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Introduction

The fractional Laplacian (−∆)a on Rn, 0 < a < 1, is currently of great
interest in probability, finance, mathematical physics and differential
geometry. In particular, it enters in nonlinear equations.
One way to describe it is as an integral operator with a convolution
kernel:

(−∆)au(x) = cn,aPV

∫
Rn

u(x)− u(y)

|y |n+2a
dy .

Another way to describe it is by use of the Fourier transform F :

Fu = û(ξ) =

∫
Rn

e−ix·ξu(x) dx ; then

(−∆)au = Op(|ξ|2a)u = F−1(|ξ|2aû(ξ)).

This shows that it is a pseudodifferential operator (ps.d.o.) of order 2a.

One of the difficulties with the operator is that it is nonlocal, in contrast
to differential operators. This is problematic when one wants to study it
on a bounded set; what is really meant? Here comes one of the
interpretations:
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For a bounded open set Ω ⊂ Rn with some smoothness, we consider the
problem

(−∆)au = f in Ω, supp u ⊂ Ω;

this is called the homogeneous Dirichlet problem.

It is known that there is a solvability for f ∈ L2(Ω), by a variational
construction; here u ∈ Ḣa(Ω) (the functions in Ha(Rn) with support in
Ω). What more can be said about the regularity of u?

Through the times, the results on the regularity of the solutions were
somewhat sparse.

• Vishik, Eskin, Shamir 1960’s. E.g., u ∈ Ḣ2a(Ω) when a < 1
2 .

• When f and Ω are C∞, there is some analysis of the behavior of
solutions at ∂Ω by Eskin ’81, Hörmander ’85, Bennish ’93, Chkadua and
Duduchava ’01.

Recent activity:
• Ros-Oton and Serra (JMPA ’14) showed by potential theoretic and
integral operator methods, when Ω is C 1,1, that for small α > 0,

f ∈ L∞(Ω) =⇒ u ∈ daCα(Ω), d(x) = dist(x , ∂Ω).

Moreover, u ∈ C a(Ω). Lifted to α = a− ε later. They gave further
results recently in low-regularity situations.
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• G (Adv.Math. ’15) presented a new systematic theory of ps.d.o.
boundary problems covering (−∆)a, using unpublished ideas of
Hörmander. Further developed in Anal.PDE ’14. When Ω is C∞,

f ∈ L∞(Ω) =⇒ u ∈ daC a(Ω), a 6= 1
2 ,

f ∈ C t(Ω) =⇒ u ∈ daC a+t(Ω), for t > 0, a + t, 2a + t /∈ N,
f ∈ C∞(Ω) ⇐⇒ u ∈ daC∞(Ω). (Hörmander book’85)

In the excepted cases there is a correction −ε in the Hölder exponent.

Optimal in the case of smooth Ω. The factor da is necessarily there.

The regularity study was a prerequisite for the proof of an integration by
parts formula by Ros-Oton and Serra ARMA’14:

2

∫
Ω

(x · ∇u) (−∆)au dx = (2a− n)

∫
Ω

u(−∆)au dx

+ Γ(1 + a)2

∫
∂Ω

x · ν γ0(d−au)2 dσ;

here ν(x) is the interior normal to ∂Ω at x ∈ ∂Ω, and γ0 denotes taking
the boundary value from inside Ω.
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This leads to a Pohozaev formula for solutions of the Dirichlet problem
with nonlinear right-hand side f (u), useful in uniqueness questions.

The formula has been generalized to a larger class of positive
translation-invariant integral operators with homogeneous convolution
kernels, by R.-O. and S. jointly with Valdinoci (arXiv Feb.’15).

We have very recently (arXiv Nov.’15) found out how to extend the
formula to a corresponding class of pseudodifferential operators that are
moreover allowed to be x-dependent (not translation invariant); here we
assume smoothness of Ω and of the x-dependence.

In the lectures I will try to give you the background and mechanisms for
these results.

Plan:

1. The pseudodifferential calculus on Rn.

2. The model Dirichlet problem on Rn
+.

3. General Dirichlet problems on sets Ω.

4. Nonhomogeneous boundary conditions.

5. Integration by parts and a Pohozaev formula.
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1. The pseudodifferential calculus on Rn

Pseudodifferential operators were introduced in the 1960’s as a
generalization of singular integral operators (Calderon, Zygmund, Seeley,
Giraud, Mikhlin . . . , and particularly Kohn, Nirenberg, Hörmander.)

It generalizes the use of the Fourier transformation to x-dependent
operators. Recall that the Fourier transform

Fu = û(ξ) =

∫
Rn

e−ix·ξu(x) dx ;

is bijective on S(Rn) = {u ∈ C∞ | |xαDβu| ≤ C , all α, β} (the Schwartz
space), and extends to a bijection on L2(Rn), with a similar inverse.
We use multi-index notation, xα = xα1

1 · · · xαn
n ,Dα = (−i)|α|∂α1

1 · · · ∂αn
n .

A very important property is that F sends the differential operator Dα

over into the multiplication operator ξα. Imitating this idea, when we
have a function p(ξ), the pseudodifferential operator P with symbol p
is the operator

Pu = F−1
(
p(ξ)û(ξ)

)
= Op(p)u.

For example,

∆ = Op(−|ξ|2), (−∆)a = Op(|ξ|2a).
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This is simple and easy when the symbols only depend on ξ, for example,

Op(p(ξ)) Op(q(ξ)) = Op(p(ξ)q(ξ)). (∗)

But now we extend the definition to x-dependent symbols p(x , ξ),

(Pu)(x) = F−1
(
p(x , ξ)û(ξ)

)
= Op(p(x , ξ))u,

and this is more delicate. We no longer have (∗), but, with a good choice
of the symbol classes (given below),

Op(p(x , ξ)) Op(q(x , ξ))− Op(p(x , ξ)q(x , ξ)) is of lower order. (∗∗)

Definition. Sm is the space of symbols p(x , ξ) of order m, satisfying

|Dβ
x D

α
ξ p(x , ξ)| ≤ C 〈ξ〉m−|α|, for x , ξ ∈ Rn,

all α, β. p is called classical, when there is a sequence of symbols
pj(x , ξ), homogeneous of degree m − j in ξ for |ξ| ≥ 1, such that

|Dβ
x D

α
ξ (p −

∑
j<M

pj)| ≤ C 〈ξ〉m−|a|−M ,

for all α, β,M. Here 〈ξ〉 = (|ξ|2 + 1)
1
2 .
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When p is of order m, P = Op(p(x , ξ)) is continuous:

P : Hs(Rn)→ Hs−m(Rn), all s ∈ R;

recall that Hs(Rn) = {u ∈ S ′(Rn) | 〈ξ〉s û ∈ L2(Rn)}.
So P has better continuity properties, the lower m is. In particular, when
p ∈ S−∞ =

⋂
m Sm, P maps any Hs into C∞; is a “smoothing operator”.

For compositions, one has that PQ = R + S, where S is smoothing, and
the symbol of R is the Leibniz product:

p(x , ξ)#q(x , ξ) ∼
∑

α∈Nn
0

∂αξ p(x , ξ)Dα
x q(x , ξ)/α!,

modulo symbols in S−∞.

In particular, when p and q are of orders m1,m2,

p#q = p · q + s1, where s1 ∼
∑
|α|≥1

∂αξ pD
α
x q/α!;

here s1 is of order m1 + m2 − 1. This shows (∗∗).

Technical difficulties in the theory of ps.d.o.s:
1) Series expansions are usually not convergent, but hold in an
asymptotic sense. (Like Taylor expansions of non-analytic functions.)
2) Some formulas just hold modulo smoothing operators.
3) Integrals need interpretation as oscillatory integrals.
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Somewhat sophisticated, but can be made useful with some care.
Introduction e.g. in G’09, Springer GTM book.

When p is classical with expansion p ∼
∑

j∈N0
pj , the first term p0

(homogeneous in ξ of degree m) is called the principal symbol.
P and p are said to be elliptic, when p0(x , ξ) 6= 0 for |ξ| ≥ 1; strongly
elliptic when Re p0(x , ξ) > 0 for |ξ| ≥ 1. Many properties are governed by
the principal symbol, and a study of the x-independent operator
Op(p0(x0, ξ)) for fixed x0 is usually a pilot project for the study of the full
operator.

The symbol will be said to be even, when

∂βx ∂
α
ξ pj(x ,−ξ) = (−1)−j−|α|∂βx ∂

α
ξ pj(x , ξ) for |ξ| ≥ 1, all j , α, β.

We shall consider operators satisfying: P is a classical strongly elliptic
ps.d.o. of order 2a with even symbol, 0 < a < 1.

This includes (−∆)a (there is a trick to handle that the symbol |ξ|2a is
not quite smooth at 0), and A(x ,D)a, where A(x ,D) is a second-order
strongly elliptic differential operator with smooth coefficients. In
particular, (−∆ + m2)a.
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2. The model Dirichlet problem on Rn
+

Now consider a subset Ω of Rn, either a bounded open C∞-subset, or
Rn

+ = {x = (x ′, xn) | x ′ ∈ Rn−1, xn > 0}. In either case we denote by r+

the restriction operator from Rn to Ω, and by e+ the extension-by-zero
operator

e+f (x) =

{
f (x), when x ∈ Ω,

0 when x ∈ {Ω(= Rn \ Ω).

The analogous operators for {Ω are called r− and e−.

The properties of classical ps.d.o.s are preserved under C∞-coordinate
changes, and there is an invariant definition of the principal symbol (as a
section of the cotangent bundle). Therefore situations with arbitrary
smooth subsets Ω can usually be reduced to situations with Rn

+, by use
of local coordinates and partitions of unity.

We shall now discuss the Dirichlet problem, aiming to see why the factor
d(x)a, d(x) = dist(x , ∂Ω), enters in the description of solutions.

A model case.

Consider P = (−∆ + 1)a on Rn, Ω = Rn
+. Here d(x) = xn.
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The symbol of (−∆ + 1)a equals (|ξ|2 + 1)a = 〈ξ〉2a. It has a factorization

〈ξ〉2a = (〈ξ′〉2 + ξ2
n)a = (〈ξ′〉 − iξn)a(〈ξ′〉+ iξn)a.

Set χt
±(ξ′, ξn) = (〈ξ′〉 ± iξn)t , and define Ξt

± = Op(χt
±). Then

(−∆ + 1)a = Ξa
− Ξa

+.

The powers z t , z ∈ C, are defined to be real for z > 0. The operators
Ξt
± are a kind of generalized ps.d.o.s; their symbols satisfy

|∂α
′

ξ′ ∂
an
ξn
χt
±(ξ′, ξn)| ≤ C (〈ξ′〉t−|α

′| + 〈ξ〉t−|α
′|)〈ξ〉−αn ,

but not the full set of ps.d.o. estimates in ξ.
They are invertible, with (Ξt

±)−1 = Ξ−t± . Moreover, (Ξt
+)∗ = Ξt

−.

With C± = {z ∈ C | Im z ≷ 0}, we observe that χt
+(ξ′, ξn) extends

holomorphically into C− as a function of ξn (and χt
−(ξ′, ξn) extends

holomorphically into C+ as a function of ξn ).
Hence, by the Paley-Wiener theorem, χ̃t

+(ξ′, xn) = F−1
ξn→xn

χt
+(ξ′, ξn) is

supported for xn ≥ 0, and therefore the operator Ξt
+ (which in the

xn-direction is a convolution with χ̃t
+(ξ′, xn)) preserves support in Rn

+.
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Introduce the two families of Sobolev spaces

H
s
(Ω) = r+Hs(Rn),

Ḣs(Ω) = {u ∈ Hs(Rn) | supp u ⊂ Ω},

(used presently with Ω = Rn
+). Here H

s
(Ω) and Ḣ−s(Ω) are dual spaces

of one another. (The notation with dots and lines stems from works of
Hörmander.)

Because of the support preserving property of Ξt
+,

Ξt
+ : Ḣs(Rn

+)
∼→ Ḣs−t(Rn

+), all s,

with inverse Ξ−t+ .
This mapping Ξt

+ has the adjoint r+Ξt
−e

+, mapping in the dual scale of
spaces:

r+Ξt
−e

+ : H
t−s

(Rn
+)
∼→ H

−s
(Rn

+),

with inverse r+Ξ−t− e+.
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Now we show how to solve the model Dirichlet problem

r+(−∆ + 1)au = f on Rn
+, supp u ⊂ Rn

+. (1)

Say, f is given in H
t
(Rn

+) for some t ≥ 0, and u is sought in Ḣa(Rn

+).
By the factorization,

r+(−∆+1)au = r+Ξa
−Ξa

+u = r+Ξa
−(e+r++e−r−)Ξa

+u = r+Ξa
−e

+r+Ξa
+u,

since r−Ξa
+u = 0. Then since (r+Ξa

−e
+)−1 = r+Ξ−a− e+ on the

H
s
-scales, (1) can be reduced to

r+Ξa
+u = r+Ξ−a− e+f , supp u ⊂ Rn

+, (2)

where r+Ξ−a− e+f ∈ H
t+a

(Rn
+). By a moment’s thought, this has the

unique solution
u = Ξ−a+ e+(r+Ξ−a− e+f ).

Thus (1) has the unique solution u, and it lies in

Ξ−a+ (e+H
t+a

(Rn
+)) ≡ Ha(t+2a)(Rn

+),Hörmander’s space.

What is this space? If t + a < 1
2 , it is simply Ḣ t+2a(Rn

+). But when

t + a > 1
2 , e+H

t+a
(Rn

+) has a jump at xn = 0; this gives rise to a

singularity at xn = 0 when Ξ−a+ is applied. We can calculate:
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Special Fourier transformation formula: For s > −1, σ > 0 (e.g. 〈ξ′〉),

F−1
ξn→xn

(σ + iξn)−s−1 = 1
Γ(s+1)e

+r+x sne
−σxn . (?)

(Note that e+r+ corresponds to multiplying with the Heaviside function.)

To study the example Ξ−a+ (e+H
1
(Rn

+)) = Ha(1+a)(Rn

+), let v ∈ H
1
(Rn

+).

Let ϕ = γ0v (the boundary value), it is in H
1
2 (Rn−1). Let

v0 = F−1
ξ→x(ϕ̂(ξ′)(〈ξ′〉+iξn)−1) = F−1

ξ′→x′(ϕ̂(ξ′)e+r+e−〈ξ
′〉xn) ∈ e+H

1
(Rn

+).

Then v and v0 have the same boundary value ϕ (from Rn
+), and the rest

v ′ = e+v − v0 belongs to Ḣ1(Rn

+).

When we apply Ξ−a+ , v ′ is mapped into Ḣ1+a(Rn

+). For v0 ∈ e+H
1
(Rn

+)
we find, using (?):

Ξ−a+ v0 = F−1(ϕ̂(ξ′)(〈ξ′〉+ iξn)−1−a) = 1
Γ(a+1)x

a
nv0.

Hence
Ha(1+a)(Rn

+) ⊂ e+xanH
1
(Rn

+) + Ḣ1+a(Rn

+).

A similar analysis gives more generally, when t + a > 1
2 ,

Ha(t+2a)(Rn

+) ⊂ e+xanH
t+a

(Rn
+) + Ḣ t+2a (−ε)(Rn

+),

(−ε) active if t + a− 1
2 ∈ N. Moreover, Ha(t+2a)(Rn

+) ⊂ H t+2a
loc (Rn

+).
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To sum up, we have found:

Theorem 1. The Dirichlet problem for (−∆ + 1)a on Rn
+ is uniquely

solvable; here when t ≥ 0,

f ∈H t
(Rn

+) =⇒ u ∈ Ha(t+2a)(Rn

+),

with Ha(t+2a)(Rn

+)

{
= Ḣ t+2a(Rn

+) if − 1
2 < t + a < 1

2 ,

⊂ e+xanH
t+a

(Rn
+) + Ḣ t+2a (−ε)(Rn

+) if t + a > 1
2 .

The case − 1
2 < t + a < 1

2 is covered in Eskin’s book ’81.

As a corollary for t →∞, we see that the solutions satisfy:

f ∈ C∞(Rn

+) with bounded support =⇒ u ∈ e+xanC
∞(Rn

+).

This was just a model case, and there remains to make the ideas work for
general operators P and general domains Ω.

Remark. For P = (−∆)a we are relying on the complex factorization
|ξ|2a = (|ξ′| − iξn)a(|ξ′|+ iξn)a in the model case of operators defined in
terms of ξn. In contrast, the basic argument of Ros-Oton and Serra relies
on the factorization |ξ|2a = |ξ|a|ξ|a, as real symbols, with a different
complicated analysis of the operators Op(|ξ|a) in terms of ξn.
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3. General Dirichlet problems on sets Ω

Now we shall treat a general ps.d.o. P satisfying our assumptions, and a
general Ω ⊂ Rn

+. First there is an auxiliary theorem (G CPDE’90):

Theorem 2. 1◦ For any t ∈ R there exist pseudodifferential operators
Λt
± of order t with symbols λt±(ξ′, ξn), homogeneous of degree t for

|ξ| ≥ 1 and invertible, with λt+ = λt−, such that λt+ extends
holomorphically into C− as a function of ξn, and λt− extends
holomorphically into C+ as a function of ξn .
2◦ Moreover, when Ω is smooth bounded ⊂ Rn, there exist ps.d.o.

families Λ
(t)
± for t ∈ R, elliptic of order t and invertible with inverse Λ

(−t)
± ,

such that the symbols in local coordinates at ∂Ω are like those of Λt
±.

The first family of operators Λt
± then have all the nice mapping

properties relative to Rn
+ ⊂ Rn that the Ξt

± had, with the advantage of
being true ps.d.o.s so that the general calculus applies to them.

The second family of operators Λ
(t)
± have the mapping properties relative

to the embedding Ω ⊂ Rn, for all s:

Λ
(t)
+ : Ḣs(Ω)

∼→ Ḣs−t(Ω), r+Λ
(t)
− e+ : H

s
(Ω)

∼→ H
s−t

(Ω),

with inverses Λ
(−t)
+ resp. r+Λ

(−t)
− e+.
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Consider the Dirichlet problem on Ω for a given P,

r+Pu = f on Ω, supp u ⊂ Ω. (3)

Define
Q = Λ

(−a)
− PΛ

(−a)
+ .

Q is of order 0, and thanks to the evenness of P it satisfies the so-called
0-transmission property:

∂βx ∂
α
ξ qj(x ,−ν(x)) = (−1)−j−|α|∂βx ∂

α
ξ qj(x , ν(x))

at the boundary points; x ∈ ∂Ω and ν(x) is the interior normal at x .

For operators like Q, there has existed a boundary value calculus for
many years, the Boutet de Monvel calculus, initiated in BdM Acta’71 and
further developed in e.g. G Duke’84, CPDE’90, book’96.
In the present case we can moreover show:

Theorem 3. Under our hypotheses on P, the principal symbol q0 of Q
has a factorization, in local coordinates at ∂Ω (with normal direction ξn):

q0(x , ξ′, ξn) = q−0 (x , ξ′, ξn)q+
0 (x , ξ′, ξn),

where q±0 are homogeneous of degree 0, and q+
0 extends holomorphically

into C− as a function of ξn, q−0 extends holomorphically into C+ as a
function of ξn.
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Using this, we get from the Boutet de Monvel calculus for Q:

Proposition 4. The operator r+Qe+ maps

r+Qe+ : H
s
(Ω)→ H

s
(Ω), for all s > − 1

2 ,

as a Fredholm operator with smooth kernel and cokernel.
It has the regularity property: When v ∈ H

σ
(Ω) with σ > − 1

2 ,

r+Qe+v ∈ H
s
(Ω) =⇒ v ∈ H

s
(Ω).

This leads to solvability of the Dirichlet problem for P, by use of the

support-preservation properties of the families Λ
(t)
± , as follows.

The question is: For given f ∈ H
t
(Ω), find u ∈ Ḣa(Ω) such that (3)

holds. To find this, insert P = Λ
(a)
− QΛ

(a)
+ in (3), then

r+P = r+Λ
(a)
− QΛ

(a)
+ = r+Λ

(a)
− (e+r+ + e−r−)QΛ

(a)
+ = (r+Λ

(a)
− e+)r+QΛ

(a)
+ ,

since r+Λ
(a)
− e− = 0, and (3) can be written as

(r+Λ
(a)
− e+)r+QΛ

(a)
+ u = f . (4)

Define

g = (r+Λ
(−a)
− e+)f ∈ H

t+a
(Ω), then f = (r+Λ

(a)
− e+)g ;

v = r+Λ
(a)
+ u ∈ L2(Ω), then u = Λ

(−a)
+ e+v .
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Hereby the problem reduces to: Find v ∈ L2(Ω) such that

(r+Qe+)v = g , given in H
t+a

(Ω). (5)

Call (r+Qe+) = Q+ for short. By Proposition 4, Q+ has a parametrix

(almost-inverse) Q̃+, such that

Q+Q̃+ = I + S1, Q̃+Q+ = I + S2,

with smoothing operators S1 and S2 of finite rank.

Hereby v = Q̃+g solves (5) in a Fredholm sense. Then, by insertion,

u = Λ
(−a)
+ e+v = Λ

(−a)
+ e+Q̃+(r+Λ

(−a)
− e+)f

solves the original problem (3) in a Fredholm sense.

Introduce the Hörmander spaces:

Ha(s)(Ω) = Λ
(−a)
+ e+H

s−a
(Ω).

We can show using the model case discussed earlier, that they satisfy:

Ha(s)(Ω)

{
= Ḣs(Ω) if − 1

2 < s − a < 1
2 ,

⊂ e+daH
s−a

(Ω) + Ḣs (−ε)(Ω) if s − a > 1
2 ,

where d(x) = dist(x , ∂Ω), (−ε) is active if s − a− 1
2 ∈ N.
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Then we finally conclude:

Theorem 5. r+P is Fredholm

r+P : Ha(t+2a)(Ω)→ H
t
(Ω), for all t > − 1

2 .

There is the regularity property: When u ∈ Ḣσ(Ω) with σ > − 1
2 , then

r+Pu ∈ H
t
(Ω) =⇒ u ∈ Ha(t+2a)(Ω).

The theorem can be extended to other scales of function spaces, e.g.:

• The Sobolev scale Hs
p , 1 < p <∞, and the Besov and Triebel-Lizorkin

scales Bs
pq, F s

pq, for large sets of indices.

• The Hölder-Zygmund scale C s
∗ = Bs

∞,∞ (here C s
∗ equals the Hölder

space C s when s ∈ R+ \ N).

Thus for example:

f ∈ C t(Ω) =⇒ u ∈ e+daC a+t(Ω), for t ≥ 0, a + t, 2a + t /∈ N,
f ∈ C∞(Ω) =⇒ u ∈ e+daC∞(Ω);

with ε subtracted from the Hölder exponent in the excepted cases.
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4. Nonhomogeneous boundary conditions

Up to now we have studied the socalled homogeneous Dirichlet problem.

Question: Is there a nontrivial “Dirichlet boundary value” on ∂Ω, such
that the problem represents the case where that value is zero?

To give a simple explanation, consider the C∞-situation. Define

Ea(Ω) = e+(daC∞(Ω)).

One can show that Ea(Ω) is dense in Ha(s)(Ω) for all s > a− 1
2 , and that

Ha(s)(Ω) converges to Ea(Ω) for s →∞.

Take Ω = Rn
+. When u ∈ Ea(Rn

+) then u = xanv with v ∈ e+C∞(Rn

+),
and

u(x) = xanv(x ′, 0) + xa+1
n ∂nv(x ′, 0) + 1

2x
a+2
n ∂2

nv(x ′, 0) + . . . for xn > 0,

by Taylor expansion of v .
When u ∈ Ea−1(Rn

+) then u = xa−1
n w with w ∈ e+C∞(Rn

+), and

u(x) = xa−1
n w(x ′, 0) + xan∂nw(x ′, 0) + 1

2x
a+1
n ∂2

nw(x ′, 0) + . . . .
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We see that Ea−1(Rn

+) ⊃ Ea(Rn

+), differing just by the term xa−1
n w(x ′, 0).

Hereby

u ∈ Ea−1(Rn

+) is in Ea(Rn

+) ⇐⇒
(
w(x ′, 0) =

)
γ0(x1−a

n u) = 0.

This also holds for the H-scales: H(a−1)(s)(Rn

+) ⊃ Ha(s)(Rn

+), and

u ∈ H(a−1)(s)(Rn

+) is in Ha(s)(Rn

+) ⇐⇒ γ0(x1−a
n u) = 0.

For general Ω replace xn by d(x); then we likewise have
H(a−1)(s)(Ω) ⊃ Ha(s)(Ω), and

u ∈ H(a−1)(s)(Ω) is in Ha(s)(Ω) ⇐⇒ γ0(d1−au) = 0.

Definition. For u ∈ H(a−1)(s)(Ω), the Dirichlet resp. Neumann boundary
values are defined as:

γ0(d1−au) ∈ Hs−a+ 1
2 (∂Ω), when s > a− 1

2 resp.

γ1(d1−au) = γ0(∂ν(d1−au)) ∈ Hs−a− 1
2 (∂Ω), when s > a + 1

2 .
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One can check that when u is in the smaller space Ha(s)(Ω) (i.e., when
γ0(d1−au) vanishes), then γ1(d1−au) = γ0(d−au).
All this allows to set up nonhomogeneous Dirichlet resp. Neumann
problems, where u is sought in H(a−1)(s)(Ω) (for suitable s):

Dirichlet problem :


r+Pu = f on Ω,

supp u ⊂ Ω,

γ0(d1−au) = ϕ on ∂Ω.

Neumann problem :


r+Pu = f on Ω,

supp u ⊂ Ω,

γ1(d1−au) = ψ on ∂Ω.

The data are given with f ∈ H
s−2a

(Ω), ϕ ∈ Hs−a+ 1
2 (∂Ω),

ψ ∈ Hs−a− 1
2 (∂Ω).

One finds that the nonhomogeneous Dirichlet problem is Fredholm
solvable in these spaces.
The Neumann problem is Fredholm solvable at least when P has principal
symbol ∼ |ξ|2a. (G in A&PDE ’14)
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Note here that when u ∈ Ea−1(Ω), say, is such that γ0(d1−au) = ϕ 6= 0
at x0 ∈ ∂Ω, then u(x) blows up like da−1 when x → x0. The solutions
with nonzero Dirichlet data are “large” in this sense (also observed by
Abatangelo, arXiv ’13).

These Dirichlet and Neumann problems have local boundary conditions.

There exist other boundary value problems with good solvability. For
example a certain “nonlocal Neumann problem” for (−∆)a (Dipierro,
Ros-Oton and Valdinoci, arXiv’14), where a homogeneous condition
linking the value on Ω with the value on {Ω is imposed.

There also exist some quite different operators associated with (−∆)a,
namely the “spectral fractional Laplacians”. They are the a’th powers
(defined by spectral theory) of the standard realizations −∆Dir and
−∆Neu on Ω. Here the acting operator is different from r+(−∆)a for
0 < a < 1, and the domains differ in general.
For example, the domain of the spectral fractional Dirichlet operator
differs from that of our Dirichlet operator (for f ∈ L2(Ω)) when a ≥ 1

2 .
Regularity studies in Caffarelli-Stinga AnnIHP’16 and G MathNach’16.
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5. Integration by parts and a Pohozaev formula

Let us first focus on the reduction to the boundary of the expression

I ≡
∫

Ω

Pu ∂j ū
′ dx +

∫
Ω

∂ju P∗u′ dx .

Ros-Oton and Serra showed when P = (−∆)a (ARMA’14), and jointly
with Valdinoci for more general x-independent selfadjoint positive
homogeneous P (arXiv’15), that

I = Γ(a + 1)2

∫
∂Ω

s0(x)νj(x)γ0( u
da )γ0( ū′

da ) dσ,

when u, u′ solve the Dirichlet problem (3) with r+Pu, r+Pu′ ∈ C 0,1(Ω).
Here νj(x) is the j ’th component of the interior normal ν at x ∈ ∂Ω, and
s0(x) = p0(x , ν(x)), where p0 is the (principal) symbol of P. Ω is C 1,1.
It is a striking formula, since it is exact and turns I into a local
expression, and it is remarkable by pointing to the role of the boundary
value γ0( u

da ); the Neumann value when the Dirichlet value is 0.
It generalizes the easy formula for a = 1:∫

Ω

[(−∆u) ∂j ū
′ + ∂ju(−∆ū′)] dx =

∫
∂Ω

νj γ1u γ1ū
′ dσ.
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We set out to understand their formula in the context of ps.d.o.s, and to
generalize it to cases where P is x-dependent and not necessarily
selfadjoint, positive, homogeneous. We take Ω smooth. The result is:

Theorem 6. Let P be a classical ps.d.o. of order 2a (0 < a < 1) with
even symbol, elliptic avoiding a ray. Then for solutions u, u′ of the
Dirichlet problem (3),

I = Γ(a + 1)2

∫
∂Ω

s0νjγ0( u
da )γ0( ū′

da ) dσ +

∫
Ω

[P, ∂j ]u ū
′ dx ,

where [P, ∂j ] is the commutator P∂j − ∂jP.

It suffices that r+Pu, r+Pu′ are in C 1−a+ε(Ω) or H
1
2−a+ε

(Ω).

For u, u′ of low regularity, the integrals in I are understood as Sobolev
space dualities. “Elliptic avoiding a ray” means that p0(x , ξ) ∈
C \ {z = re iθ | r ≥ 0} for some θ. It holds e.g. when Re p0 > 0 for ξ 6= 0,
strong ellipticity, which is usually assumed when you study heat equations
∂tu + Pu = 0.

The model case is (−∆ + 1)a on Rn
+, j = n. To fix the ideas, take

u, u′ ∈ Ha(1+a)(Rn

+) (then r+Pu, r+Pu′ ∈ H
1−a

(Rn
+)). There is an

auxiliary result:
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Proposition 7. Let u, u′ ∈ Ha(a+1)(Rn

+). Let w = r+Ξa
+u, w ′ = r+Ξa

+u
′;

they are in H
1
(Rn

+). Then∫
Rn

+

Ξa
−e

+w ∂nū
′ dx =

∫
Rn−1

γ0w γ0w̄
′ dx ′ +

∫
Rn

+

w ∂nw̄
′ dx .

In this nontrivial calculation it enters that r+∂nu
′ ∈ r+∂nx

a
nH

1
(Rn

+)

+Ḣa(Rn

+), having an xa−1
n -singularity at the boundary.

Since r+(−∆ + 1)au = r+Ξa
−e

+r+Ξa
+u = r+Ξa

−e
+w , we find

I ≡
∫
Rn

+

(−∆ + 1)au ∂nū
′ dx +

∫
Rn

+

∂nu (−∆ + 1)aū′ dx

=

∫
Rn

+

Ξa
−e

+w ∂nū
′ dx +

∫
Rn

+

∂nu Ξa
−e

+w ′ dx

= 2

∫
Rn−1

γ0w γ0w̄
′ dx ′ +

∫
Rn

+

(w ∂nw̄
′ + ∂nw w̄ ′) dx

=

∫
Rn−1

γ0w γ0w̄
′ dx ′.

One has moreover that w = r+Ξa
+u =⇒ γ0w = Γ(a + 1)γ0( u

xa
n

). This

implies Theorem 6 in the model case.
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For general P, still with Ω = Rn
+, a factorization is used:

P = Λa
−QΛa

+ = Λa
−Q
−
0 Q+

0 Λa
+ + S,

where Q±0 are defined from the factors q±0 in the principal symbol of Q
(Theorem 3). Here Q±0 are generalized ps.d.o.s of order 0, and S is a
generalized ps.d.o. of order 2a− 1.
For bounded smooth sets Ω one combines the result for Rn

+ with
calculations in local coordinates. Extensive details in arXiv:1511.03901.

Corollary 8. For functions u, u′ ∈ Ha(s)(Ω) (s > a + 1
2 ) there holds∫

Ω

(Pu (x · ∇ū′) + (x · ∇u)P∗u′) dx =

Γ(a + 1)2

∫
∂Ω

(x · ν)s0γ0( u
da ) γ0( ū′

da ) dσ − n

∫
Ω

Pu ū′ dx +

∫
Ω

[P, x · ∇]u ū′ dx .

Here

[P, x ·∇] = P1−P2, P1 = Op(ξ ·∇ξp(x , ξ)), P2 = Op(x ·∇xp(x , ξ)).

P2 is new, P1 is new when p is not homogeneous in ξ.
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This has implications for the nonlinear Dirichlet problem

r+Pu = f (u), supp u ⊂ Ω, (6)

with f (s) ∈ C 0,1(R). Let F (t) =
∫ t

0
f (s) ds.

Corollary 9. Let P be selfadjoint. For the bounded real solutions of (6)
there holds the Pohozaev formula:

−2n

∫
Ω

F (u) dx + n

∫
Ω

f (u) u dx

= Γ(1 + a)2

∫
∂Ω

(x · ν) s0γ0( u
da )2 dσ +

∫
Ω

[P, x · ∇]u u dx .

In particular, when P is x-independent,

−2n

∫
Ω

F (u) dx + n

∫
Ω

f (u) u dx

= Γ(1 + a)2

∫
∂Ω

(x · ν) s0γ0( u
da )2 dσ +

∫
Ω

P1u u dx .

Let us end with two small applications.
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Example 1. Let P = (−∆ + m2)a. For the eigenvalue problem

r+Pu = λu, supp u ⊂ Ω,

any λ, one can derive that γ0( u
da ) = 0 implies u ≡ 0. Hence:

There are no eigenfunctions with vanishing of both Dirichlet and
Neumann data.

Example 2. For P = (−∆ + m2)a, consider the problem

r+Pu = sign u|u|r , supp u ⊂ Ω,

on a star-shaped domain Ω.
When r ≥ n+2a

n−2a , the critical and supercritical cases, one can derive that:
There are no nontrivial solutions.

The results in both examples follow from an analysis of the signs of terms
in the symbols of P and P1.

Applications of the formula in x-dependent cases will also need sign
analyses of the various terms derived from the symbol of P. As far as I
know, this is an open question.
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