Introductory workshop

Analysis of Singular Spaces
 MSRI

September 2008

Index theory introduction

Gerd Grubb

I. Summary on pseudodifferential operators.

The symbol $p(x, \xi)$ is in $S_{1,0}^{d}\left(\Omega, \mathbb{R}^{n}\right)$, when

$$
\left|D_{x}^{\beta} D_{\xi}^{\alpha} p(x, \xi)\right| \leq c(x)\langle\xi\rangle^{d-|\alpha|}, \forall \alpha, \beta ;
$$

here $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$. It is classical, $\in S^{d}\left(\Omega, \mathbb{R}^{n}\right)$, when there exist $p_{d-l}(x, \xi)$ for $l \in \mathbb{N}_{0}$ such that
(i) $p_{d-l}(x, t \xi)=t^{d-l} p_{d-l}(x, \xi)$ for $|\xi| \geq 1, t \geq 1$,
(ii) $p(x, \xi)-\sum_{0 \leq l<M} p_{d-l}(x, \xi) \in S_{1,0}^{d-M}\left(\Omega, \mathbb{R}^{n}\right), \forall M$;
in short, $p \sim \sum_{l \in \mathbb{N}_{0}} p_{d-l}$ in $S_{1,0}^{d}\left(\Omega, \mathbb{R}^{n}\right)$.
Elliptic, when the principal symbol $p_{d}(x, \xi) \neq 0, \forall x \in \Omega,|\xi| \geq 1$.
The associated pseudodifferential operator - ψ do - is

$$
P u(x) \equiv \operatorname{Op}(p(x, \xi)) u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi
$$

Operators "in (x, y)-form" are defined via oscillatory integrals:

$$
\operatorname{Op}(p(x, y, \xi)) u(x)=(2 \pi)^{-n} \int e^{i(x-y) \cdot \xi} p(x, y, \xi) u(y) d \xi d y ;
$$

here $p(x, y, \xi) \in S_{1,0}^{d}\left(\Omega \times \Omega, \mathbb{R}^{n}\right)$. We say that $p \sim p_{1}, P \sim P_{1}$, if $p-p_{1}$ resp. $P-P_{1}$ is of order $-\infty$.

Theorem 1. $\operatorname{Op}(p) \operatorname{Op}\left(p^{\prime}\right) \sim \operatorname{Op}\left(p^{\prime \prime}\right)$, where

$$
\begin{equation*}
p^{\prime \prime}=p \# p^{\prime} \sim \sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{1}{\alpha!} D_{\xi}^{\alpha} p \partial_{x}^{\alpha} p^{\prime} \quad \text { in } S_{1,0}^{d+d^{\prime}}\left(\Omega, \mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

the Leibniz product.

Theorem 2. When p is elliptic $\in S^{d}\left(\Omega, \mathbb{R}^{n}\right)$, then $\exists q \in S^{-d}\left(\Omega, \mathbb{R}^{n}\right)$ such that $p \# q \sim 1$. Then $P=\operatorname{Op}(p)$ and $Q=\operatorname{Op}(q)$ satisfy

$$
\begin{equation*}
P Q=I-\mathcal{R}_{1}, \quad Q P=I-\mathcal{R}_{2}, \quad \mathcal{R}_{1} \text { and } \mathcal{R}_{2} \text { of order }-\infty . \tag{2}
\end{equation*}
$$

Q is called a parametrix of P, q a parametrix symbol.

Theorem 3. When $p \in S_{1,0}^{d}\left(\Omega, \mathbb{R}^{n}\right)$, then (for Sobolev spaces)

$$
\begin{equation*}
\mathrm{Op}(p): H_{\text {comp }}^{s}(\Omega) \rightarrow H_{\mathrm{loc}}^{s-d}(\Omega), \forall s \in \mathbb{R} \tag{3}
\end{equation*}
$$

Theorem 4. The space of classical ψ do's is invariant under C^{∞} coordinate changes. The principal symbol has a meaning independent of the choice of coordinates. In particular, ellipticity is defined invariantly.

Allows the definition of ψ do's on smooth manifolds. Let X be a compact manifold without boundary, P elliptic on X. Then (2) and (3) hold on X (we can drop "comp" and "loc"). By Rellich's theorem, \mathcal{R}_{1} and \mathcal{R}_{2} are compact operators in any $H^{s}(X)$. Then

$$
P: H^{s}(X) \rightarrow H^{s-d}(X)
$$

is a Fredholm operator, with finite dimensional kernel (the nullspace)
and cokernel $\left(H^{s-d}(X) / \operatorname{ran} P\right)$, independently of s. In this way
P has an index:
index $P=\operatorname{dim} \operatorname{ker} P-\operatorname{dim}$ coker P.
Moreover, P^{*} is likewise elliptic of order d, and $\operatorname{dim} \operatorname{coker} P=\operatorname{dim} \operatorname{ker} P^{*}$.

The index depends only on p_{d}. The Atiyah-Singer index theorem (1964) shows that this integer is equal to a certain constant defined by algebraic topology from P and X.

The theory likewise works for matrix-formed operators (square matrices in elliptic considerations), and their generalizations to operators in vector bundles over manifolds.

Details of the ψ do theory can be found e.g. in Chapters 7-8 of a coming book: http://www.math.ku.dk/~grubb/distribution.htm

II. An index formula.

We now assume $d>0$. The operators $P^{*} P$ and $P P^{*}$ are elliptic of order $2 d$; they define selfadjoint nonnegative realizations in $L_{2}(X)$ with discrete spectrum going to ∞.

Lemma 5. $\operatorname{ker} P^{*} P=\operatorname{ker} P$ and $\operatorname{ker} P P^{*}=\operatorname{ker} P^{*}$. For $\lambda>0$,

$$
\operatorname{dim} \operatorname{ker}\left(P^{*} P-\lambda\right)=\operatorname{dim} \operatorname{ker}\left(P P^{*}-\lambda\right)
$$

There is a nice trick from the early days of index theory: Let $\varphi(\lambda)$ be a function on $\overline{\mathbb{R}}_{+}$with $\varphi(0)=1$, and let M be a discrete subset of $\overline{\mathbb{R}}_{+}$containing 0 . Then

$$
\text { index } P=\operatorname{dim} \operatorname{ker} P-\operatorname{dim} \operatorname{ker} P^{*}
$$

$$
=\sum_{\lambda \in M} \varphi(\lambda)\left(\operatorname{dim} \operatorname{ker}\left(P^{*} P-\lambda\right)-\operatorname{dim} \operatorname{ker}\left(P P^{*}-\lambda\right)\right)
$$

Applying this with $\varphi(\lambda)=e^{-t \lambda}, t>0$, and M containing the eigenvalues of $P^{*} P$ and $P P^{*}$, we get:
index $P=$

$$
\begin{aligned}
& =\sum_{M} e^{-t \lambda}\left(\operatorname{dim} \operatorname{ker}\left(P^{*} P-\lambda\right)-\operatorname{dim} \operatorname{ker}\left(P P^{*}-\lambda\right)\right) \\
& =\sum_{j \in \mathbb{N}} e^{-t \lambda_{j}\left(P^{*} P\right)}-\sum_{j \in \mathbb{N}} e^{-t \lambda_{j}\left(P P^{*}\right)} \\
& =\operatorname{Tr} e^{-t P^{*} P}-\operatorname{Tr} e^{-t P P^{*}} ;
\end{aligned}
$$

here the $\lambda_{j}\left(P^{*} P\right), j \in \mathbb{N}$, denote the eigenvalues of $P^{*} P$ repeated according to multiplicity, with a similar definition of $\lambda_{j}\left(P P^{*}\right)$. It is known that

$$
\operatorname{Tr} e^{-t P^{*} P}=c_{-n} t^{-\frac{n}{2 d}}+\cdots+c_{-1} t^{-\frac{1}{2 d}}+c_{0}+o(t) \text { for } t \rightarrow 0
$$

(a heat trace expansion), and similarly for $P P^{*}$, so we get by subtraction a formula

$$
\text { index } P=h(t)+c_{0}\left(P^{*} P\right)-c_{0}\left(P P^{*}\right)+g(t)
$$

where $g(t) \rightarrow 0$ for $t \rightarrow 0$, and $h(t)$ blows up for $t \rightarrow 0$ unless it is
0 . Since the left-hand side is independent of t, we conclude first
that $h(t)=0$ and next that $g(t)=0$, obtaining

Theorem 6. index $P=c_{0}\left(P^{*} P\right)-c_{0}\left(P P^{*}\right)$.

The constants $c_{0}\left(P^{*} P\right)$ and $c_{0}\left(P P^{*}\right)$ can (in principle) be calcu6
lated from the first n terms of the symbol of P in local coordinates.
(We then say they are "local". Constants that depend on the full structure are called "global".)

There is in fact a form $a(x)$ on X so that

$$
\operatorname{index} P=c_{0}\left(P^{*} P\right)-c_{0}\left(P P^{*}\right)=\int_{X} a(x) .
$$

III. Other index formulas.

One can approach the index by other operator families associated with $P^{*} P$ and $P P^{*}$. Let B be an elliptic ψ do of order m such that the resolvent $(B-\lambda)^{-1}$ exists and is $O\left(\lambda^{-1}\right)$ in $L_{2}(X)$ for $\lambda \rightarrow \infty$ on rays in $V=\left\{\lambda \in \mathbb{C} \mid\right.$ ang $\left.\lambda \in\left[\frac{\pi}{2}-\varepsilon, \frac{3 \pi}{2}+\varepsilon\right]\right\}$.

Three operator families:

Resolvent $(B-\lambda)^{-1}$,
Heat operator $e^{-t B}$,
Power operator $B^{-s}($ defined as 0 on $\operatorname{ker} B)$.

Can be obtained from one another:

Cauchy int.

$$
\text { Resolvent }(B-\lambda)^{-1} \quad \underset{\text { Laplace transf. }}{\rightleftarrows} e^{-t B} \text { Heat operator }
$$

Cauchy int. $\searrow \sim \sim \swarrow$ Mellin transf.

$$
\Gamma(s) B^{-s}
$$

Power operator

Cauchy integrals:
$B^{-s}=\frac{i}{2 \pi} \int_{\mathcal{C}} \lambda^{-s}(B-\lambda)^{-1} d \lambda, \quad e^{-t B}=\frac{i}{2 \pi} \int_{\mathcal{C}^{\prime}} e^{-t B}(B-\lambda)^{-1} d \lambda$
where \mathcal{C} is a curve in $(V \cup\{|\lambda| \leq \delta\}) \backslash \overline{\mathbb{R}}_{-}$around the nonzero eigenvalues; \mathcal{C}^{\prime} runs in V around all eigenvalues.

Three equivalent asymptotic Trace expansions:

Along with B elliptic of order $m>0$ we consider A of order $\nu \in \mathbb{R}$.

The resolvent trace expansion:

$$
\begin{align*}
& \operatorname{Tr}\left(A(B-\lambda)^{-N}\right) \sim \sum_{j \geq 0} \tilde{c}_{j}(-\lambda)^{-\frac{\nu+n-j}{m}-N} \\
&+\sum_{k \geq 0}\left(\tilde{c}_{k}^{\prime} \log (-\lambda)+\tilde{c}_{k}^{\prime \prime}\right)(-\lambda)^{-k-N} \tag{5}
\end{align*}
$$

for $\lambda \rightarrow \infty$ in $V .(N>(\nu+n) / m$.

The heat trace expansion:

$$
\begin{equation*}
\operatorname{Tr}\left(A e^{-t B}\right) \sim \sum_{j \geq 0} c_{j} t^{\frac{j-\nu-n}{m}}+\sum_{k \geq 0}\left(-c_{k}^{\prime} \log t+c_{k}^{\prime \prime}\right) t^{k}, \tag{6}
\end{equation*}
$$

for $t \rightarrow 0+$.

The complex power trace expansion:

$$
\begin{gather*}
\Gamma(s) \operatorname{Tr}\left(A B^{-s}\right) \sim \sum_{j \geq 0} \frac{c_{j}}{s+\frac{i-\nu-n}{m}}-\frac{1}{s} \operatorname{Tr}\left(A \Pi_{0}(B)\right) \\
+\sum_{k \geq 0}\left(\frac{c_{k}^{\prime}}{(s+k)^{2}}+\frac{c_{k}^{\prime \prime}}{s+k}\right), \tag{7}
\end{gather*}
$$

where the right-hand side gives the pole structure of the meromorphic extension. Same constants as in heat trace expansion; related to tilde-constants by universal formulas. Division by $\Gamma(s)$ makes double poles simple. The c_{j} and c_{k}^{\prime} are "local", the $c_{k}^{\prime \prime}$ "global".

We denote

$$
C_{0}(A, B)=\tilde{c}_{n+\nu}+\tilde{c}_{0}^{\prime \prime}=c_{n+\nu}+c_{0}^{\prime \prime}, \quad C_{-1}(A, B)=\tilde{c}_{0}^{\prime}=c_{0}^{\prime},
$$

where we set $\tilde{c}_{n+\nu}=c_{n+\nu}=0$ if $n+\nu \notin \mathbb{N}_{0}$. When $A=I$,
$C_{-1}(I, B)=0$, and

$$
\text { index } P=C_{0}\left(I, P^{*} P\right)-C_{0}\left(I, P P^{*}\right)
$$

The constants $C_{-1}(A, B)$ and $C_{0}(A, B)$ play a role as generalized trace-functionals on A. In fact, $m C_{-1}(A, B)$ is independent of B; it is the noncommutative residue

$$
\begin{equation*}
\operatorname{res}(A)=m C_{-1}(A, B) \tag{8}
\end{equation*}
$$

introduced by Wodzicki in 1984 (note that $C_{-1}(A, B)$ is the residue of $\operatorname{Tr}\left(A B^{-s}\right)$ at the pole 0$)$. It is tracial, i.e., vanishes on commutators, and satisfies:

$$
\operatorname{res}(A)=\frac{1}{(2 \pi)^{n}} \int_{\tilde{X}} \int_{|\xi|=1} \operatorname{tr} a_{-n}(x, \xi) d S(\xi) d x
$$

(one point of the formula is that this has an invariant meaning on $X)$. It vanishes when A is a differential operator, in particular if $A=I$.

The constant $C_{0}(A, B)$ is by some authors called the zeta-regularized
trace. For A of noninteger order, and for integer-order cases with suitable symbol parity properties in relation to the dimension, this equals the canonical trace, as introduced by Kontsevich and Vishik in 1994; then it also has tracial properties, and can be determined from $a(x, \xi)$ by a Hadamard type finite-part integral.

One can play around much more with these formulas and expansions. For example, when A is an elliptic operator and \widetilde{A} is a parametrix, then

$$
\text { index } A=C_{0}([A, \widetilde{A}], B) ; \text { here }[A, \widetilde{A}]=A \widetilde{A}-\widetilde{A} A
$$

(found in Melrose-Nistor).
Remark. To give an impression of how the trace expansions are shown, consider first a case where B is an elliptic differential operator of order $m>n$ so that the resolvent is trace-class, and let $\lambda \in \mathbb{R}_{-}$. Agmon observed that if we write $-\lambda=\mu^{m}, \mu \in \mathbb{R}$ (m is even in this case), and consider μ as an extra cotangent variable, the symbol

$$
\bar{b}(x, \xi, \mu)=b(x, \xi)+\mu^{m}
$$

is elliptic as a function of $(\xi, \mu) \in \mathbb{R}^{n+1}$. Construct the parametrix
symbol

$$
\bar{q}(x, \xi, \mu)=\bar{q}_{-m}+\bar{q}_{-m-1}+\cdots, \quad \bar{q}_{-m}=\frac{1}{b(x, \xi)+\mu^{m}}
$$

For each term, the kernel $K_{-m-j}(x, y, \mu)$ of the operator $\operatorname{Op}\left(\bar{q}_{-m-j}\right)$
satisfies, by homogeneity,

$$
\begin{aligned}
K_{-m-j}(x, x, \mu) & =\frac{1}{(2 \pi)^{n}} \int \bar{q}_{-m-j}(x, \xi, \mu) d \xi \\
= & \mu^{-m-j+n} \frac{1}{(2 \pi)^{n}} \int \bar{q}_{-m-j}(x, \eta, 1) d \eta
\end{aligned}
$$

which by integration in x produces the j-th term in (5). When B is a pseudodifferential operator, the singularities at $\xi=0$ in the strictly homogeneous symbols give trouble, but a finer analysis can sort this out, showing how logarithmic terms arise.

IV. The zeta and eta functions.

The zeta function of B is the function

$$
\zeta(B, s)=\operatorname{Tr} B^{-s}
$$

it is well-defined as a holomorphic function for $\operatorname{Re} s>n / m$, since
B^{-s} is trace-class then. As already mentioned in connection with power functions, it has a meromorphic extension to \mathbb{C}. We get as a special case of (7) by division by $\Gamma(s)$ and the information that $c_{0}^{\prime}=0$ when $A=I:$

$$
\zeta(B, s) \sim \sum_{j \geq 0, \frac{j-n}{m} \notin \mathbb{N}_{0}} \frac{b_{j}}{s+\frac{j-n}{m}}+\sum_{k>0} \frac{b_{k}^{\prime}}{s+k} .
$$

When B is a differential operator, some poles vanish due to parity of symbol terms.

When B is selfadjoint nonnegative, $\zeta(B, s)$ can also be read as

$$
\zeta(B, s)=\sum_{\text {eigenvalues } \neq 0} \lambda_{j}(B)^{-s},
$$

the eigenvalues repeated according to multiplicity.
When B is selfadjoint not lower bounded, one is interested in

$$
\zeta\left(B^{2}, s / 2\right)=\sum_{\text {eigenvalues } \neq 0}\left|\lambda_{j}(B)\right|^{-s}=\operatorname{Tr}\left(|B|^{-s}\right),
$$

with behavior as above, and also

$$
\eta(B, s)=\sum_{\text {eigenvalues } \neq 0} \operatorname{sign} \lambda_{j}(B)\left|\lambda_{j}(B)\right|^{-s}=\operatorname{Tr}\left(B|B|^{-s-1}\right),
$$

the eta function. An interesting case is when B is a differential operator system of order 1 ; let $m=1$ in the following. The pole structure of the eta function is covered by (7):

$$
\begin{equation*}
\Gamma(s) \operatorname{Tr}\left(\frac{B}{|B|}|B|^{-s}\right) \sim \sum_{j \geq 0} \frac{c_{j}}{s+j-n}+\sum_{k \geq 0}\left(\frac{c_{k}^{\prime}}{(s+k)^{2}}+\frac{c_{k}^{\prime \prime}}{s+k}\right) \tag{9}
\end{equation*}
$$

which by division by $\Gamma(s)$ gives the pole structure

$$
\begin{equation*}
\eta(B, s)=\operatorname{Tr}\left(\frac{B}{|B|}|B|^{-s}\right) \sim \sum_{k \geq-n} \frac{b_{k}}{s+k} \tag{10}
\end{equation*}
$$

The coefficient b_{0} equals res $\left(\frac{B}{|B|}\right)$ (cf. (8)); it is "local".
There is a deep result here, shown partially by Atiyah, Patodi and Singer in 1976 with the proof completed by Gilkey 1981, that in fact $b_{0}=0$, so that the eta function has a value at zero, $\eta(B, 0)$ (equal to $c_{0}^{\prime \prime}$ from (9)). This value is "global".

Note that also the noncommutative residue of the positive eigenprojection $\Pi_{>}(B)=\frac{1}{2}\left(I+\frac{B}{|B|}\right)$ is zero then. Wodzicki 1984 observed this and generalized it to a result on the stability of the zeta value at 0 under different choices of the ray where λ^{-s} has its jump, also in nonselfadjoint cases.

We can view the eta-functions as

$$
\eta(B, s)=\sum_{\text {eigenvalues }>0} \lambda_{j}(B)^{-s}-\sum_{\text {eigenvalues }<0}\left|\lambda_{j}(B)\right|^{-s},
$$

which measures the "spectral asymmetry" of B.

Another function of interest in this connection is the derivative $\zeta^{\prime}(B, s)=\frac{d}{d s} \zeta(B, s)$, extended meromorphically to \mathbb{C}, in particular its value at $s=0$. One can show that $-\zeta^{\prime}(B, 0)$ can be viewed as the logarithm of a determinant of B (by generalization from finite dimensional cases); it is often called the zeta-determinant of B. It is nonlocal, and its evaluation is on the same level of difficulty as the eta value. In view of the formula

$$
\operatorname{Tr}\left(\frac{d}{d s} B^{-s}\right)=-\operatorname{Tr}\left((\log B) B^{-s}\right)
$$

extended meromorphically from large $\operatorname{Re} s$, we have

$$
\log \operatorname{det} B \equiv-\zeta^{\prime}(B, 0)=C_{0}(\log B, B),
$$

extending the notation introduced for $\operatorname{Tr} A B^{-s}$ to the non-classical case where A is replaced by $\log B$. This goes rather naturally for ψ do's on closed manifolds, but is somewhat problematic for generalizations to manifolds with boundary.

V. The Atiyah-Patodi-Singer problem.

The Atiyah-Singer index theorem can with some extra efforts
be generalized to elliptic differential operators on manifolds with boundary, provided with differential boundary conditions satisfying the Shapiro-Lopatinskii condition (also called "elliptic boundary problems"), the index is then local as in the boundaryless case.

But while striving to break up the study of general higher-order problems into first-order pieces, the authors got the idea of using Dirac operators as building blocks, justified by geometric considerations. The difficulty here is that a Dirac operator D is first-order and does not always have a Shapiro-Lopatinskii boundary condition. They took recourse to certain pseudodifferential boundary conditions. This makes the study technically harder and introduces global constants along with the local ones.

Let X be a smooth compact n-dimensional manifold with boundary $\partial X=X^{\prime}$, and let D be a first-order elliptic differential operator on X, going from a vector bundle E_{1} to E_{2}, both of dimension 16
N. On a collar neighborhood $X_{c}=X^{\prime} \times\left[0, c\left[\right.\right.$ of X^{\prime} with points $x=\left(x^{\prime}, x_{n}\right)$, let D have the form

$$
D=\sigma\left(\frac{\partial}{\partial x_{n}}+A\right),
$$

where A is a selfadjoint elliptic first-order operator in the bundle $E_{1}^{\prime}=\left.E_{1}\right|_{X^{\prime}}$ and σ is a unitary morphism from E_{1}^{\prime} to E_{2}^{\prime} (lifted to $\left.X_{c}\right)$. Let Π_{\geq}be the nonnegative eigenprojection for A. The APS problem is the boundary value problem

$$
\begin{equation*}
D u=f \text { on } X, \quad \Pi_{\geq} \gamma_{0} u=0 \tag{11}
\end{equation*}
$$

here $\gamma_{0} u=\left.u\right|_{X^{\prime}}$. This problem is well-posed in the sense that the L_{2}-realization D_{\geq}of D with domain

$$
D\left(D_{\geq}\right)=\left\{u \in H^{1}\left(X, E_{1}\right) \mid \Pi_{\geq} \gamma_{0} u=0\right\}
$$

is a Fredholm operator. Atiyah, Patodi and Singer (1975) showed the index formula

$$
\begin{equation*}
\operatorname{index} D_{\geq}=\int_{X} a(x)-\frac{1}{2}\left(\eta(A, 0)+\nu_{0}(A)\right) ; \tag{12}
\end{equation*}
$$

here $a(x)$ is the usual form entering in the index formula for D on the doubled manifold (but integrated only over X), and $\nu_{0}(A)=$ $\operatorname{dim} \operatorname{ker} A$.

The proof by A-P-S is a tricky combination of functional analysis (using the spectral theory for A) with the study of D on the doubled manifold. Although they used that
index $D_{\geq}=\operatorname{Tr} e^{-t D_{\geq}^{*} D \geq}-\operatorname{Tr} e^{-t D \geq D_{\geq}^{*}}$,
they avoided the need to actually calculate trace expansions for these two "heat traces" individually.

That was done much later, in G 1992 down to and including the crucial constant term, showing that each of $\operatorname{Tr} e^{-t D_{\geq}^{*} D \geq}$ and $\operatorname{Tr} e^{-t D \geq D^{*}}$ contributes half of the piece $\frac{1}{2}\left(\eta(A, 0)+\nu_{0}(A)\right)$. Full expansions were established by G and Seeley 1996 with much information on all the coefficients in terms of A and D. The "nonproduct case" (where x_{n}-dependence is allowed) was left open by A-P-S; it was treated in G 1992, and full expansions were obtained in another G and Seeley 1995 paper using ψ do methods.

VI. Other boundary conditions.

In the product case, $D^{*}=D$ means on X_{c} that

$$
\begin{equation*}
\sigma^{2}=I, \quad \sigma A=-A \sigma . \tag{13}
\end{equation*}
$$

In this case, D_{\geq}is selfadjoint iff $\operatorname{ker} A=\{0\}$. We can replace Π_{\geq} by other projections Π, studying expansion coefficients.
(i) When $\operatorname{ker} A \neq\{0\}$, there is a decomposition (Palais 1965,

Douglas-Wojciechowski 1991, Müller 1994, Dai-Freed 1994)

$$
\operatorname{ker} A=V \oplus V^{\perp}, \quad V^{\perp}=\sigma V
$$

Take $\Pi=\Pi_{>}+\Pi_{V}$, then D_{Π} is selfadjoint (with index 0). LeschWojciechowski 1996 classified the selfadjoint cases with $V \subset \operatorname{ker} A$.

Other finite rank perturbations have also been studied.
(ii) Take Π with
$\Pi-\Pi_{\geq}$of order $-\infty$ (e.g. Π equal to the true Calderón projector, Booss-Wojciechowski book 1993),
$\Pi-\Pi_{\geq}$of order $-n$ (several authors),
$\Pi-\Pi_{\geq}$of order -1 (several authors).
(iii) Allow projections differing principally from Π_{\geq}. Brüning and Lesch 1999 introduced a family $\Pi(\theta)$ giving selfadjoint realizations; G 1999 studied all well-posed conditions (in the sense of Seeley 1969), getting full trace expansions, also in non-product cases.

We list the power operator versions expressing the pole structure of meromorphic extensions. The zeta function expansion is

$$
\begin{align*}
& \zeta\left(D_{\Pi}{ }^{*} D_{\Pi}, s\right)=\operatorname{Tr}\left(\left(D_{\Pi}{ }^{*} D_{\Pi}\right)^{-s}\right) \sim \\
& \frac{1}{\Gamma(s)}\left[\sum_{-n \leq k<0} \frac{a_{k}}{s+\frac{k}{2}}+\frac{\nu_{0}\left(D_{\Pi}\right)}{s}+\sum_{k=0}^{\infty}\left(\frac{a_{k}^{\prime}}{\left(s+\frac{k}{2}\right)^{2}}+\frac{a_{k}^{\prime \prime}}{s+\frac{k}{2}}\right)\right] . \tag{14}
\end{align*}
$$

The eta function expansion is

$$
\begin{align*}
\eta\left(D_{\Pi}{ }^{*} D_{\Pi}, s\right) & =\operatorname{Tr}\left(D\left(D_{\Pi}{ }^{*} D_{\Pi}\right)^{-\frac{s+1}{2}}\right) \sim \\
& \frac{1}{\Gamma\left(\frac{s+1}{2}\right)}\left[\sum_{-n<k<0} \frac{b_{k}}{s+k}+\sum_{k=0}^{\infty}\left(\frac{b_{k}^{\prime}}{(s+k)^{2}}+\frac{b_{k}^{\prime \prime}}{s+k}\right)\right] . \tag{15}
\end{align*}
$$

Pole at $s=0$? (14) implies

$$
\begin{equation*}
\zeta\left(D_{\Pi}^{*} D_{\Pi}, s\right) \sim \sum_{\substack{-n \leq k<0 \\ 20}} \frac{\bar{a}_{k}}{s+\frac{k}{2}}+\sum_{k=0}^{\infty} \frac{\bar{a}_{k}^{\prime}}{s+\frac{k}{2}}, \tag{16}
\end{equation*}
$$

with $\bar{a}_{0}^{\prime}=a_{0}^{\prime}$. This coefficient is local, and it has been a challenge to show its vanishing; the most general result is (to my knowledge) from G 2003:

Theorem 7. If the principal symbol of Π commutes with the principal symbol of A^{2}, then $a_{0}^{\prime}=0$.

Moreover, the value $a_{0}^{\prime \prime}=\zeta\left(D_{\Pi}{ }^{*} D_{\Pi}, 0\right)$ is then explicitly derived from Π and ker D_{Π}, modulo local contributions.

For the eta function expansion in (15), division by $\Gamma\left(\frac{s+1}{2}\right)$ does not remove the double pole at 0 . However, consider selfadjoint cases; they require

$$
\Pi=-\sigma \Pi^{\perp} \sigma
$$

in addition to (13). We find here that $b_{0}^{\prime}=0$ under the hypotheses of Theorem 7, so there is at most a simple pole. Moreover, if $b_{0}^{\prime \prime}\left(D_{\Pi}\right)=0$ for a selfadjoint D_{Π}, it will also be 0 for a selfadjoint perturbation $D_{\bar{\Pi}}$ when $\Pi-\bar{\Pi}$ has order $\leq-n$. (Results from G 2003, Lei 2003, proved earlier for particular cases.)

Final remark. The lectures moreover included: 1) An introduction to Boutet de Monvel's theory of pseudodifferential boundary operators, furnishing a complete calculus where elliptic boundary value problems and their solution operators are incorporated. 2)

An explanation of the Calderón projectors $C^{ \pm}$associated with a Dirac-type operator, and the solvability of the problem (11) with Π_{\geq}replaced by C^{+}. (More on these topics e.g. in Ch. 10-11 of the book referred to on page 5 and below.) 3) The definition of well-posed boundary conditions for D - they are not elliptic in the usual sense, only injectively elliptic. (More details in G 1999.)

The works listed below refer to further contributions to the theories.

References

[ABP] M. F. Atiyah and R. Bott and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
[APS] M. F. Atiyah and V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemanninan geometry I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43-69.
[AS] M. F. Atiyah and I. M. Singer, The index of elliptic operators, Ann. Math. 87 (1968), 484-530.
[BW] B. Booss-Bavnbek and K. Wojciechowski, Elliptic boundary problems for Dirac operators, Birkhäuser, Boston, 1993.
[BL] J. Brüning and M. Lesch, On the eta-invariant of certain non-local boundary value problems, Duke Math. J. 96 (1999), 425-468.
[DF] X. Dai and D. Freed, η-invariants and determinant lines, J. Math. Phys. 35 (1994), 5155-5194.
[DW] R. G. Douglas and K. P. Wojciechowski, Adiabatic limits of the η invariant, the odd-dimensional Atiyah-Patodi-Singer problem, Comm. Math. Phys. 142 (1991), 139-168.
[Gi] P. B. Gilkey, The residue of the global eta function at the origin, Adv. Math. 40 (1981), 290-307.
[G1] G. Grubb, Heat operator trace expansions and index for general Atiyah-Patodi-Singer boundary problems, Comm. Part. Diff. Equ. 17 (1992), 2031-2077.
[G2] , Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems, Arkiv f. Mat. 37 (1999), 45-86.
[G3] , Poles of zeta and eta functions for perturbations of the Atiyah-Patodi-Singer problem, Comm. Math. Phys. 215 (2001), 583-589.
[G4] , Spectral boundary conditions for generalizations of Laplace and Dirac operators, Comm. Math. Phys. 240 (2003), 243-280.
[G5] , Distributions and Operators, GTM, Springer-Verlag, New York, 2008, forthcoming book.
[GS1] G. Grubb and R. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), 481-529.
[GS2] , Zeta and eta functions for Atiyah-Patodi-Singer operators, J. Geom. An. 6 (1996), 31-77.
[KV] M. Kontsevich and S. Vishik, Geometry of determinants of elliptic operators, Functional Analysis on the Eve of the 21'st Century (Rutgers Conference in honor of I. M. Gelfand 1993), Vol. I (S. Gindikin et al., eds.), Progr. Math. 131, Birkhäuser, Boston, 1995, pp. 173-197.
[L] Y. Lei, The regularity of the eta function for perturbations of order (dim X) of the Atiyah-Patodi-Singer boundary problem, Comm. Part. Diff. Equ. 28 (2003), 1587-1596.
[LW] M. Lesch and K. P. Wojciechowski, On the eta-invariant of generalized Atiyah-Patodi-Singer boundary value problems, Illinois J. Math. 40 (1996), 30-46.
[MN] R. Melrose and V. Nistor, Homology of pseudodifferential operators I. Manifolds with boundary, manuscript, arXiv: funct-an/9606005.
[M] W. Müller, Eta invariants and manifolds with boundary, J. Diff. Geom. (1994), 311-377.
[P] R. S. Palais, Seminar on the Atiyah-Patodi-Singer index theorem, Ann. Math. Studies 57, Princeton University Press, Princeton, N. J., 1965, 366 pp.
[S] R. T. Seeley, Topics in pseudo-differential operators, CIME Conf. on Pseudo-Differential Operators 1968, Edizioni Cremonese, Roma, 1969, pp. 169-305.
[W] M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984), 143-178.

