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I. Summary on pseudodifferential operators.

The symbol p(x,€) is in S{ (2, R™), when

|DZDgp(,€)| < e(x)(€)~1, Va, §;

It is classical, € S4(Q,R™), when there

N[

here (€) = (1+ [¢]?)3.
exist pg_;(x, &) for [ € Ny such that
(i) pa—i(z, t&) =t 'pa_y(x,€) for [£] > 1, t > 1,
(i) p(x, &) = D o<yens Pa—i(x,€) € ST oM (Q,R™), VM
in short, p ~ » oy, Pa—1 in Sf,O(Q,R”).
Elliptic, when the principal symbol py(z, £) # 0, Va € Q, |¢] > 1.
The associated pseudodifferential operator — ¥do — is
Pu(x) = Op(p(z,€))u(x) = (2m)" [ €= <p(x, £)i(€) dt.
Operators “in (x,y)-form” are defined via oscillatory integrals:
Op(p(x,y,8))u(x) = 2m) =™ [ e~ Ep(x, y, £)u(y) dédy;

here p(x,y,&) € S{l,o(ﬂ x 2, R™). We say that p ~ p;, P ~ Py, if

p — p1 resp. P — P; is of order —oo.
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Theorem 1. Op(p) Op(p’) ~ Op(p”), where
p=p#p ~ Y LZDgposy i ST (QRY), (1)

the Leibniz product.

Theorem 2. When p is elliptic € S1(Q, R"), then g € S™4(Q, R™)

such that p#q ~ 1. Then P = Op(p) and Q@ = Op(q) satisfy

PQ=1—-Ry, QP =1—-TRy, Ri and Ry of order —oco. (2)

() is called a parametriz of P, g a parametrix symbol.

Theorem 3. When p € S{(Q,R"), then (for Sobolev spaces)

Op(p) : Hoomp () — Hi (), Vs € R. (3)

loc

Theorem 4. The space of classical 1 do’s is invariant under C'°
coordinate changes. The principal symbol has a meaning inde-
pendent of the choice of coordinates. In particular, ellipticity is

defined invariantly.



Allows the definition of ©»do’s on smooth manifolds. Let X be a
compact manifold without boundary, P elliptic on X. Then (2)
and (3) hold on X (we can drop “comp” and “loc”). By Rellich’s
theorem, R; and R, are compact operators in any H*(X). Then
P:H%(X)— H*~4X)
is a Fredholm operator, with finite dimensional kernel (the nullspace)
and cokernel (H*~4(X)/ran P), independently of s. In this way
P has an index:
index P = dim ker P — dim coker P.
Moreover, P* is likewise elliptic of order d, and
dim coker P = dim ker P*.
The index depends only on py. The Atiyah-Singer index theorem
(1964) shows that this integer is equal to a certain constant defined
by algebraic topology from P and X.
The theory likewise works for matrix-formed operators (square
matrices in elliptic considerations), and their generalizations to

operators in vector bundles over manifolds.
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Details of the 1do theory can be found e.g. in Chapters 7-8 of a

coming book: http://www.math.ku.dk/~grubb/distribution.htm

II. An index formula.

We now assume d > 0. The operators P*P and PP* are ellip-
tic of order 2d; they define selfadjoint nonnegative realizations in

Lo(X) with discrete spectrum going to oo.

Lemma 5. ker P*P = ker P and ker PP* = ker P*. For A >0,

dimker(P*P — \) = dimker(PP* — X).

There is a nice trick from the early days of index theory: Let ¢(\)
be a function on R with ¢(0) = 1, and let M be a discrete subset
of Ry containing 0. Then

index P = dim ker P — dim ker P*

= > e ¢(A) (dimker(P*P — X) — dimker(PP* — \)).
Applying this with ¢(\) = e~ t > 0, and M containing the

eigenvalues of P*P and PP*, we get:
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index P =
= > e M (dimker(P*P — \) — dimker(PP* — )))
_ ZjeN e~ tA (PTP) _ ZjeN e~ 1A (PPY)
— Ty 6—tP*P — Ty e—tPP* .
here the \;(P*P), j € N, denote the eigenvalues of P*P repeated

according to multiplicity, with a similar definition of \;(PP*). It

is known that
Tre PP = ¢ t7% + -4 c_1t72a +¢o + ot) for t — 0
(a heat trace expansion), and similarly for PP*, so we get by
subtraction a formula
index P = h(t) + co(P*P) — co(PP*) + g(t),
where g(t) — 0 for t — 0, and h(t) blows up for ¢ — 0 unless it is

0. Since the left-hand side is independent of £, we conclude first

that h(t) = 0 and next that g(¢) = 0, obtaining
Theorem 6. index P = ¢o(P*P) — co(PP*).

The constants co(P*P) and co(PP*) can (in principle) be calcu-
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lated from the first n terms of the symbol of P in local coordinates.
(We then say they are “local”. Constants that depend on the full

structure are called “global”.)

There is in fact a form a(x) on X so that

index P = ¢q(P*P) — co(PP*) = [ a(

III. Other index formulas.

One can approach the index by other operator families associated
with P*P and PP*. Let B be an elliptic ®»do of order m such
that the resolvent (B — \)~! exists and is O(A™1!) in Ly(X) for

A—oconraysin V={\Ae€Clang € [Z —¢, L +¢]}.
THREE OPERATOR FAMILIES:

Resolvent (B — \)~1

Heat operator e tB,

Power operator B~* (defined as 0 on ker B).

Can be obtained from one another:
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Cauchy int.
Resolvent (B — \)™* = e~ 'P Heat operator
Laplace transf.
Cauchy int. \,~ ~ " Mellin transf.

['(s)B™*

Power operator

Cauchy integrals:

27 27

B 5=2L [ X5(B-\N"1td\, e =L [ e B(B-N"1d)
C C’

where C is a curve in (V U {|\] < 6}) \ R_ around the nonzero

eigenvalues; C’ runs in V' around all eigenvalues.



THREE EQUIVALENT ASYMPTOTIC TRACE EXPANSIONS:
Along with B elliptic of order m > 0 we consider A of order v € R.

The resolvent trace expansion:
— ~ _vfn—=j _
Tr(A(B - A)~"N) ~ ijo Gi(—=A)" N

+ Dm0 (G log(=A) + &) (=A)7F 7, (5)

for A\ > ocoin V. (N > (v+mn)/m.)

The heat trace expansion:

j—u—n

Tr(Ae™*P) ~ Z >0 Cit ™+ Zkzo(_c;g logt + cj)t*, (6)

for t — 0+.

The complex power trace expansion:

[(s) Tr(AB™%) ~ > o —55— — + Tr(Allp(B))

7=>0 s+Ii=L=n

+ Vi e + ). (7)

where the right-hand side gives the pole structure of the meromor-

phic extension. Same constants as in heat trace expansion; related
to tilde-constants by universal formulas. Division by I'(s) makes

double poles simple. The ¢; and ¢}, are “local”, the ¢ “global”.
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We denote

Col A, B) = s 4 ) = ene + s C1(A,B) = & = d)
where we set ¢y, = ¢y = 0if n+v ¢ Ng. When A = [,
C_1(I,B) =0, and

index P = Cy(I, P*P) — Co(I, PP*).
The constants C_1(A, B) and Cy(A, B) play a role as generalized
trace-functionals on A. In fact, mC_;(A, B) is independent of B;
it is the noncommutative residue

res(A) = mC_1(A, B) (8)
introduced by Wodzicki in 1984 (note that C'_1 (A, B) is the residue
of Tr(AB~?) at the pole 0). It is tracial, i.e., vanishes on commu-
tators, and satisfies:

res(A) = ﬁ I% fl&\zl tra_,(z,&)dS(€)dx
(one point of the formula is that this has an invariant meaning on

X). It vanishes when A is a differential operator, in particular if

A=1
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The constant Cy( A, B) is by some authors called the zeta-regularized
trace. For A of noninteger order, and for integer-order cases with
suitable symbol parity properties in relation to the dimension, this
equals the canonical trace, as introduced by Kontsevich and Vishik
in 1994; then it also has tracial properties, and can be determined

from a(z,£) by a Hadamard type finite-part integral.

One can play around much more with these formulas and expan-
sions. For example, when A is an elliptic operator and Ais a
parametrix, then
index A = Cy([A, A], B); here [A,A] = AA — AA

(found in Melrose-Nistor).

Remark. To give an impression of how the trace expansions
are shown, consider first a case where B is an elliptic differential
operator of order m > n so that the resolvent is trace-class, and
let A € R_. Agmon observed that if we write —A = u™, p € R
(m is even in this case), and consider pu as an extra cotangent

variable, the symbol
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b(w, €, 1) = b(, €) +
is elliptic as a function of (£, u) € R™*!. Construct the parametrix

symbol

Q& 1) =q-m +qem-1+-+, qem = m-

For each term, the kernel K_,,_;(z,y, pt) of the operator Op(G_y,—;)

satisfies, by homogeneity,

K—m—j(:ax?/i) — ﬁ IQ—M—j(:C7€7M> d‘f

= po o (271r)n J @=m—j(z,m,1)dn,
which by integration in z produces the j-th term in (5). When B
is a pseudodifferential operator, the singularities at £ = 0 in the
strictly homogeneous symbols give trouble, but a finer analysis

can sort this out, showing how logarithmic terms arise.

IV. The zeta and eta functions.

The zeta function of B is the function
((B,s) ="Tr B~%;

it is well-defined as a holomorphic function for Re s > n/m, since
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B~% is trace-class then. As already mentioned in connection with
power functions, it has a meromorphic extension to C. We get as
a special case of (7) by division by I'(s) and the information that

¢y, =0 when A = I:

/

((B;s) ~ ijo,j—#eNo Sfﬁ + 2 k>0 535
When B is a differential operator, some poles vanish due to parity
of symbol terms.

When B is selfadjoint nonnegative, ((B, s) can also be read as

C(B;5) = 2 cigenvatuesz0 i (B) ™
the eigenvalues repeated according to multiplicity.

When B is selfadjoint not lower bounded, one is interested in

C(B?,5/2) = 3 cigenvatueso | A (B)|~* = Tr(|B|~*),
with behavior as above, and also

D(B.5) = gematuesso 5181 A (B) A (B) ~ = Te(B|B| 1),
the eta function. An interesting case is when B is a differential
operator system of order 1; let m = 1 in the following. The pole

structure of the eta function is covered by (7):
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/ !/

D(s) Tr((B1BI7*) ~ Xm0 5755 + Laso (i + 555 )0 (9)

which by division by I'(s) gives the pole structure

n(B.s) = Tr(;5BI™*) ~ Xps_p 4% (10)

The coefficient by equals res(|—g|) (cf. (8)); it is “local”.

There is a deep result here, shown partially by Atiyah, Patodi
and Singer in 1976 with the proof completed by Gilkey 1981, that
in fact bg = 0, so that the eta function has a value at zero, n(B,0)

(equal to ¢y from (9)). This value is “global”.

Note that also the noncommutative residue of the positive eigen-
projection Il (B) = (I + ‘—g‘) is zero then. Wodzicki 1984 ob-
served this and generalized it to a result on the stability of the
zeta value at 0 under different choices of the ray where A= has

its jump, also in nonselfadjoint cases.
We can view the eta-functions as

U(B, S) - Zeigenvalues>0 )\j(B)_S o Zeigenvalues<0 ‘)\J (BM_S?

which measures the “spectral asymmetry” of B.
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Another function of interest in this connection is the derivative
¢'(B,s) = %C (B, s), extended meromorphically to C, in particu-
lar its value at s = 0. One can show that —(’(B,0) can be viewed
as the logarithm of a determinant of B (by generalization from
finite dimensional cases); it is often called the zeta-determinant
of B. It is nonlocal, and its evaluation is on the same level of

difficulty as the eta value. In view of the formula

Tr(£B~%) = — Tr((log B) B™*),

extended meromorphically from large Re s, we have

logdet B= —('(B,0) = Cy(log B, B),
extending the notation introduced for Tr AB~° to the non-classical
case where A is replaced by log B. This goes rather naturally for
1do’s on closed manifolds, but is somewhat problematic for gen-

eralizations to manifolds with boundary.

V. The Atiyah-Patodi-Singer problem.

The Atiyah-Singer index theorem can with some extra efforts
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be generalized to elliptic differential operators on manifolds with
boundary, provided with differential boundary conditions satisfy-
ing the Shapiro-Lopatinskii condition (also called “elliptic bound-
ary problems”), the index is then local as in the boundaryless

case.

But while striving to break up the study of general higher-order
problems into first-order pieces, the authors got the idea of using
Dirac operators as building blocks, justified by geometric consider-
ations. The difficulty here is that a Dirac operator D is first-order
and does not always have a Shapiro-Lopatinskii boundary condi-
tion. They took recourse to certain pseudodifferential boundary
conditions. This makes the study technically harder and intro-

duces global constants along with the local ones.

Let X be a smooth compact n-dimensional manifold with bound-
ary 0X = X', and let D be a first-order elliptic differential opera-

tor on X, going from a vector bundle E; to Es, both of dimension
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N. On a collar neighborhood X, = X’ x [0,¢| of X’ with points
x = (2',z,), let D have the form

D = a(% + A),
where A is a selfadjoint elliptic first-order operator in the bundle
FE] = E1]x/ and o is a unitary morphism from E] to E) (lifted to

X.). Let IT> be the nonnegative eigenprojection for A. The APS

problem is the boundary value problem
Du= fon X, IIsvyu=0; (11)

here you = u|xs. This problem is well-posed in the sense that the

Lo-realization D> of D with domain
D(D>) = {u e H' (X, E1) | TI>you = 0}

is a Fredholm operator. Atiyah, Patodi and Singer (1975) showed

the index formula

ndexDs = [ a(@) = §n(A.0) + () (12
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here a(x) is the usual form entering in the index formula for D on
the doubled manifold (but integrated only over X), and ry(A) =
dim ker A.

The proof by A-P-S is a tricky combination of functional anal-
ysis (using the spectral theory for A) with the study of D on the
doubled manifold. Although they used that

index D> = Tr e tP>D> _ mype~tP=D3 :
they avoided the need to actually calculate trace expansions for
these two “heat traces” individually.

That was done much later, in G 1992 down to and includ-

ing the crucial constant term, showing that each of Tre " >D>

and Tre "P>P% contributes half of the piece 2(n(A,0) + 19(A)).
Full expansions were established by G and Seeley 1996 with much
information on all the coefficients in terms of A and D. The “non-
product case” (where x,-dependence is allowed) was left open by
A-P-S; it was treated in G 1992, and full expansions were obtained

in another G and Seeley 1995 paper using ¥»do methods.
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VI. Other boundary conditions.

In the product case, D* = D means on X. that
c?=1 oA=-Ao. (13)
In this case, D> is selfadjoint iff ker A = {0}. We can replace II>

by other projections II, studying expansion coefficients.

(i) When ker A # {0}, there is a decomposition (Palais 1965,

Douglas-Wojciechowski 1991, Miiller 1994, Dai-Freed 1994)
kerA=VaoVt, V%i=oV.

Take IT = 11 + Iy, then Dy is selfadjoint (with index 0). Lesch-

Wojciechowski 1996 classified the selfadjoint cases with V' C ker A.

Other finite rank perturbations have also been studied.

(ii) Take IT with

IT — IT> of order —oo (e.g. II equal to the true Calderén pro-
jector, Booss-Wojciechowski book 1993),

IT — IT> of order —n (several authors),

IT — II> of order —1 (several authors).
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(iii) Allow projections differing principally from II>. Briining and
Lesch 1999 introduced a family I1(f) giving selfadjoint realiza-
tions; G 1999 studied all well-posed conditions (in the sense of
Seeley 1969), getting full trace expansions, also in non-product

cases.

We list the power operator versions expressing the pole structure

of meromorphic extensions. The zeta function expansion is

¢(Du” D, s) = Tr((Dn” D) ™) ~

réﬂ72;wsfé+f“fh)+§;Q&féz+sﬁé)] (14)

The eta function expansion is

_3—51) N

n(DH*DH, S) = TI‘(D(DH*DH)

NJHJ:E: sTk+§iQs%m2+s%kﬂ'(w)

—n<k<0 k=0

Pole at s = 0?7 (14) implies

(D' D,s)~ Y~y ke (16)

k
—n<k<0® T3 ko
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with ap = af. This coefficient is local, and it has been a challenge

to show its vanishing; the most general result is (to my knowledge)

from G 2003:

Theorem 7. If the principal symbol of I commutes with the prin-
cipal symbol of A?, then ajy = 0.
Moreover, the value af = ((Dy”" Dy, 0) is then explicitly derived

from I1 and ker Dy, modulo local contributions.

For the eta function expansion in (15), division by I'(2!) does
not remove the double pole at 0. However, consider selfadjoint
cases; they require

II=—0ollto
in addition to (13). We find here that by = 0 under the hypotheses
of Theorem 7, so there is at most a simple pole. Moreover, if
by (D11) = 0 for a selfadjoint Dryy, it will also be 0 for a selfadjoint

perturbation D when IT — II has order < —n. (Results from G

2003, Lei 2003, proved earlier for particular cases.)
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Final remark. The lectures moreover included: 1) An introduc-
tion to Boutet de Monvel’s theory of pseudodifferential boundary
operators, furnishing a complete calculus where elliptic boundary
value problems and their solution operators are incorporated. 2)
An explanation of the Calderén projectors C* associated with a
Dirac-type operator, and the solvability of the problem (11) with
IT> replaced by C*. (More on these topics e.g. in Ch. 10-11 of
the book referred to on page 5 and below.) 3) The definition of
well-posed boundary conditions for D — they are not elliptic in

the usual sense, only injectively elliptic. (More details in G 1999.)

The works listed below refer to further contributions to the

theories.
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