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1. Spectral upper estimates
A compact selfadjoint nonnegative operator T in a Hilbert space H
has a decreasing sequence of eigenvalues µj(T ) → 0.
(i) Spectral upper estimate, with α > 0:

µj(T ) is O(j−α).

(ii) Spectral asymptotic estimate (Weyl-type estimate):

µj(T )jα → C(T ), for j →∞.

(iii) Spectral asymptotic estimate with remainder, with β > α:

µj(T )− C(T )j−α is O(j−β).

They correspond to estimates of the counting function
N ′(t ; T ) = #{µj > 1/t}, for t ↘ 0, e.g. (iii) is equivalent with

N ′(t ; T )− C(T )1/αt1/α is O(t1/α−(β−α)/α).

For general compact operators T , this applies to sj(T ) = µj(T ∗T )1/2,
s-numbers. The weak Schatten class S(p) has (i) with p = 1/α.

Gerd Grubb Copenhagen University Resolvent differences and their spectral estimates



1. Spectral upper estimates
2. Spectral asymptotic estimates in smooth cases

3. Recent studies

Let Ω be smooth open ⊂ Rn, with bounded boundary ∂Ω = Σ. Denote
∂ j

nu|Σ = γju, j ∈ N0. Consider a symmetric strongly elliptic
second-order differential operator on Ω with real C∞-coefficients and
an associated sesquilinear form

Au = −
∑n

j,k=1
∂j(ajk (x)∂k u) + a0(x)u,

a(u, v) =
∑n

j,k=1
(ajk∂k u, ∂jv) + (a0u, v), with

a(u,u) ≥ c‖u‖2
H1(Ω) − k‖u‖2

L2(Ω) for u ∈ H1(Ω);

c > 0, k ≥ 0. Set νu =
∑

njγ0(ajk∂k u) (= γ1u when A = −∆).
The maximal operator Amax acts like A in L2(Ω) with domain

D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)};

the minimal operator Amin equals A|C∞0 , with D(Amin) = H2
0 (Ω);

Amax and Amin are adjoints.
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The set M of realizations Ã of A are the operators with
Amin ⊂ Ã ⊂ Amax; they are defined by boundary conditions.
Examples:
The Dirichlet realization Aγ with D(Aγ) = {u ∈ H2(Ω) | γ0u = 0}.
Neumann-type (Robin) realizations Aχ with χu = νu − bγ0u, for a
real C∞-function b; D(Aχ) = {u ∈ H2(Ω) | χu = 0}.
Mixed realizations Aχ,Σ+ . Here Σ is a union of closed subsets
Σ+ ∪ Σ− with Σ◦

+ ∩ Σ◦
− = ∅, and D(Aχ,Σ+) is the set of

u ∈ H1(Ω) ∩ D(Amax) such that

χu = 0 on Σ+, γ0u = 0 on Σ−.

All can be defined variationally from sesquilinear forms aγ(u, v),
aχ(u, v) resp. aχ,Σ+(u, v), acting like a(u, v) + (bγ0u, γ0v), considered
on H1

0 (Ω), H1(Ω), resp. H1
Σ+

(Ω) = {u ∈ H1(Ω) | supp γ0u ⊂ Σ+}.
They are selfadjoint lower bounded, we can assume them positive by
adding a constant to A.
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M.Sh. Birman showed in 1962 the upper estimate:

Theorem 1. For Ã equal to Aχ or Aχ,Σ+ , the difference between Ã−1

and A−1
γ is compact and belongs to S((n−1)/2), i.e.,

µj(Ã−1 − A−1
γ ) is O(j−2/(n−1)). (1)

The proof used the min-max principle for Rayleigh quotients,
combined with the fact that Ã−1 − A−1

γ acts essentially in a subspace
of Z = ker Amax ⊂ L2(Ω).
Although Birman’s 1962 paper was not officially translated to English
until 2008 (by M.Z. Solomyak), unofficial translations existed from the
mid-sixties in USA.
NB! Birman only assumed a piecewise C2-boundary. According to
Solomyak’s translation, the proofs work even for Lipschitz domains.
The coefficients ajk are in Birman’s paper assumed to be continuous
with locally bounded first derivatives.
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2. Spectral asymptotic estimates in smooth cases

Improvements of the spectral upper estimates to asymptotic
estimates were worked out by Solomyak and Birman together. Here
the coefficients and the boundary are assumed to be smooth. The
result for exterior domains was published in 1980:
Theorem 2. For second-order operators on exterior domains there is
an asymptotic estimate

µj(Ã−1 − A−1
γ )j2/(n−1) → C0 for j →∞, (2)

where C0 is a constant defined from the symbols.
In the paper it is mentioned that the result was obtained by Birman
and Solomyak for bounded domains in ’78 and ’79, and that related
results were shown by Koshevnikov ’78 and H’melnitski ’78.
The results for bounded domains were in fact preceded by a precise
result of G’74:
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Theorem 3. 1◦ Let A be a strongly elliptic system of order 2m, Ω
bounded smooth. Let Aγ be the Dirichlet realization, AB a realization
defined by a normal elliptic boundary condition, both selfadjoint. Then
there is a “Kreı̆n resolvent formula”

A−1
B − A−1

γ = iV JL−1J∗ prV ,

where L−1 is an elliptic pseudodifferential operator of order −2m in a
vector bundle F over Σ, and J is an isometry from L2(Σ,F ) to a
closed subspace V ⊂ Z = ker Amax.
2◦ It follows that µ±j (A−1

B − A−1
γ ) = µ±j (L−1), and hence

µ±j (A−1
B − A−1

γ )− C±j−2m/(n−1) is O(j−(2m+1)/(n−1)),

with constants C± determined from the principal symbols.
The asymptotic estimate with remainder follows from Hörmander ’68
for elliptic ψdo’s, when the principal symbol eigenvalues of L are
simple; this restriction is removed by results of Ivrii ’82.
We have recently checked that the proof extends to exterior domains,
for uniformly strongly elliptic systems.
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The proof was based on a general extension theory by G’68, which
was a further development of the abstract theories of Kreı̆n’47,
Vishik’52 and Birman’56, combined with a full interpretation for
concrete realizations of elliptic operators.
In G’84 the calculus of pseudodifferential boundary operators initiated
by Boutet de Monvel 1971 was brought into the picture, in particular
singular Green operators.
Theorem 4. 1◦ When G is a singular Green operator of class zero
and negative order −r on Ω, then

sj(G)j r/(n−1) → C(g0) for j →∞, (3)

with a constant defined from the principal symbol g0 of G.
2◦ The difference A−1

B − A−1
γ is a singular Green operator on Ω of

class zero and order −2m. The asymptotic estimate

sj(A−1
B − A−1

γ )j2m/(n−1) → C0 for j →∞

follows, also in nonselfadjoint cases.
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Moreover, G’84 gave a general strategy of how to reduce the question
for an exterior domain to a bounded set (showing that cutoffs at
infinity give negligible errors). The method has been streamlined in a
recent publication G’11 in Applic. Anal.
This clears up the question of Weyl-type spectral asymptotic
estimates for all smooth, uniformly strongly elliptic operators with
smooth normal elliptic boundary conditions at a compact boundary.
Remainder estimates for singular Green operators can be shown in
“lucky” cases. For example, when G = KK ∗ for a Poisson operator K ,
then

µj(G) = µj(KK ∗) = µj(K ∗K );

where K ∗K is a ψdo of order −r on Σ. If K ∗K is elliptic, one gets the
estimate with optimal remainder

µj(G)− C0j−r/(n−1) = O(j−(r+1)/(n−1)).
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3. Recent studies
Besides the extension theories of Kreı̆n’47, Vishik’52. Birman’56,
G’68, there has been another development, mostly aimed towards
ODE, formulated in terms of boundary triples and Weyl-Titchmarsh
m-functions: Kochubei’75, Gorbachuk-Gorbachuk’84 (book translated
’91), Derkach-Malamud’87, Malamud-Mogilevski’97, ’02. . . . The
theory involves not only operators but also relations. Applications to
PDE are given e.g. in Amrein-Pearson’04, Behrndt-Langer’07,
Ryshov’07, Brown-Marletta-Naboko-Wood’08,. . . . A connection
between the two types of theories is explained in Brown-G-Wood’09.
A central theme in all cases is to establish Kreı̆n resolvent formulas

(Ã− λ)−1 − (Aγ − λ)−1 = G(λ) “acting on” Σ.

Example. For our A of second order, let Kγ denote the Poisson
operator Kγ : ϕ 7→ u solving the semihomogeneous Dirichlet problem

Au = 0 on Ω, γ0u = ϕ on Σ,

it maps Hs− 1
2 (Σ)

∼→ Hs(Ω) ∩ Z for s ≥ 0.
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In particular for s = 0, Kγ : H− 1
2 (Σ) → L2(Ω) and K ∗

γ : L2(Ω) → H
1
2 (Σ).

Let Pγ,χ = χKγ , the Dirichlet-to-Neumann operator (ψdo on Σ of
order 1). Then

A−1
χ − A−1

γ = KγL−1K ∗
γ , (4)

where L acts like −Pγ,χ. There is also a λ-dependent version.
(4) follows from G’68 and also from the boundary triple theories.

Recent papers by Behrndt-Langer’07, Malamud’10, Behrndt-Langer-
Lotoreichik’11 use Krein resolvent formulas to show spectral upper
estimates for general resolvent differences. They use s-number
estimates of Sobolev space embeddings. Improvements to Weyl-type
estimates in nonsmooth cases need further analytic tools.
Two new cases:
Case 1. The resolvent difference between a Robin realization and the
Neumann realization (with b = 0).
Behrndt-Langer-Lobanov-Lotoreichik-Popov’10 showed essentially:
Theorem 5. For A = −∆, χ = ν − bγ0, on a bounded smooth domain,

|µj(A−1
χ − A−1

ν )| ≤ Cj−3/(n−1). (5)
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For smooth b, this is an immediate consequence of the G’84 theorem
on singular Green operators, since A−1

χ − A−1
ν is a singular Green

operator of order −3. Then one even has

|µj(A−1
χ − A−1

ν )|j3/(n−1) → C0 for j →∞, (6)

with a specific C0. But the BLLLP’10 proof works also when b is just
in L∞(Σ). Are there Weyl-type formulas for nonsmooth b?
We have recently shown (J. Spec. Th.’11):
Theorem 6. In the second-order variable coefficient case, let the
Robin coefficient b be piecewise Cε with a jump at ∂Σ+. Then the
limit formula (6) holds.

An important ingredient in the proof is the spectral estimate of
Laptev’81 for a ψdo Q on Σ with opposite cutoffs 1Σ+Q1Σ− ; here the
dimension n − 1 in spectral estimates is replaced by n − 2.
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Case 2. The resolvent difference between a mixed realization and the
Dirichlet realization. This is much more nonsmooth than Case 1,
since the boundary condition jumps from order 0 to order 1 at the
interface between Σ− and Σ+. The realization Aχ,Σ+ is far from
regular; its domain is at best in H

3
2−ε(Ω), ε > 0 (Shamir’68).

Let X = H− 1
2

0 (Σ+), the subspace of distributions in H− 1
2 (Σ) supported

in Σ+. Its dual space is X ∗ = H
1
2 (Σ◦

+) = r+H
1
2 (Σ), where r+ denotes

restriction to Σ◦
+. Let e+ denote extension from Σ◦

+ to Σ by 0 on Σ−.
For an operator Q over Σ, denote the truncation r+Qe+ = Q+.
Let V be the subspace of Z = ker Amax that is mapped to X by γ0,
and denote the restriction of γ0 to V by γV , so γV : V ∼→ X .
In J. Math. An. Appl.’11 we show:
Theorem 7. For the mixed problem there is an operator L mapping
D(L) ⊂ X to X ∗ such that the Kreı̆n resolvent formula holds:

A−1
χ,Σ+

− A−1
γ = iVγ−1

V L−1(γ−1
V )∗ prV , (7)

Here L acts like −Pγ,χ,+ and has D(L) ⊂ H1−ε
0 (Σ+).
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NB! L−1 acts like −(Pγ,χ,+)−1, which NOT the same as −Pχ,γ,+.
Tools for the spectral analysis: Since the 70’s, a Weyl-type spectral
asymptotic formula is known to hold for a classical ψdo P of negative
order −t on a closed m-dimensional manifold Σ:

sj(P)j t/m → c(P)t/m for j →∞, with

c(P) = 1
m(2π)m

∫
Σ

∫
|ξ|=1

|p0(x , ξ)|m/t dωdx . (9)

Extensions:
Birman-Solomyak’77: (9) extends to symbols homogeneous of
degree −t in ξ and just continuous in ξ on {|ξ| = 1}, and somewhat
better than continuous in x (depending on m).
G JST’11: (9) extends to products of truncated ψdo’s P1,+P2,+ . . .Pr ,+
where the Pk are classical ψdo’s of order −tk < 0; for the constant,
|p0

1p0
2 . . .p

0
r | is then integrated over Σ+.

Perturbation: Let P ′ = P + R, where sj(R) = o(j−t/m), then also
sj(P ′)j t/m → c(P)t/m for j →∞.
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We want to find the eigenvalue asymptotics of the operator

G = iVγ−1
V L−1(γ−1

V )∗ prV .

The operator is compact nonnegative so that the s-numbers sj(G) are
eigenvalues µj(G). By the general rule µj(B1B2) = µj(B2B1),

µj(G) = µj(L−1(γ−1
V )∗ prV iVγ−1

V ) = µj(L−1(γ−1
V )∗γ−1

V ). (8)

Here we can show that with P1 = K ∗
γ Kγ , elliptic ψdo of order −1,

(γ−1
V )∗γ−1

V = r+K ∗
γ Kγe+ = P1,+ on L2(Σ+).

This reduces the problem to studying µj(L−1P1,+).
To understand L−1 = −(Pγ,χ,+)−1, restrict the attention to
A = −∆ + a0(x). In the half-space constant-coefficient case where
Σ = Rn−1, Σ± = Rn−1

± , A = −∆ + α2 with α > 0, χ = ν, we have with
|ξ′, α| = (|ξ′|2 + α2)1/2,

Pγ,ν = −Op(|ξ′, α|) = −F−1|ξ′, α|F .

Gerd Grubb Copenhagen University Resolvent differences and their spectral estimates



1. Spectral upper estimates
2. Spectral asymptotic estimates in smooth cases

3. Recent studies

Now some detailed calculations from Eskin’s book ’81 show that

−(Pγ,ν,+)−1v = (Λ+)+(Λ−)+v ,

for v ∈ L2(Rn−1
+ ), where Λ± = Op

(
(|ξ′′, α| ± iξn−1)

−1/2
)
,

ξ′′ = (ξ1, . . . , ξn−2); nonstandard ψdo’s of order − 1
2 .

A difficulty here is to handle the truncation between Λ+ and Λ−, which
is not covered by Laptev’s estimates. But Birman-Solomyak’77 is
useful in a proof that (Λ+)+(Λ−)+ differs from −Pν,γ,+ by an operator
with a better spectral behavior, over compact pieces of Rn−1.
Coordinate changes are delicate (not quite covered by Eskin’s book).
The end result is that the eigenvalues behave principally like the
eigenvalues of a composition P2,+Pν,γ,+P2,+ of truncated ψdo’s of
negative order, P2 = P1/2

1 . By the result for truncated ψdo’s:
Theorem 8. When A = −∆ + a0(x),

µj(A−1
χ,Σ+

− A−1
γ )j2/(n−1) → C2/(n−1)

+ for j →∞,

C+ = 1
(n−1)(2π)n−1

∫
Σ+

∫
|ξ|=1

|p0(x , ξ)p0
1(x , ξ)|(n−1)/2 dωdx ′.
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Since p0 and p0
1 are independent of x ′ when A = −∆ + a0(x), we

have in fact, with a universal constant cn,

C+ = cn area(Σ+).

NB! The spectral asymptotics detects the area of Σ+!
E.B. Davies has remarked that since both C+ and A−1

χ,Σ+
− A−1

γ

increase with Σ+, one can extend the result to nonsmooth interfaces
∂Σ+, by approximation from inside and outside by smooth surfaces.

Asymptotic estimates with remainders are more delicate; for these we
would need an extension of Laptev’s results to the occurring
nonstandard ψdo’s.
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Nonsmooth domains.
Kreı̆n resolvent formulas have been established in the following
cases:
• Posilicano-Raimondi’09 treat second-order selfadjoint cases on
C1,1-domains,
• G’08 treats second-order nonselfadjoint cases on C1,1-domains,
• Gesztesy-Mitrea’08 treat ∆ on C3/2+ε-domains,
• Gesztesy-Mitrea’11 treat ∆ on quasi-convex Lipschitz domains,
• Abels-G-Wood (preprint) treat second-order nonselfadjoint cases on
B3/2

p,2 -domains by pseudodifferential methods (this includes
C3/2+ε-domains).

Upper spectral estimates are in selfadjoint cases covered by
Birman’62 to a large extent.
Asymptotic spectral estimates do not seem to have been worked out
yet. We expect that the results of Birman-Solomyak’77 will be useful
also in these questions.
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