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Abstract

Strongly elliptic classical pseudodifferential operators P include fractional
Laplacians of order a > 0 and their perturbations, in particular the
Dirichlet-to-Neumann operator of order 1, associated with the Laplacian
on a smooth manifold with boundary. By pseudodifferential methods we
show that the kernels of the heat semigroups exp(−tP) they generate,
satisfy Poissonian estimates. In particular, when P is selfadjoint, uniform
estimates for complex t with positive real part are obtained. Joint work
with Heiko Gimperlein.

H. Gimperlein and G. Grubb: Heat kernel estimates for pseudodifferential
operators, fractional Laplacians and Dirichlet-to-Neumann operators,
arXiv:1302.6529, to appear in J. Evol. Eq.

Gerd Grubb Copenhagen University Heat kernel estimates



1. Sectorially elliptic pseudodifferential operators

Consider P, classical sectorially elliptic ψdo of order d ∈ R+ (possibly a
system) on a closed n-dimensional Riemanninan C∞-manifold M.

The principal symbol p0(x , ξ) of P has spectrum in a sector
{λ | | arg λ| ≤ ϕ0} with ϕ0 ∈ [0, π2 [ . The heat semigroup V (t) = e−tP

exists for | arg t| < π
2 −ϕ0, defined from the resolvent Qλ = (P −λ)−1 by

a Cauchy integral around the spectrum. Estimates of kernel KV (x , y , t)?

Examples:
1◦ d = 1, M = ∂M̃ for an n + 1-dimensional smooth Riemanninan
manifold M̃ with boundary. The Dirichlet-to-Neumann operator PDN

maps the boundary value u of a harmonic function ũ on M̃ into the
normal derivative ∂ν ũ. PDN is a selfadjoint nonnegative elliptic ψdo of
order 1 on M (when signs are chosen conveniently).

2◦ d ∈ R+. The powers (−∆)a of the Laplace-Beltrami operator on M
are nonnegative selfadjoint elliptic ψdo’s of order d = 2a.

3◦ Generalizations of these cases, e.g. where in 1◦ the Laplacian on M̃ is

replaced by a general strongly elliptic 2’ order operator, possibly a

system, or e.g. where ∆ on M is replaced by perturbations by lower-order

terms, or more general sectorially elliptic systems.
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It is known from works of Seeley, also shown in G. book ’96, that Qλ

exists for λ in a sectorial region
Wr0,ε = {λ ∈ C | |λ| ≥ r0, arg λ ∈ [ϕ0 + ε, 2π − ϕ0 − ε]},
and that a parametrix Q ′λ consistent with Qλ exists on a larger set
Vδ,ε = Wr0,ε ∪ {|λ| ≤ δ} ∪ {Reλ < inf|ξ|=1 Re p0(x , ξ)}.
The symbol q(x , ξ, λ) of Qλ is holomorphic in λ and satisfies in local
coordinates, for λ on rays {λ = µde iϕ | µ ∈ R+} in Vδ,ε, all M:

q(x , ξ, λ) =
∑

0≤l<M

q−d−l + q′M , where q−d = (p0(x , ξ)− λ)−1,

|Dβ
x Dα

ξ q−d−l | ≤ C 〈ξ〉d−l−|α|〈ξ, µ〉−2d , for l + |α + β| > 0,

where 〈ξ〉 = (|ξ|2 + 1)
1
2 , 〈ξ, µ〉 = (|ξ|2 + µ2 + 1)

1
2 . There is a similar

estimate of the remainder symbol q′M . The heat semigroup V (t) = e−tP

is defined from P by the Cauchy integral formula

V (t) = i
2π

∫
C

e−tλ(P − λ)−1 dλ,

where C is a contour around the spectrum of P, e.g. of the form ∂Wr0,ε.
Here the symbol v(x , ξ, t) = v−d + · · ·+ v−d−M+1 + v ′M satisfies e.g.

|Dβ
x Dα

ξ v−d−l(x , ξ, t)| ≤ C 〈ξ〉d−l−|α|te−c
′t .
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We define V−d−l(t) and V ′M(t) to be operators with symbols v−d−l , v ′M
in local coordinates. G ’96 showed supx,y -estimates for the kernels
KV (x , y , t), KV−d−l

, KV ′M
, obtaining the asymptotic expansion of Tr V (t)

in powers of t with log t for t → 0.
The first task is to generalize this to Poisson-like estimates for t ∈ R+.

Prop. A. (Taylor ’81) Let a(x , ξ) satisfy |Dα
ξ a(x , ξ)| ≤ C 〈ξ〉r−|α| for

some r ∈ R, N > n + r , all |α| ≤ N. Let A = Op(a).
Then the kernel KA(x , y) = F−1

ξ→za(x , ξ)|z=x−y is O(|x − y |−N) for
|x − y | → ∞, and satisfies for |x − y | > 0:

|KA(x , y)| ≤ C


|x − y |−r−n if r > −n,

| log |x − y ||+ 1 if r = −n,

1 if r < −n.

It holds in particular when a ∈ S r
1,0(Rn × Rn).

Theorem 1. 1◦ The kernels KV−d−l
(x , y , t) satisfy in local coordinates,

for some c ′ > 0,

|KV−d−l
(x , y , t)| ≤ Ce−c

′t


t (|x − y |+ t

1
d )l−d−n if d − l > −n,

t (| log(|x − y |+ t
1
d )|+ 1) if d − l = −n,

t if d − l < −n,

and there are similar estimates for KV ′M
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2◦ The kernel KV (x , y , t) satisfies on M

|KV (x , y , t)| ≤ Ce−c1tt (d(x , y) + t
1
d )−d−n,

for any c1 < γ(P) = inf Re spec P.

When the eigenvalues λ of P with real part equal to γ(P) are semisimple
(geometric multiplicity equals algebraic multiplicity), there is an estimate
with c1 = γ(P).

NB! Nonselfadjoint P are allowed. E.g. there is in probability theory an
interest for operators such as P = (−∆)

1
2 + b(x) · ∇+ c(x), real b and

c , smooth and bounded with bounded derivatives. Since

p0(x , ξ) = |ξ|+ ib · ξ, Re p0 = |ξ|,

the operator is strongly elliptic and nonselfadjoint, and the theorem
applies to it. Treated with other methods e.g. by Xie and Zhang ’12.

Recall that p0(x , ξ) has its spectrum in a sector {| arg λ| ≤ ϕ0} with

ϕ0 <
π
2 . Let θ0 = π

2 − ϕ0. By rotating P, one can extend the estimates

to t in sectors {| arg t| ≤ θ0 − ε}, ε > 0.
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2. The selfadjoint case

Consider P selfadjoint ≥ 0. Then V (t) exists for all complex t with
| arg t| < π

2 . The above methods give uniform estimates in sectors
{| arg t| ≤ π

2 − ε}, but it a more difficult question to find out what
happens when arg t → ±π2 .
From the estimates c1|ξ|d ≤ p0(x , ξ) ≤ c2|ξ|d follow the resolvent
estimates, when arg λ = ϕ:

|q−d(x , ξ, λ)| = |(p0(x , ξ)− λ)−1| ≤ C | sinϕ|−1〈ξ, µ〉−d .
Note that ∂xj q−d = −q−d(∂xj p

0)q−d , so each time we take a derivative,
an extra factor | sinϕ|−1 comes in. We get for l + |α + β| > 0:

|Dβ
x Dα

ξ q−d−l(x , ξ, λ)| ≤ C | sinϕ|−2l−1−|α|−|β|〈ξ〉d−l−|α|〈ξ, µ〉−2d .

Now it is important to economize with the use of derivatives in estimates.
Still based on Prop. A, we find estimates in terms of t = |t|e iθ such as

|KV−d−l
(x , y , t)| ≤

Ce−c
′ Re t


(cos θ)−Nl |t| (|x − y |+ |t| 1

d )l−d−n if d − l > −n,

(cos θ)−Nl |t| (| log(|x − y |+ |t| 1
d )|+ 1) if d − l = −n,

(cos θ)−Nl |t| if d − l < −n,
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Nl =


max{ nd , [d − 1 + n] + 3} if l = 0,

max{2l + 1 + n−l
d , 2l + 2 + [d − 1 + n]} if l > 0, d − l > −n,

2l + 2 if d − l = −n,

2l + 1 if d − l < −n.

Roughly, Nl . 2l + n + d .
This is not so bad, but we are really after the full kernel, which includes
the remainder V ′M = V −

∑
l<M V−d−l , that must be estimated in an

exact form. In G ’96, exact remainders were found (by spectral invariance
arguments), but estimated only for t on rays, not for θ → ±π2 .

The problem is studied for the remainder Q ′M = Qλ −
∑

l<M Q−d−l , by a
mix of functional analysis estimates and ψdo estimates. We shall use:

Prop. B. (Agmon ’62) Let T be a bounded linear operator in L2(Ω)
such that T and T ∗ map into Hm(Ω) for an m > n. Then T has a
continuous and bounded kernel KT (x , y) satisfying

|KT (x , y)| ≤ C (‖T‖0,m + ‖T ∗‖0,m)n/m‖T‖1−n/m
0,0 .
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Prop. C. (Marschall ’87) Let a(x , ξ) satisfy |Dβ
x Dα

ξ a(x , ξ)| ≤ C0〈ξ〉−|α|
for |α| ≤ N, |β| ≤ 1, for some N > n

2 . Then A = Op(a) is bounded on
L2(Rn), and ‖A‖0,0 ≤ C C0.

It holds in particular for a ∈ S0
1,0(Rn × Rn).

The remainder is captured in the formula

Q ′M = Q ′M(P − λ)Qλ = RMQλ, where

RM = (Qλ −
∑

l<M
Q−d−l)(P − λ) = 1−

∑
l<M

Q−d−l(P − λ)

is a ψdo of order −M constructed from known symbols.
Also in the symbol compositions, we must deal with remainders. Here
results are best when the right-hand factor is independent of λ:

Lemma 2. When

|Dβ
x Dα

ξ a(x , ξ, λ)| ≤ C | sinϕ|−N−|α|−|β|〈ξ〉d1−|α|〈ξ, µ〉−2d ,

|Dβ
x Dα

ξ b(x , ξ)| ≤ C 〈ξ〉d2−|α|,

then Op(a) Op(b) = Op(c), where

c(x , ξ, λ) =
∑
|α|<L

1
α! Dα

ξ a(x , ξ, λ)∂αx b(x , ξ) + cL(a, b),

|Dβ
x Dα

ξ cL(a, b)| ≤ C | sinϕ|−N−L−|α|−|β|〈ξ〉d1+d2−L−|α|〈ξ, µ〉−2d .
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For the symbol rM of RM this gives (also other compositions are needed)

|Dβ
x Dα

ξ rM | ≤ C | sinϕ|−2M−|α|−|β|〈ξ〉d−M−|α|〈ξ, µ〉−2d ,

For the exact operators, the formula

Qλ = −λ−1 + λ−1QλP

gives a useful extra decay in λ when we define V ′M by a contour integral.
Here we have some estimates by functional analysis:

‖Qλ‖s,s ≤ C | sinϕ|−1|λ|−1, ‖QλP‖s,s ≤ C | sinϕ|−1.

Estimating ψdo norms by use of Prop. C and resulting kernels by Prop.
B, and performing the contour integration, where cos θ ∼ | sinϕ|, we
arrive at

Theorem 2. The remainder kernel KV ′M
satisfies for M > 2d + n + 2,

t = |t|e iθ:

|KV ′M
(x , y , t)| ≤ C (cos θ)−2d− 7

2 n−7|t|.

Combining this with the estimates for the homogeneous terms V−d−l , we

finally obtain:
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Theorem 3. In the case where P is selfadjoint ≥ 0,

|KV (x , y , t)| ≤ C (cos θ)−Ne−γ(P) Re t |t|
(d(x , y) + |t| 1

d )d
((d(x , y) + |t| 1

d )−n + 1),

N = max{ nd ,
7n
2 + 4d + 7}.

Ouhabaz and ter Elst ’13 have a similar result just for PDN , where d = 1,
with

N = 2n(n + 1) compared to our N = 7n
2 + 11.

It is nonlinear in n and larger than ours when n ≥ 6.

Methods: Multiple commutator estimates for semigroups defined from
iterates of PDN , refined (Lp → Lq)-estimates for pseudodifferential
operators (Coifman-Meyer and others), Riesz potentials, interpolation,
and other tools.

For t real, they also treat PDN for −∆ + v(x), v ∈ L∞, v ≥ 0. (A

corollary by domination methods.) Our study allows any smooth real v .
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We can also show lower estimates for t > 0:

Theorem 4. Let 0 < d < 2 and let P = (−∆)d/2 + P ′, P ′ of order
d − 1. Then there is an r > 0 such that

|KV (x , y , t)| ≥ ct (d(x , y) + t
1
d )−d−n, for d(x , y) + t

1
d ≤ r .

This follows from precise estimates for (−∆)d/2 combined with our
estimates applied to the first remainder V − V−d . It is valid in particular
for PDN .

If time permits, discuss operators on domains.
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3. Fractional Laplacians on domains

Results on (−∆)a restricted to open subsets Ω ⊂ Rn are generally
obtained by functional analytic methods, positivity considerations etc.
There seems to be a need for clarification of what regularity properties
the solutions have of an equation

(−∆)au = f on Ω.

Take Ω smooth and bounded. The Boutet de Monvel theory of
pseudodifferential boundary problems only works when a is integer.

Ros-Oton and Serra showed ’12, when 0 < a < 1, Ω is C 1,1:
For some 0 < α < min{a, 1− a} (xn a normal coordinate),

f ∈ L∞(Ω) =⇒ u ∈ xa
nCα(Ω).

Lifted up to u ∈ xa
nCγ(Ω) with a γ ≤ 1 when f is better.

Ψdo methods? By Vishik and Eskin ’60 (Lp extension by Shargorodsky
’95), (−∆)a has a factorization with index a:

|ξ|a = (|ξ′| − iξn)a(|ξ′|+ iξn)a,

extending analytically to Im ξn > 0 resp. Im ξn < 0, which implies

‖u‖Hs
p
≤ C‖f ‖Hs−2a

p
for s ∈ a+ ]− 1/p′, 1/p[ .
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For s = 1/p + a− ε, p →∞, this gives at best u ∈ C a−ε(Ω).

But there are some other considerations by Hörmander, described in a
typed lecture note from IAS Princeton 1965 (I received it 1980).

More generally than Boutet de Monvel’s two-sided transmission
condition, he defined the µ-transmission condition for any µ ∈ C, for any
classical ψdo P of order m ∈ C. In local coordinates, at points x ∈ ∂Ω
with interior normal N, it requires:

∂βx ∂
α
ξ pj(x ,−N) = eπi(m−j−|α|−2µ)∂βx ∂

α
ξ pj(x ,N).

It is satisfied by (−∆)a with m = 2a, µ = a. Boutet’s case is where
µ = 0 and m ∈ Z.

Proposition. (H book ’85, Th. 18.2.18.) The µ-transmission condition is
necessary and sufficient for P to map Eµ = xµn C∞(Ω) into C∞(Ω).

The notes develop a solvability theory in L2-Sobolev spaces for

µ-transmission operators, departing from Vishik and Eskin’s estimates.
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I have at present worked out an extension to Lp-Sobolev spaces, drawing
on the understanding that has been developed since 1965, in particular:

a joint work GH ’90 on 0-transmission operators of any real order;

the extension of Boutet’s calculus to Lp-spaces G ’90, with sharp
order-reduction operators.

By combination with Sobolev embedding, this implies for any a, t > 0:

Application. When rΩ(−∆)au = f for some u supported in Ω, then

f ∈ L∞(Ω) =⇒ u ∈ xa
nC a−ε(Ω),

f ∈ C t(Ω) =⇒ u ∈ xa
nC t+a−ε(Ω).

The first result sharpens the result by Ros-Oton and Serra ’12, the
second generalizes it to high t (when Ω is smooth).
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