB% corresponds to an operator T :V!V, where

V ¼ K�X ¼ K��
Q

k2K0
H�k�

1
2ð�Þ, cf also (82), (83), (85).

Let eT be a selfadjoint invertible operator in V with nonempty essential spectrum,

and let eA be the realization of A corresponding to eT : V! V, i.e. where the boundary

condition (76), equivalently written (81), is replaced by (89). Then

�esseA ¼ �essA0 [ �esseT: ð91Þ

Proof The proof goes in exactly the same way as the proof of Theorem 4.1 and

Corollary 4.2. We cut �þ in a bounded part �5 and an exterior part �4, and

use (90) and Proposition 5.2 with B%¼ � to see that eA can be written as

eA�1 ¼ r5K��eL�11 ��K��e
5

� �
� ðr4A�1� e4Þ þ S, ð92Þ

where S is compact, the operator r4A�1� e4 in L2(�4) has the same essential

spectrum as A�1� , and the operator r5K��eL�11 ��K��e
5 in L2(�5) has the same

essential spectrum as K��eL�11 ��K�� ¼ iVeT�1prV outside 0. g

Briefly expressed, the theorem states that any normal boundary condition (apart

from the Dirichlet condition) defining a selfadjoint invertible elliptic realization, can

be perturbed by addition of a suitable operator to G1 (the map from the free Dirichlet

data to Neumann data) to provide a selfadjoint invertible realization with a

prescribed augmentation of the essential spectrum.

Example 6.2 Let A¼D2
þ 1. Clearly, A satisfies the positivity and selfadjointness

requirements, and it has Green’s formula (72) with

� ¼ f�0, �1g, � ¼ f�0,�1g ¼ f��1D, �0Dg,

as in [11, Example 3.14]. The Dirichlet operator

A� ¼
D2
þ 1

�

 !
: Hsþ4ð�þÞ !

Hsð�þÞ

�

Hsþ7
2ð�Þ �Hsþ5

2ð�Þ

, ð93Þ

where s4� 5
2, has an inverse (R� K�) continuous in the opposite direction.

Let us take (as in [11, Example 3.14]) J¼ {0, 2}�M¼ {0, 1, 2, 3}; it satisfies

(70), and J0¼ {0}, K0¼ {1}. With this choice, the boundary condition (76) is of the

form

�0u ¼ 0, �0Du ¼ G1�1u: ð94Þ

(F0 and G2 vanish, being differential operators of negative order.) G1 is of order 1.

Selfadjointness of AB% requires G
�
1 ¼ G1, and if this holds and the problem is elliptic,

then AB% is selfadjoint with domain D(AB%)¼ {u2H4(�þ) j (94) holds.} Continuing

under this assumption, we find that

X ¼ f0g �H�
3
2ð�Þ, naturally identified with H�

3
2ð�Þ,
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and L1 is the first-order pseudodifferential operator

L1 ¼ G1 � pr2P�,�i2 : H�
3
2ð�Þ ! H

3
2ð�Þ, ð95Þ

with DðL1Þ ¼ H
5
2ð�Þ in view of the ellipticity. There is a corresponding operator

T :V!V where V ¼ K�ðf0g �H�
3
2ð�ÞÞ. Invertibility holds e.g. when L1 has a

positive lower bound.
Replacing T :V!V by eT : V! V, selfadjoint and invertible with a nonempty

essential spectrum, corresponds to replacing G1 byeG1 ¼ G1 þ eL1 � L1, eL1 ¼ pr2ð�
�
VÞ
�1eT��1V i2: ð96Þ

The corresponding realization eA is defined by the boundary condition

�0u ¼ 0, �0Du ¼ eG1�1u, �1u2DðeL1Þ, ð97Þ

and satisfies �esseA ¼ �essA0 [ �esseT.
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