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Introduction

The fractional Laplacian (−∆)a, 0 < a < 1, has attracted recent interest
from researchers both in probability, finance, mathematical physics and
geometry. For a bounded smooth open set Ω ⊂ Rn, it is known that
there is unique solvability in L∞(Ω) of the problem

(−∆)au = f in Ω, supp u ⊂ Ω,

called the homogeneous Dirichlet problem. But the results on the
regularity of the solutions have been somewhat sparse.
• Vishik, Eskin, Shamir 1960’s: u ∈ Ḣ

1
2 +a−ε(Ω).

• Some analysis of the behavior of solutions at ∂Ω when data are C∞,
Eskin ’81, Bennish ’93, Chkadua and Duduchava ’01.

Recent activity:
• Ros-Oton and Serra (arXiv 2012) show by potential theoretic and
integral operator methods, when Ω is C 1,1, that

f ∈ L∞(Ω) =⇒ u ∈ daCα(Ω),

for some α > 0. Moreover, u ∈ C a(Ω) ∩ C 2a(Ω) . Lifted to at most
α ≤ 1 when f is more smooth. They state that they do not know of
other regularity results for (−∆)a in the literature.
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• G (arXiv13) presents a new systematic theory of pseudodifferential
boundary problems covering (−∆)a, showing

f ∈ L∞(Ω) =⇒ u ∈ daC a−ε(Ω), (1)

f ∈ C t(Ω) =⇒ u ∈ daC a+t−ε(Ω), all t > 0. (2)

This theory will be the subject of the talk.

Latest news:
• Ros-Oton, Serra can now also show (1) (assuming only Ω that is C 1,1).
By singular integral operator and potential theoretic methods (arXiv14).

• We can remove ε in (1) (if a 6= 1
2 ) and in (2) (except when a + t or

2a + t is integer); optimal (arXiv14).
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1. Pseudodifferential operators

Pseudodifferential operators (ψdo’s) were introduced in the 1960’s as a
generalization of singular integral operators (Calderon, Zygmund, Seeley,
Kohn, Nirenberg, Hörmander, Giraud, Mikhlin, . . . .) They systematize
the use of the Fourier transform Fu = û(ξ) =

∫
Rn e−ix·ξu(x) dx :

Pu =
∑
|α|≤m

aα(x)Dαu = F−1
(
p(x , ξ)û(ξ)

)
= OP(p)u,

where p(x , ξ) =
∑
|α|≤m

aα(x)ξα, the symbol.

This extends to more general functions p(x , ξ) as symbols. In the
classical theory, symbols are taken polyhomogeneous:

p(x , ξ) ∼
∑

j∈N0

pj(x , ξ), where pj(x , tξ) = tm−jpj(x , ξ)

for |ξ| ≥ 1, t ≥ 1 (here the order m ∈ C).
The elliptic case is when the principal symbol p0 is invertible; then
Q = OP(p−1

0 ) is a good approximation to an inverse of P. The theory
extends to manifolds by use of local coordinates.
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An example of a ψdo is (−∆)a = OP(|ξ|2a), of order 2a, but also variable
coefficients are allowed. E.g., for a strongly elliptic differential operator A
of order 2k , Aa is a ψdo of order 2ka.

Let Ω be a smooth open subset of Rn. There is a need to consider
boundary value problems

P+u = f on Ω, Tu = ϕ on ∂Ω;

here P+ = r +Pe+ is the truncation of P to Ω (r + restricts to Ω, e+

extends by zero on {Ω), and T is a trace operator.
Boutet de Monvel in 1971 introduced a calculus treating this when P is
of integer order and has the transmission property:

P+ maps C∞(Ω) into C∞(Ω).

Solution operators for the problem are typically of the form(
Q+ + G K

)
,

where Q ∼ P−1 and G is an auxiliary operator called a singular Green
operator, and K is a Poisson operator (going from ∂Ω to Ω).

But there are many interesting ψdo’s not having the transmission

property, e.g. (−∆)
1
2 does not have it, although of order 1.
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2. The µ-transmission property

Definition 1. For Reµ > −1, Eµ(Ω) consists of the functions u of the
form

u(x) =

{
d(x)µv(x) for x ∈ Ω, with v ∈ C∞(Ω),

0 for x ∈ {Ω;

where d(x) is > 0 on Ω, belongs to C∞(Ω), and is proportional to
dist(x , ∂Ω) near ∂Ω. More generally for j ∈ N, Eµ−j is spanned by the
distribution derivatives up to order j of functions in Eµ.

In Hörmander’s book ’85 Th. 18.2.18, for a classical ψdo P of order m:

Theorem 2. r +P maps Eµ(Ω) into C∞(Ω) if and only if the symbol
has the µ-transmission property for x ∈ ∂Ω, with N denoting the interior
normal:

∂βx ∂
α
ξ pj(x ,−N) = eπi(m−2µ−j−|α|)∂βx ∂

α
ξ pj(x ,N),

for all indices.

It is a, possibly twisted, parity along the normal to ∂Ω. Simple parity is
the case m = 2µ; it holds for |ξ|2a with m = 2a, µ = a. Boutet de
Monvel’s transmission property is the case m ∈ Z, µ = 0.
The operators are for short said to be of type µ.
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3. Solvability with homogeneous boundary conditions

The µ-transmission property was actually introduced far earlier by
Hörmander in a lecture note from IAS 1965-66, distributed by
photocopying. I received it in 1980, and have only last year studied it in
depth. It contains much more, namely a solvability theory in L2 Sobolev
spaces for operators of type µ, which in addition have a certain
factorization property of the principal symbol.

Definition 3. P (of order m) has the factorization index µ0 when, in
local coordinates where Ω is replaced by Rn

+ with coordinates (x ′, xn),

p0(x ′, 0, ξ′, ξn) = p−(x ′, ξ′, ξn)p+(x ′, ξ′, ξn),

with p± homogeneous in ξ of degrees µ0 resp. m − µ0, and p± extending
to {Im ξn ≶ 0} analytically in ξn.

Here OP(p±(x ′, ξ)) on Rn preserve support in Rn

+ resp. Rn

−.

Example: For (−∆)a on Rn we have

|ξ|2a = (|ξ′|2 + ξ2
n)a = (|ξ′| − iξn)a(|ξ′|+ iξn)a,

so that p± = (|ξ′| ± iξn)a, and the factorization index is a.
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We denote 〈ξ〉 = (1 + |ξ|2)
1
2 . The operators Ξµ± = OP((〈ξ′〉 ± iξn)µ) play

a great role in the theory.

Based on the factorization, Vishik and Eskin showed in ’64 (extension to
Lp by Shargorodsky ’95, 1 < p <∞, 1/p′ = 1− 1/p):

Theorem 4. When P is elliptic of order m and has the factorization
index µ0, then

r +P : Ḣs
p(Ω)→ H

s−Re m

p (Ω)

is a Fredholm operator for Reµ0 − 1/p′ < s < Reµ0 + 1/p.

Here we denote

Hs
p(Rn) = {u ∈ S ′ | F−1(〈ξ〉s û) ∈ Lp(Rn)},

Ḣs
p(Ω) = {u ∈ Hs

p(Rn) | supp u ⊂ Ω}, H
s

p(Ω) = r +Hs
p(Rn).

The notation with Ḣ and H stems from Hörmander ’65 and ’85.

Note that s runs in a small interval ] Reµ0 − 1/p′,Reµ0 + 1/p[ . The
problem is now to find the solution space for higher s.

For this, Hörmander introduced for p = 2 a particular space combining

the Ḣ and the H definitions:
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Definition 5. For µ ∈ C and s > Reµ− 1/p′, the space H
µ(s)
p (Rn

+) is
defined by

Hµ(s)
p (Rn

+) = Ξ−µ+ e+H
s−Reµ

p (Rn
+).

Here H
µ(s)
p (Rn

+) ⊂ S ′(Rn), supported in Rn

+, and there holds:

Proposition 6. Let s > Reµ− 1/p′. Then

Ξ−µ+ e+ : H
s−Reµ

p (Rn
+)→ Hµ(s)

p (Rn

+) has the inverse

r +Ξµ+ : Hµ(s)
p (Rn

+)→ H
s−Reµ

p (Rn
+),

and H
µ(s)
p (Rn

+) is a Banach space with the norm

‖u‖µ(s) = ‖r +Ξµ+u‖
H

s−Re µ
p (Rn

+)
.

Note the jump at xn = 0 in e+H
s−Reµ

p (Rn
+).

One has that H
µ(s)
p (Rn

+) ⊃ Ḣs
p(Rn

+), and elements of H
µ(s)
p (Rn

+) are
locally in Hs

p on Rn
+, but they are not in general Hs

p up to the boundary.
The definition generalizes to Ω ⊂ Rn by use of local coordinates.

These are Hörmander’s µ-spaces, very important since they turn out to
be the correct solution spaces.
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The spaces H
µ(s)
p replace the Eµ in a Sobolev space context, in fact one

has:

Proposition 7. Let Ω be compact, and let s > Reµ− 1/p′. Then

Eµ(Ω) ⊂ Hµ(s)
p (Ω) densely, and

⋂
s
Hµ(s)

p (Ω) = Eµ(Ω).

We can now state the basic theorems:

Theorem 8. When P is of order m and type µ, r +P maps H
µ(s)
p (Ω)

continuously into H
s−Re m

p (Ω) for all s > Reµ− 1/p′.

Theorem 9. Let P be elliptic of order m, with factorization index µ0,
and of type µ0(mod 1). Let s > Reµ0 − 1/p′. The solutions u in

Ḣ
Reµ0−1/p′+ε
p (Ω) of the equation

r +Pu = f , f given in H
s−Re m

p (Ω),

belong to H
µ0(s)
p (Ω). Moreover, the mapping

r +P : Hµ0(s)
p (Ω)→ H

s−Re m

p (Ω) (4)

is Fredholm.

This represents a homogeneous Dirichlet problem.
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The proofs in the old 1965 notes (for p = 2) are long and difficult. One
of the difficulties is that the Ξµ± are not truly ψdo’s in n variables, the
derivatives of the symbols (〈ξ′〉 ± iξn)µ do not decrease for |ξ| → ∞ in
the required way.
More recently we have found (G ’90) a modified choice of symbol that

gives true ψdo’s Λ
(µ)
± with the same holomorphic extension properties for

Im ξn ≶ 0; they can be used instead of Ξµ±, also for p 6= 2.
This allows a reduction of some of the considerations to cases where the
Boutet de Monvel calculus (extended to Hs

p in G ’90) can be applied.

In fact, when we for Theorem 9 introduce

Q = Λ
(µ0−m)
− PΛ

(−µ0)
+ ,

we get a ψdo of order 0 and type 0, with factorization index 0; then

r +Pu = f , with supp u ⊂ Ω,

can be transformed to the equation

r +Qv = g , where v = Λ
(µ0)
+ u, g = r +Λ

(µ0−m)
− e+f .

Here the Boutet de Monvel calculus applies to Q and provides good
solvability properties for all s > Reµ0 − 1/p′.
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Since
⋂

sH
µ(s)
p (Ω) = Eµ(Ω), and

⋂
sH

s−Re m

p (Ω) = C∞(Ω), one finds as a
corollary when s →∞:

Corollary 10. Let P be as in Theorem 9 and let u be a function
supported in Ω. If r +Pu ∈ C∞(Ω), then u ∈ Eµ0 (Ω). Moreover, the
mapping

r +P : Eµ0 (Ω)→ C∞(Ω)

is Fredholm.

One can furthermore show that the finite dimensional kernel and cokernel
(a complement of the range) of the mapping in Corollary 10 serve as
kernel and cokernel also in the mappings for finite s in Theorem 9.

Note the sharpness: The functions in Eµ0 have the behavior
u(x) = d(x)µ0 v(x) at the boundary with v ∈ C∞(Ω); they are not in
C∞ themselves, when µ0 /∈ N0 !

We find using Poisson operators from the Boutet de Monvel calculus that

also the H
µ(s)
p -spaces give rise to a factor d(x)µ, namely

Hµ(s)
p (Ω) ⊂ e+d(x)µH

s−Reµ

p (Ω) + Ḣs
p(Ω), if s > Reµ+ 1/p

(with Ḣs
p(Ω) replaced by Ḣs−ε

p (Ω) if s − Reµ ∈ N).
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4. Hölder estimates

There is currently much interest for Hölder estimates of solutions.
One can apply Sobolev embeddings to the Hs

p-spaces and let p →∞.
Another even more efficient method is to extend our results to general
function spaces, including Hölder-Zygmund spaces. By Johnsen ’96, the
Boutet de Monvel theory extends to F s

p,q (Triebel-Lizorkin) spaces and
Bs
p,q (Besov) spaces for s ∈ R, 0 < p, q ≤ ∞ (p <∞ in the F -case).

This includes Bs
∞,∞ (Hölder-Zygmund spaces) that equal ordinary Hölder

spaces when s ∈ R+ \ N. We shall write Bs
∞,∞ = C s

∗ for all s ∈ R.
Also the mapping properties of Λµ± and the description of the µ-spaces

C
µ(s)
∗ extend. Theorem 9 is generalized to:

Theorem 11. Let P be elliptic of order m, with factorization index µ0,
and of type µ0(mod 1). Let s > Reµ0 − 1. The solutions u in

Ċ Reµ0−1+ε
∗ (Ω) of the equation

r +Pu = f , f given in C
s−Re m

∗ (Ω),

belong to C
µ0(s)
∗ (Ω). Moreover, the following mapping is Fredholm:

r +P : C
µ0(s)
∗ (Ω)→ C

s−Re m

∗ (Ω). (5)
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Here the µ-spaces satisfy:

C
µ(s)
∗ (Ω) ⊂ e+d(x)µC

s−Reµ

∗ (Ω) + Ċ s
∗(Ω), if s > Reµ

(with Ċ s
∗(Ω) replaced by Ċ s−ε

∗ (Ω) if s − Reµ ∈ N).

This has the consequence for (−∆)a, 0 < a < 1:

Corollary 12. Assume u ∈ e+L∞(Ω). If u solves

r +(−∆)au = f , (6)

then

f ∈ L∞(Ω) =⇒ u ∈ e+d(x)aC a(Ω) (when a 6= 1
2 ).

f ∈ C t(Ω) =⇒ u ∈ e+d(x)aC t+a(Ω) (when t + a, t + 2a /∈ N).

The problem (6) is uniquely solvable in these spaces.

These results are optimal. In the exceptional cases we subtract ε from

the Hölder exponent. The first estimate, with C a−ε, has very recently

been obtained by Ros-Oton and Serra for C 1,1-domains (with nonlinear

implications).
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5. Nonhomogeneous boundary conditions

Let Reµ0 > 0. Since u(x) = xµ0
n v(x) with v ∈ C∞(Rn

+) implies

u(x) = xµ0−1
n xnv(x) with xnv ∈ C∞(Rn

+), Eµ0 (Rn

+) ⊂ Eµ0−1(Rn

+).

Similar statement for Ω with xn replaced by d(x).

When u ∈ Eµ0−1(Rn

+), it equals xµ0−1
n w for a w ∈ C∞(Rn

+), so

γµ0−1,0u ≡ γ0(x−µ0+1
n u) = γ0w ∈ C∞(∂Rn

+)

is well-defined, takes all values. We see that

Eµ0 (Rn

+) = {u ∈ Eµ0−1(Rn

+) | γµ0−1,0u = 0}.

This extends to the Sobolev and Hölder-Zygmund spaces, where

Hµ0(s)
p (Ω) ⊂ H(µ0−1)(s)

p (Ω), C
µ0(s)
∗ (Ω) ⊂ C

(µ0−1)(s)
∗ (Ω).

Theorem 13. When Reµ0 > 0, the mapping γµ0−1,0 extends to
continuous and surjective mappings

γµ0−1,0 : H(µ0−1)(s)
p (Ω)→ Bs−Reµ0+1/p′

p (∂Ω), when s > Reµ0 − 1/p′,

γµ0−1,0 : C
(µ0−1)(s)
∗ (Ω)→ C s−Reµ0+1

∗ (∂Ω), when s > Reµ0 − 1,

with kernel H
µ0(s)
p (Ω) resp. C

µ0(s)
∗ (Ω).
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Now Theorem 13 can be combined with Theorems 9 and 11 to show the
solvability of nonhomogeneous Dirichlet problems:

Theorem 14. Let P be as in Theorem 9. The mappings

{r +P, γµ0−1,0} : H(µ0−1)(s)
p (Ω)→ H

s−Re m

p (Ω)× Bs−Reµ0+1/p′

p (∂Ω)

{r +P, γµ0−1,0} : C
(µ0−1)(s)
∗ (Ω)→ C

s−Re m

∗ (Ω)× C s−Reµ0+1
∗ (∂Ω)

are Fredholm for s > Reµ0 − 1/p′, resp. s > Reµ0 − 1.

For (−∆)a, 0 < a < 1, this gives:

Corollary 15. There is a unique solution u ∈ C
(a−1)(2a)
∗ (Ω) of

r +(−∆)au = f ∈ L∞(Ω), γa−1,0u = ϕ ∈ C a+1(∂Ω);

it satisfies (with modifications for a = 1
2 ),

u ∈ e+d(x)a−1C a+1(Ω) + Ċ 2a(Ω).

Moreover,

f ∈ C t(Ω), ϕ ∈ C t+a+1(∂Ω) =⇒ u ∈ e+d(x)a−1C t+a+1(Ω)+Ċ 2a+t(Ω),

(with modifications if t + a or t + 2a is integer).
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Note that since a− 1 < 0, the term in d(x)a−1C t+a+1(Ω) can blow up at
the boundary; it does so nontrivially when ϕ 6= 0.

In the studies by potential- and integral operator-methods, this
phenomenon is called “large solutions” (blowing up at ∂Ω). We see that
such solutions appear very naturally, with a precise singularity, when the
boundary condition is nonhomogeneous.

Further remarks. Our study moreover allows treatments of other
boundary conditions (also vector valued). For example, r +(−∆)au = f
with a Neumann condition ∂n(d(x)1−au)|∂Ω = ψ can be shown to be
Fredholm solvable.
The current efforts for problems involving the fractional Laplacian are
often concerned with nonlinear equations where it enters, and there is an
interest also in generalizations with low regularity of the domain or the
coefficients.
For problems where ∆ itself enters, one has a old and well-known
background theory of boundary value problems in the smooth case. This
has been absent in the case of (−∆)a, and we can say that the present
results provide that missing link.
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The methods used in the current literature on (−∆)a are often integral
operator methods and potential theory. Here is one of the strange
formulations used there:

Because of the nonlocal nature of (−∆)a, when we consider a subset
Ω ⊂ Rn, auxiliary conditions may be given as exterior conditions, where
the value of the unknown function is prescribed on the complement of Ω.

Then the homogeneous Dirichlet problem is formulated as:{
r +(−∆)aU = f on Ω,

U = g on {Ω. (8)

The nonhomogeneous Dirichlet problem is then formulated (for more
general U) as: 

r +(−∆)aU = f on Ω,

U = g on {Ω, (9)

d(x)1−aU = ϕ on ∂Ω.

(Abatangelo arXiv November ’13.) We can show, when Ω is smooth:

Within the framework of Hs
p and C s

∗ spaces, (8) and (9) can be reduced

to problems with the unknown u supported in Ω (i.e., g = 0), uniquely
solved by our preceding theorems.
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