Introductory workshop

Analysis of Singular Spaces

\mathbf{MSRI}

September 2008

Index theory introduction

Gerd Grubb

I. Summary on pseudodifferential operators.

The symbol $p(x,\xi)$ is in $S^d_{1,0}(\Omega,\mathbb{R}^n)$, when

$$|D_x^{\beta} D_{\xi}^{\alpha} p(x,\xi)| \le c(x) \langle \xi \rangle^{d-|\alpha|}, \, \forall \alpha, \beta;$$

here $\langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}}$. It is *classical*, $\in S^d(\Omega, \mathbb{R}^n)$, when there exist $p_{d-l}(x,\xi)$ for $l \in \mathbb{N}_0$ such that

(i)
$$p_{d-l}(x, t\xi) = t^{d-l} p_{d-l}(x, \xi)$$
 for $|\xi| \ge 1, t \ge 1$,
(ii) $p(x, \xi) - \sum_{0 \le l < M} p_{d-l}(x, \xi) \in S_{1,0}^{d-M}(\Omega, \mathbb{R}^n), \forall M;$

in short, $p \sim \sum_{l \in \mathbb{N}_0} p_{d-l}$ in $S^d_{1,0}(\Omega, \mathbb{R}^n)$.

Elliptic, when the principal symbol $p_d(x,\xi) \neq 0, \forall x \in \Omega, |\xi| \geq 1$. The associated pseudodifferential operator — ψ do — is

$$Pu(x) \equiv \operatorname{Op}(p(x,\xi))u(x) = (2\pi)^{-n} \int e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi) \,d\xi.$$

Operators "in (x, y)-form" are defined via oscillatory integrals:

$$\operatorname{Op}(p(x,y,\xi))u(x) = (2\pi)^{-n} \int e^{i(x-y)\cdot\xi} p(x,y,\xi)u(y) \,d\xi dy;$$

here $p(x, y, \xi) \in S^d_{1,0}(\Omega \times \Omega, \mathbb{R}^n)$. We say that $p \sim p_1, P \sim P_1$, if $p - p_1$ resp. $P - P_1$ is of order $-\infty$. $\mathbf{2}$

Theorem 1. $\operatorname{Op}(p) \operatorname{Op}(p') \sim \operatorname{Op}(p'')$, where

$$p'' = p \# p' \sim \sum_{\alpha \in \mathbb{N}_0^n} \frac{1}{\alpha!} D_{\xi}^{\alpha} p \, \partial_x^{\alpha} p' \quad in \ S_{1,0}^{d+d'}(\Omega, \mathbb{R}^n), \tag{1}$$

the Leibniz product.

Theorem 2. When p is elliptic $\in S^d(\Omega, \mathbb{R}^n)$, then $\exists q \in S^{-d}(\Omega, \mathbb{R}^n)$ such that $p \# q \sim 1$. Then $P = \operatorname{Op}(p)$ and $Q = \operatorname{Op}(q)$ satisfy

$$PQ = I - \mathcal{R}_1, \quad QP = I - \mathcal{R}_2, \quad \mathcal{R}_1 \text{ and } \mathcal{R}_2 \text{ of order } -\infty.$$
 (2)

Q is called a *parametrix* of P, q a parametrix symbol.

Theorem 3. When $p \in S^d_{1,0}(\Omega, \mathbb{R}^n)$, then (for Sobolev spaces)

$$\operatorname{Op}(p): H^s_{\operatorname{comp}}(\Omega) \to H^{s-d}_{\operatorname{loc}}(\Omega), \, \forall s \in \mathbb{R}.$$
 (3)

Theorem 4. The space of classical ψ do's is invariant under C^{∞} coordinate changes. The principal symbol has a meaning independent of the choice of coordinates. In particular, ellipticity is defined invariantly.

Allows the definition of ψ do's on smooth manifolds. Let X be a compact manifold without boundary, P elliptic on X. Then (2) and (3) hold on X (we can drop "comp" and "loc"). By Rellich's theorem, \mathcal{R}_1 and \mathcal{R}_2 are compact operators in any $H^s(X)$. Then

$$P: H^s(X) \to H^{s-d}(X)$$

is a Fredholm operator, with finite dimensional kernel (the nullspace) and cokernel $(H^{s-d}(X)/\operatorname{ran} P)$, independently of s. In this way P has an *index*:

 $\operatorname{index} P = \dim \ker P - \dim \operatorname{coker} P.$

Moreover, P^* is likewise elliptic of order d, and

 $\dim \operatorname{coker} P = \dim \ker P^*.$

The index depends only on p_d . The Atiyah-Singer index theorem (1964) shows that this integer is equal to a certain constant defined by algebraic topology from P and X.

The theory likewise works for matrix-formed operators (square matrices in elliptic considerations), and their generalizations to operators in vector bundles over manifolds. Details of the ψ do theory can be found e.g. in Chapters 7–8 of a coming book: http://www.math.ku.dk/~grubb/distribution.htm

II. An index formula.

We now assume d > 0. The operators P^*P and PP^* are elliptic of order 2d; they define selfadjoint nonnegative realizations in $L_2(X)$ with discrete spectrum going to ∞ .

Lemma 5. ker $P^*P = \ker P$ and ker $PP^* = \ker P^*$. For $\lambda > 0$,

$$\dim \ker(P^*P - \lambda) = \dim \ker(PP^* - \lambda).$$

There is a nice trick from the early days of index theory: Let $\varphi(\lambda)$ be a function on $\overline{\mathbb{R}}_+$ with $\varphi(0) = 1$, and let M be a discrete subset of $\overline{\mathbb{R}}_+$ containing 0. Then

 $\operatorname{index} P = \dim \ker P - \dim \ker P^*$

$$= \sum_{\lambda \in M} \varphi(\lambda) \big(\dim \ker(P^*P - \lambda) - \dim \ker(PP^* - \lambda)) \big).$$

Applying this with $\varphi(\lambda) = e^{-t\lambda}$, t > 0, and M containing the eigenvalues of P^*P and PP^* , we get:

 $\operatorname{index} P =$

$$= \sum_{M} e^{-t\lambda} \left(\dim \ker(P^*P - \lambda) - \dim \ker(PP^* - \lambda)) \right)$$
$$= \sum_{j \in \mathbb{N}} e^{-t\lambda_j(P^*P)} - \sum_{j \in \mathbb{N}} e^{-t\lambda_j(PP^*)}$$
$$= \operatorname{Tr} e^{-tP^*P} - \operatorname{Tr} e^{-tPP^*};$$

here the $\lambda_j(P^*P), j \in \mathbb{N}$, denote the eigenvalues of P^*P repeated according to multiplicity, with a similar definition of $\lambda_j(PP^*)$. It is known that

Tr
$$e^{-tP^*P} = c_{-n}t^{-\frac{n}{2d}} + \dots + c_{-1}t^{-\frac{1}{2d}} + c_0 + o(t)$$
 for $t \to 0$

(a heat trace expansion), and similarly for PP^* , so we get by subtraction a formula

index
$$P = h(t) + c_0(P^*P) - c_0(PP^*) + g(t),$$

where $g(t) \to 0$ for $t \to 0$, and h(t) blows up for $t \to 0$ unless it is 0. Since the left-hand side is independent of t, we conclude first that h(t) = 0 and next that g(t) = 0, obtaining

Theorem 6. index $P = c_0(P^*P) - c_0(PP^*)$.

The constants $c_0(P^*P)$ and $c_0(PP^*)$ can (in principle) be calcu-

lated from the first n terms of the symbol of P in local coordinates. (We then say they are "local". Constants that depend on the full structure are called "global".)

There is in fact a form a(x) on X so that

index
$$P = c_0(P^*P) - c_0(PP^*) = \int_X a(x).$$

III. Other index formulas.

One can approach the index by other operator families associated with P^*P and PP^* . Let B be an elliptic ψ do of order m such that the resolvent $(B - \lambda)^{-1}$ exists and is $O(\lambda^{-1})$ in $L_2(X)$ for $\lambda \to \infty$ on rays in $V = \{\lambda \in \mathbb{C} \mid \arg \lambda \in [\frac{\pi}{2} - \varepsilon, \frac{3\pi}{2} + \varepsilon]\}.$

THREE OPERATOR FAMILIES:

Resolvent $(B - \lambda)^{-1}$,

Heat operator e^{-tB} ,

Power operator B^{-s} (defined as 0 on ker B).

Can be obtained from one another:

Resolvent $(B - \lambda)^{-1}$ $\stackrel{\text{Cauchy int.}}{\rightleftharpoons} e^{-tB}$ Heat operator Laplace transf.

Cauchy int. $\searrow \sim$ $\sim \swarrow$ Mellin transf.

 $\Gamma(s)B^{-s}$

Power operator

Cauchy integrals:

$$B^{-s} = \frac{i}{2\pi} \int_{\mathcal{C}} \lambda^{-s} (B - \lambda)^{-1} d\lambda, \quad e^{-tB} = \frac{i}{2\pi} \int_{\mathcal{C}'} e^{-tB} (B - \lambda)^{-1} d\lambda$$

where \mathcal{C} is a curve in $(V \cup \{|\lambda| \leq \delta\}) \setminus \overline{\mathbb{R}}_{-}$ around the nonzero eigenvalues; \mathcal{C}' runs in V around all eigenvalues.

THREE EQUIVALENT ASYMPTOTIC TRACE EXPANSIONS:

Along with B elliptic of order m > 0 we consider A of order $\nu \in \mathbb{R}$.

The resolvent trace expansion:

$$\operatorname{Tr}(A(B-\lambda)^{-N}) \sim \sum_{j\geq 0} \tilde{c}_j(-\lambda)^{-\frac{\nu+n-j}{m}-N} + \sum_{k\geq 0} \left(\tilde{c}'_k \log(-\lambda) + \tilde{c}''_k \right) (-\lambda)^{-k-N},$$
(5)
for $\lambda \to \infty$ in V. $(N > (\nu+n)/m.)$

The heat trace expansion:

$$\operatorname{Tr}(Ae^{-tB}) \sim \sum_{j \ge 0} c_j t^{\frac{j-\nu-n}{m}} + \sum_{k \ge 0} (-c'_k \log t + c''_k) t^k, \qquad (6)$$
for $t \to 0+$.

The complex power trace expansion:

$$\Gamma(s) \operatorname{Tr}(AB^{-s}) \sim \sum_{j \ge 0} \frac{c_j}{s + \frac{j - \nu - n}{m}} - \frac{1}{s} \operatorname{Tr}(A\Pi_0(B)) + \sum_{k \ge 0} \left(\frac{c'_k}{(s + k)^2} + \frac{c''_k}{s + k}\right),$$
(7)

where the right-hand side gives the pole structure of the meromorphic extension. Same constants as in heat trace expansion; related to tilde-constants by universal formulas. Division by $\Gamma(s)$ makes double poles simple. The c_j and c'_k are "local", the c''_k "global". We denote

$$C_0(A,B) = \tilde{c}_{n+\nu} + \tilde{c}_0'' = c_{n+\nu} + c_0'', \quad C_{-1}(A,B) = \tilde{c}_0' = c_0',$$

where we set $\tilde{c}_{n+\nu} = c_{n+\nu} = 0$ if $n + \nu \notin \mathbb{N}_0$. When A = I, $C_{-1}(I,B) = 0$, and

index
$$P = C_0(I, P^*P) - C_0(I, PP^*).$$

The constants $C_{-1}(A, B)$ and $C_0(A, B)$ play a role as generalized trace-functionals on A. In fact, $mC_{-1}(A, B)$ is independent of B; it is the *noncommutative residue*

$$\operatorname{res}(A) = mC_{-1}(A, B) \tag{8}$$

introduced by Wodzicki in 1984 (note that $C_{-1}(A, B)$ is the residue of $Tr(AB^{-s})$ at the pole 0). It is *tracial*, i.e., vanishes on commutators, and satisfies:

$$\operatorname{res}(A) = \frac{1}{(2\pi)^n} \int_{\widetilde{X}} \int_{|\xi|=1} \operatorname{tr} a_{-n}(x,\xi) \, dS(\xi) \, dx$$

(one point of the formula is that this has an invariant meaning on X). It vanishes when A is a differential operator, in particular if A = I.

The constant $C_0(A, B)$ is by some authors called the *zeta-regularized* trace. For A of noninteger order, and for integer-order cases with suitable symbol parity properties in relation to the dimension, this equals the *canonical trace*, as introduced by Kontsevich and Vishik in 1994; then it also has tracial properties, and can be determined from $a(x, \xi)$ by a Hadamard type finite-part integral.

One can play around much more with these formulas and expansions. For example, when A is an elliptic operator and \widetilde{A} is a parametrix, then

index
$$A = C_0([A, \widetilde{A}], B)$$
; here $[A, \widetilde{A}] = A\widetilde{A} - \widetilde{A}A$

(found in Melrose-Nistor).

Remark. To give an impression of how the trace expansions are shown, consider first a case where B is an elliptic differential operator of order m > n so that the resolvent is trace-class, and let $\lambda \in \mathbb{R}_-$. Agmon observed that if we write $-\lambda = \mu^m$, $\mu \in \mathbb{R}$ (m is even in this case), and consider μ as an extra cotangent variable, the symbol

$$b(x,\xi,\mu) = b(x,\xi) + \mu^m$$

is elliptic as a function of $(\xi, \mu) \in \mathbb{R}^{n+1}$. Construct the parametrix symbol

$$\bar{q}(x,\xi,\mu) = \bar{q}_{-m} + \bar{q}_{-m-1} + \cdots, \quad \bar{q}_{-m} = \frac{1}{b(x,\xi) + \mu^m}.$$

For each term, the kernel $K_{-m-j}(x, y, \mu)$ of the operator $Op(\bar{q}_{-m-j})$ satisfies, by homogeneity,

$$K_{-m-j}(x, x, \mu) = \frac{1}{(2\pi)^n} \int \bar{q}_{-m-j}(x, \xi, \mu) d\xi$$
$$= \mu^{-m-j+n} \frac{1}{(2\pi)^n} \int \bar{q}_{-m-j}(x, \eta, 1) d\eta,$$

which by integration in x produces the j-th term in (5). When B is a pseudodifferential operator, the singularities at $\xi = 0$ in the strictly homogeneous symbols give trouble, but a finer analysis can sort this out, showing how logarithmic terms arise.

IV. The zeta and eta functions.

The zeta function of B is the function

$$\zeta(B,s) = \operatorname{Tr} B^{-s};$$

it is well-defined as a holomorphic function for $\operatorname{Re} s > n/m$, since

 B^{-s} is trace-class then. As already mentioned in connection with power functions, it has a meromorphic extension to \mathbb{C} . We get as a special case of (7) by division by $\Gamma(s)$ and the information that $c'_0 = 0$ when A = I:

$$\zeta(B,s) \sim \sum_{j \ge 0, \frac{j-n}{m} \notin \mathbb{N}_0} \frac{b_j}{s + \frac{j-n}{m}} + \sum_{k > 0} \frac{b'_k}{s + k}.$$

When B is a differential operator, some poles vanish due to parity of symbol terms.

When B is selfadjoint nonnegative, $\zeta(B, s)$ can also be read as $\zeta(B, s) = \sum_{\text{eigenvalues} \neq 0} \lambda_j(B)^{-s}$,

the eigenvalues repeated according to multiplicity.

When B is selfadjoint not lower bounded, one is interested in $\zeta(B^2, s/2) = \sum_{\text{eigenvalues} \neq 0} |\lambda_j(B)|^{-s} = \text{Tr}(|B|^{-s}),$

with behavior as above, and also

$$\eta(B,s) = \sum_{\text{eigenvalues}\neq 0} \operatorname{sign} \lambda_j(B) |\lambda_j(B)|^{-s} = \operatorname{Tr}(B|B|^{-s-1}),$$

the *eta function*. An interesting case is when B is a differential operator system of order 1; let m = 1 in the following. The pole structure of the eta function is covered by (7):

$$\Gamma(s) \operatorname{Tr}(\frac{B}{|B|}|B|^{-s}) \sim \sum_{j\geq 0} \frac{c_j}{s+j-n} + \sum_{k\geq 0} \left(\frac{c'_k}{(s+k)^2} + \frac{c''_k}{s+k}\right), \quad (9)$$

which by division by $\Gamma(s)$ gives the pole structure

$$\eta(B,s) = \operatorname{Tr}(\frac{B}{|B|}|B|^{-s}) \sim \sum_{k \ge -n} \frac{b_k}{s+k}.$$
(10)

The coefficient b_0 equals $\operatorname{res}(\frac{B}{|B|})$ (cf. (8)); it is "local".

There is a deep result here, shown partially by Atiyah, Patodi and Singer in 1976 with the proof completed by Gilkey 1981, that in fact $b_0 = 0$, so that the eta function has a *value* at zero, $\eta(B, 0)$ (equal to c''_0 from (9)). This value is "global".

Note that also the noncommutative residue of the positive eigenprojection $\Pi_{>}(B) = \frac{1}{2}(I + \frac{B}{|B|})$ is zero then. Wodzicki 1984 observed this and generalized it to a result on the stability of the zeta value at 0 under different choices of the ray where λ^{-s} has its jump, also in nonselfadjoint cases.

We can view the eta-functions as

$$\eta(B,s) = \sum_{\text{eigenvalues}>0} \lambda_j(B)^{-s} - \sum_{\text{eigenvalues}<0} |\lambda_j(B)|^{-s},$$

which measures the "spectral asymmetry" of B.

Another function of interest in this connection is the derivative $\zeta'(B,s) = \frac{d}{ds}\zeta(B,s)$, extended meromorphically to \mathbb{C} , in particular its value at s = 0. One can show that $-\zeta'(B,0)$ can be viewed as the logarithm of a determinant of B (by generalization from finite dimensional cases); it is often called the *zeta-determinant* of B. It is nonlocal, and its evaluation is on the same level of difficulty as the eta value. In view of the formula

$$\operatorname{Tr}(\frac{d}{ds}B^{-s}) = -\operatorname{Tr}((\log B)B^{-s}),$$

extended meromorphically from large $\operatorname{Re} s$, we have

$$\log \det B \equiv -\zeta'(B,0) = C_0(\log B, B),$$

extending the notation introduced for Tr AB^{-s} to the non-classical case where A is replaced by log B. This goes rather naturally for ψ do's on closed manifolds, but is somewhat problematic for generalizations to manifolds with boundary.

V. The Atiyah-Patodi-Singer problem.

The Atiyah-Singer index theorem can with some extra efforts

be generalized to elliptic differential operators on manifolds with boundary, provided with differential boundary conditions satisfying the Shapiro-Lopatinskii condition (also called "elliptic boundary problems"), the index is then local as in the boundaryless case.

But while striving to break up the study of general higher-order problems into first-order pieces, the authors got the idea of using Dirac operators as building blocks, justified by geometric considerations. The difficulty here is that a Dirac operator D is first-order and does not always have a Shapiro-Lopatinskii boundary condition. They took recourse to certain *pseudodifferential* boundary conditions. This makes the study technically harder and introduces global constants along with the local ones.

Let X be a smooth compact n-dimensional manifold with boundary $\partial X = X'$, and let D be a first-order elliptic differential operator on X, going from a vector bundle E_1 to E_2 , both of dimension 16 N. On a collar neighborhood $X_c = X' \times [0, c]$ of X' with points $x = (x', x_n)$, let D have the form

$$D = \sigma(\frac{\partial}{\partial x_n} + A),$$

where A is a selfadjoint elliptic first-order operator in the bundle $E'_1 = E_1|_{X'}$ and σ is a unitary morphism from E'_1 to E'_2 (lifted to X_c). Let Π_{\geq} be the nonnegative eigenprojection for A. The APS problem is the boundary value problem

$$Du = f \text{ on } X, \quad \Pi_{>} \gamma_0 u = 0; \tag{11}$$

here $\gamma_0 u = u|_{X'}$. This problem is well-posed in the sense that the L_2 -realization D_{\geq} of D with domain

$$D(D_{\geq}) = \{ u \in H^1(X, E_1) \mid \Pi_{\geq} \gamma_0 u = 0 \}$$

is a Fredholm operator. Atiyah, Patodi and Singer (1975) showed the index formula

index
$$D_{\geq} = \int_X a(x) - \frac{1}{2}(\eta(A, 0) + \nu_0(A));$$
 (12)
17

here a(x) is the usual form entering in the index formula for D on the doubled manifold (but integrated only over X), and $\nu_0(A) =$ dim ker A.

The proof by A-P-S is a tricky combination of functional analysis (using the spectral theory for A) with the study of D on the doubled manifold. Although they used that

index
$$D_{\geq} = \operatorname{Tr} e^{-tD_{\geq}^* D_{\geq}} - \operatorname{Tr} e^{-tD_{\geq}D_{\geq}^*}$$
,

they avoided the need to actually calculate trace expansions for these two "heat traces" individually.

That was done much later, in G 1992 down to and including the crucial constant term, showing that each of $\operatorname{Tr} e^{-tD_{\geq}^* D_{\geq}}$ and $\operatorname{Tr} e^{-tD \geq D_{\geq}^*}$ contributes half of the piece $\frac{1}{2}(\eta(A,0) + \nu_0(A))$. Full expansions were established by G and Seeley 1996 with much information on all the coefficients in terms of A and D. The "nonproduct case" (where x_n -dependence is allowed) was left open by A-P-S; it was treated in G 1992, and full expansions were obtained in another G and Seeley 1995 paper using ψ do methods.

VI. Other boundary conditions.

In the product case, $D^* = D$ means on X_c that

$$\sigma^2 = I, \quad \sigma A = -A\sigma. \tag{13}$$

In this case, D_{\geq} is selfadjoint iff ker $A = \{0\}$. We can replace Π_{\geq} by other projections Π , studying expansion coefficients.

(i) When ker $A \neq \{0\}$, there is a decomposition (Palais 1965, Douglas-Wojciechowski 1991, Müller 1994, Dai-Freed 1994)

 $\ker A = V \oplus V^{\perp}, \quad V^{\perp} = \sigma V.$

Take $\Pi = \Pi_{>} + \Pi_{V}$, then D_{Π} is selfadjoint (with index 0). Lesch-Wojciechowski 1996 classified the selfadjoint cases with $V \subset \ker A$. Other finite rank perturbations have also been studied.

(ii) Take Π with

 $\Pi - \Pi_{\geq}$ of order $-\infty$ (e.g. Π equal to the true Calderón projector, Booss-Wojciechowski book 1993),

 $\Pi - \Pi_{\geq}$ of order -n (several authors),

 $\Pi - \Pi_{\geq}$ of order -1 (several authors).

(iii) Allow projections differing *principally* from Π_{\geq} . Brüning and Lesch 1999 introduced a family $\Pi(\theta)$ giving selfadjoint realizations; G 1999 studied *all well-posed* conditions (in the sense of Seeley 1969), getting full trace expansions, also in non-product cases.

We list the power operator versions expressing the pole structure of meromorphic extensions. The zeta function expansion is

$$\zeta(D_{\Pi}^{*}D_{\Pi},s) = \operatorname{Tr}((D_{\Pi}^{*}D_{\Pi})^{-s}) \sim \frac{1}{\Gamma(s)} \Big[\sum_{-n \le k < 0} \frac{a_{k}}{s + \frac{k}{2}} + \frac{\nu_{0}(D_{\Pi})}{s} + \sum_{k=0}^{\infty} \Big(\frac{a_{k}'}{(s + \frac{k}{2})^{2}} + \frac{a_{k}''}{s + \frac{k}{2}} \Big) \Big].$$
(14)

The eta function expansion is

$$\eta(D_{\Pi}^{*}D_{\Pi},s) = \operatorname{Tr}(D(D_{\Pi}^{*}D_{\Pi})^{-\frac{s+1}{2}}) \sim \frac{1}{\Gamma(\frac{s+1}{2})} \left[\sum_{-n < k < 0} \frac{b_{k}}{s+k} + \sum_{k=0}^{\infty} \left(\frac{b_{k}'}{(s+k)^{2}} + \frac{b_{k}''}{s+k}\right)\right]. \quad (15)$$

Pole at s = 0? (14) implies

$$\zeta(D_{\Pi}^{*}D_{\Pi},s) \sim \sum_{\substack{-n \le k < 0 \\ 20}} \frac{\bar{a}_{k}}{s + \frac{k}{2}} + \sum_{k=0}^{\infty} \frac{\bar{a}_{k}'}{s + \frac{k}{2}}, \quad (16)$$

with $\bar{a}'_0 = a'_0$. This coefficient is local, and it has been a challenge to show its vanishing; the most general result is (to my knowledge) from G 2003:

Theorem 7. If the principal symbol of Π commutes with the principal symbol of A^2 , then $a'_0 = 0$.

Moreover, the value $a_0'' = \zeta(D_{\Pi}^* D_{\Pi}, 0)$ is then explicitly derived from Π and ker D_{Π} , modulo local contributions.

For the eta function expansion in (15), division by $\Gamma(\frac{s+1}{2})$ does not remove the double pole at 0. However, consider selfadjoint cases; they require

$$\Pi = -\sigma \Pi^{\perp} \sigma$$

in addition to (13). We find here that $b'_0 = 0$ under the hypotheses of Theorem 7, so there is at most a simple pole. Moreover, if $b''_0(D_{\Pi}) = 0$ for a selfadjoint D_{Π} , it will also be 0 for a selfadjoint perturbation $D_{\overline{\Pi}}$ when $\Pi - \overline{\Pi}$ has order $\leq -n$. (Results from G 2003, Lei 2003, proved earlier for particular cases.) Final remark. The lectures moreover included: 1) An introduction to Boutet de Monvel's theory of pseudodifferential boundary operators, furnishing a complete calculus where elliptic boundary value problems and their solution operators are incorporated. 2) An explanation of the Calderón projectors C^{\pm} associated with a Dirac-type operator, and the solvability of the problem (11) with Π_{\geq} replaced by C^+ . (More on these topics e.g. in Ch. 10–11 of the book referred to on page 5 and below.) 3) The definition of well-posed boundary conditions for D — they are not elliptic in the usual sense, only injectively elliptic. (More details in G 1999.)

The works listed below refer to further contributions to the theories.

REFERENCES

- [ABP] M. F. Atiyah and R. Bott and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. **19** (1973), 279–330.
- [APS] M. F. Atiyah and V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemanninan geometry I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43–69.
- [AS] M. F. Atiyah and I. M. Singer, The index of elliptic operators, Ann. Math. 87 (1968), 484–530.

- [BW] B. Booss-Bavnbek and K. Wojciechowski, *Elliptic boundary problems* for Dirac operators, Birkhäuser, Boston, 1993.
- [BL] J. Brüning and M. Lesch, On the eta-invariant of certain non-local boundary value problems, Duke Math. J. 96 (1999), 425–468.
- [DF] X. Dai and D. Freed, η -invariants and determinant lines, J. Math. Phys. **35** (1994), 5155–5194.
- [DW] R. G. Douglas and K. P. Wojciechowski, Adiabatic limits of the ηinvariant, the odd-dimensional Atiyah-Patodi-Singer problem, Comm. Math. Phys. 142 (1991), 139–168.
- [Gi] P. B. Gilkey, The residue of the global eta function at the origin, Adv. Math. 40 (1981), 290–307.
- [G1] G. Grubb, Heat operator trace expansions and index for general Atiyah-Patodi-Singer boundary problems, Comm. Part. Diff. Equ. **17** (1992), 2031–2077.
- [G2] _____, Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems, Arkiv f. Mat. 37 (1999), 45–86.
- [G3] _____, Poles of zeta and eta functions for perturbations of the Atiyah-Patodi-Singer problem, Comm. Math. Phys. **215** (2001), 583–589.
- [G4] _____, Spectral boundary conditions for generalizations of Laplace and Dirac operators, Comm. Math. Phys. **240** (2003), 243–280.
- [G5] _____, Distributions and Operators, GTM, Springer-Verlag, New York, 2008, forthcoming book.
- [GS1] G. Grubb and R. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), 481–529.
- [GS2] ____, Zeta and eta functions for Atiyah-Patodi-Singer operators, J. Geom. An. 6 (1996), 31–77.
- [KV] M. Kontsevich and S. Vishik, Geometry of determinants of elliptic operators, Functional Analysis on the Eve of the 21'st Century (Rutgers Conference in honor of I. M. Gelfand 1993), Vol. I (S. Gindikin et al., eds.), Progr. Math. 131, Birkhäuser, Boston, 1995, pp. 173–197.
- [L] Y. Lei, The regularity of the eta function for perturbations of order (dim X) of the Atiyah-Patodi-Singer boundary problem, Comm. Part. Diff. Equ. 28 (2003), 1587–1596.
- [LW] M. Lesch and K. P. Wojciechowski, On the eta-invariant of generalized Atiyah-Patodi-Singer boundary value problems, Illinois J. Math. 40 (1996), 30–46.

- [MN] R. Melrose and V. Nistor, *Homology of pseudodifferential operators I.* Manifolds with boundary, manuscript, arXiv: funct-an/9606005.
- [M] W. Müller, *Eta invariants and manifolds with boundary*, J. Diff. Geom. (1994), 311–377.
- [P] R. S. Palais, Seminar on the Atiyah-Patodi-Singer index theorem, Ann. Math. Studies 57, Princeton University Press, Princeton, N. J., 1965, 366 pp.
- R. T. Seeley, Topics in pseudo-differential operators, CIME Conf. on Pseudo-Differential Operators 1968, Edizioni Cremonese, Roma, 1969, pp. 169–305.
- [W] M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. **75** (1984), 143-178.