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I. Summary on pseudodifferential operators.

The symbol p(x, ξ) is in Sd
1,0(Ω,R

n), when

|Dβ
xD

α
ξ p(x, ξ)| ≤ c(x)〈ξ〉d−|α|, ∀α, β;

here 〈ξ〉 = (1 + |ξ|2)
1
2 . It is classical, ∈ Sd(Ω,Rn), when there

exist pd−l(x, ξ) for l ∈ N0 such that

(i) pd−l(x, tξ) = td−lpd−l(x, ξ) for |ξ| ≥ 1, t ≥ 1,

(ii) p(x, ξ) −
∑

0≤l<M pd−l(x, ξ) ∈ Sd−M
1,0 (Ω,Rn), ∀M ;

in short, p ∼
∑

l∈N0
pd−l in Sd

1,0(Ω,R
n).

Elliptic, when the principal symbol pd(x, ξ) 6= 0, ∀x ∈ Ω, |ξ| ≥ 1.

The associated pseudodifferential operator — ψdo — is

Pu(x) ≡ Op
(
p(x, ξ)

)
u(x) = (2π)−n

∫
eix·ξp(x, ξ)û(ξ) dξ.

Operators “in (x, y)-form” are defined via oscillatory integrals:

Op
(
p(x, y, ξ)

)
u(x) = (2π)−n

∫
ei(x−y)·ξp(x, y, ξ)u(y) dξdy;

here p(x, y, ξ) ∈ Sd
1,0(Ω × Ω,Rn). We say that p ∼ p1, P ∼ P1, if

p− p1 resp. P − P1 is of order −∞.
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Theorem 1. Op(p) Op(p′) ∼ Op(p′′), where

p′′ = p#p′ ∼
∑

α∈Nn
0

1
α!D

α
ξ p ∂

α
x p

′ in Sd+d′

1,0 (Ω,Rn), (1)

the Leibniz product.

Theorem 2. When p is elliptic ∈ Sd(Ω,Rn), then ∃q ∈ S−d(Ω,Rn)

such that p# q ∼ 1. Then P = Op(p) and Q = Op(q) satisfy

PQ = I −R1, QP = I −R2, R1 and R2 of order −∞. (2)

Q is called a parametrix of P , q a parametrix symbol.

Theorem 3. When p ∈ Sd
1,0(Ω,R

n), then (for Sobolev spaces)

Op(p) : Hs
comp(Ω) → Hs−d

loc (Ω), ∀s ∈ R. (3)

Theorem 4. The space of classical ψdo’s is invariant under C∞

coordinate changes. The principal symbol has a meaning inde-

pendent of the choice of coordinates. In particular, ellipticity is

defined invariantly.
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Allows the definition of ψdo’s on smooth manifolds. Let X be a

compact manifold without boundary, P elliptic on X. Then (2)

and (3) hold on X (we can drop “comp” and “loc”). By Rellich’s

theorem, R1 and R2 are compact operators in any Hs(X). Then

P : Hs(X) → Hs−d(X)

is a Fredholm operator, with finite dimensional kernel (the nullspace)

and cokernel (Hs−d(X)/ ranP ), independently of s. In this way

P has an index:

indexP = dimkerP − dim cokerP.

Moreover, P ∗ is likewise elliptic of order d, and

dim cokerP = dimkerP ∗.

The index depends only on pd. The Atiyah-Singer index theorem

(1964) shows that this integer is equal to a certain constant defined

by algebraic topology from P and X.

The theory likewise works for matrix-formed operators (square

matrices in elliptic considerations), and their generalizations to

operators in vector bundles over manifolds.
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Details of the ψdo theory can be found e.g. in Chapters 7–8 of a

coming book: http://www.math.ku.dk/∼grubb/distribution.htm

II. An index formula.

We now assume d > 0. The operators P ∗P and PP ∗ are ellip-

tic of order 2d; they define selfadjoint nonnegative realizations in

L2(X) with discrete spectrum going to ∞.

Lemma 5. kerP ∗P = kerP and kerPP ∗ = kerP ∗. For λ > 0,

dimker(P ∗P − λ) = dimker(PP ∗ − λ).

There is a nice trick from the early days of index theory: Let ϕ(λ)

be a function on R+ with ϕ(0) = 1, and let M be a discrete subset

of R+ containing 0. Then

indexP = dimkerP − dimkerP ∗

=
∑

λ∈M ϕ(λ)
(
dimker(P ∗P − λ) − dimker(PP ∗ − λ)

)
.

Applying this with ϕ(λ) = e−tλ, t > 0, and M containing the

eigenvalues of P ∗P and PP ∗, we get:
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indexP =

=
∑

M e−tλ
(
dimker(P ∗P − λ) − dimker(PP ∗ − λ)

)

=
∑

j∈N
e−tλj(P

∗P ) −
∑

j∈N
e−tλj(PP∗)

= Tr e−tP∗P − Tr e−tPP∗

;

here the λj(P
∗P ), j ∈ N, denote the eigenvalues of P ∗P repeated

according to multiplicity, with a similar definition of λj(PP
∗). It

is known that

Tr e−tP∗P = c−nt
− n

2d + · · · + c−1t
− 1

2d + c0 + o(t) for t→ 0

(a heat trace expansion), and similarly for PP ∗, so we get by

subtraction a formula

indexP = h(t) + c0(P
∗P ) − c0(PP

∗) + g(t),

where g(t) → 0 for t→ 0, and h(t) blows up for t→ 0 unless it is

0. Since the left-hand side is independent of t, we conclude first

that h(t) = 0 and next that g(t) = 0, obtaining

Theorem 6. indexP = c0(P
∗P ) − c0(PP

∗).

The constants c0(P
∗P ) and c0(PP

∗) can (in principle) be calcu-
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lated from the first n terms of the symbol of P in local coordinates.

(We then say they are “local”. Constants that depend on the full

structure are called “global”.)

There is in fact a form a(x) on X so that

indexP = c0(P
∗P ) − c0(PP

∗) =
∫

X
a(x).

III. Other index formulas.

One can approach the index by other operator families associated

with P ∗P and PP ∗. Let B be an elliptic ψdo of order m such

that the resolvent (B − λ)−1 exists and is O(λ−1) in L2(X) for

λ→ ∞ on rays in V = {λ ∈ C | ang λ ∈ [π
2 − ε, 3π

2 + ε]}.

Three operator families:

Resolvent (B − λ)−1,

Heat operator e−tB,

Power operator B−s (defined as 0 on kerB).

Can be obtained from one another:
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Resolvent (B − λ)−1
Cauchy int.

�

Laplace transf.

e−tB Heat operator

Cauchy int. ↘∼ ∼↙ Mellin transf.

Γ(s)B−s

Power operator

Cauchy integrals:

B−s = i
2π

∫

C

λ−s(B − λ)−1 dλ, e−tB = i
2π

∫

C′

e−tB(B − λ)−1 dλ

where C is a curve in (V ∪ {|λ| ≤ δ}) \ R− around the nonzero

eigenvalues; C′ runs in V around all eigenvalues.
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Three equivalent asymptotic trace expansions:

Along with B elliptic of order m > 0 we consider A of order ν ∈ R.

The resolvent trace expansion:

Tr(A(B − λ)−N) ∼
∑

j≥0 c̃j(−λ)−
ν+n−j

m
−N

+
∑

k≥0

(
c̃′k log(−λ) + c̃′′k

)
(−λ)−k−N , (5)

for λ→ ∞ in V . (N > (ν + n)/m.)

The heat trace expansion:

Tr(Ae−tB) ∼
∑

j≥0 cjt
j−ν−n

m +
∑

k≥0(−c
′
k log t+ c′′k)tk, (6)

for t→ 0+.

The complex power trace expansion:

Γ(s) Tr(AB−s) ∼
∑

j≥0
cj

s+ j−ν−n

m

− 1
s Tr(AΠ0(B))

+
∑

k≥0

(
c′k

(s+k)2 +
c′′k

s+k

)
, (7)

where the right-hand side gives the pole structure of the meromor-

phic extension. Same constants as in heat trace expansion; related

to tilde-constants by universal formulas. Division by Γ(s) makes

double poles simple. The cj and c′k are “local”, the c′′k “global”.
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We denote

C0(A,B) = c̃n+ν + c̃′′0 = cn+ν + c′′0 , C−1(A,B) = c̃′0 = c′0,

where we set c̃n+ν = cn+ν = 0 if n + ν /∈ N0. When A = I,

C−1(I, B) = 0, and

indexP = C0(I, P
∗P ) − C0(I, PP

∗).

The constants C−1(A,B) and C0(A,B) play a role as generalized

trace-functionals on A. In fact, mC−1(A,B) is independent of B;

it is the noncommutative residue

res(A) = mC−1(A,B) (8)

introduced by Wodzicki in 1984 (note thatC−1(A,B) is the residue

of Tr(AB−s) at the pole 0). It is tracial, i.e., vanishes on commu-

tators, and satisfies:

res(A) = 1
(2π)n

∫ eX ∫
|ξ|=1

tr a−n(x, ξ) dS(ξ)dx

(one point of the formula is that this has an invariant meaning on

X). It vanishes when A is a differential operator, in particular if

A = I.
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The constantC0(A,B) is by some authors called the zeta-regularized

trace. For A of noninteger order, and for integer-order cases with

suitable symbol parity properties in relation to the dimension, this

equals the canonical trace, as introduced by Kontsevich and Vishik

in 1994; then it also has tracial properties, and can be determined

from a(x, ξ) by a Hadamard type finite-part integral.

One can play around much more with these formulas and expan-

sions. For example, when A is an elliptic operator and Ã is a

parametrix, then

indexA = C0([A, Ã], B); here [A, Ã] = AÃ− ÃA

(found in Melrose-Nistor).

Remark. To give an impression of how the trace expansions

are shown, consider first a case where B is an elliptic differential

operator of order m > n so that the resolvent is trace-class, and

let λ ∈ R−. Agmon observed that if we write −λ = µm, µ ∈ R

(m is even in this case), and consider µ as an extra cotangent

variable, the symbol
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b̄(x, ξ, µ) = b(x, ξ) + µm

is elliptic as a function of (ξ, µ) ∈ R
n+1. Construct the parametrix

symbol

q̄(x, ξ, µ) = q̄−m + q̄−m−1 + · · · , q̄−m = 1
b(x,ξ)+µm .

For each term, the kernelK−m−j(x, y, µ) of the operator Op(q̄−m−j)

satisfies, by homogeneity,

K−m−j(x, x, µ) = 1
(2π)n

∫
q̄−m−j(x, ξ, µ) dξ

= µ−m−j+n 1
(2π)n

∫
q̄−m−j(x, η, 1) dη,

which by integration in x produces the j-th term in (5). When B

is a pseudodifferential operator, the singularities at ξ = 0 in the

strictly homogeneous symbols give trouble, but a finer analysis

can sort this out, showing how logarithmic terms arise.

IV. The zeta and eta functions.

The zeta function of B is the function

ζ(B, s) = TrB−s;

it is well-defined as a holomorphic function for Re s > n/m, since
12



B−s is trace-class then. As already mentioned in connection with

power functions, it has a meromorphic extension to C. We get as

a special case of (7) by division by Γ(s) and the information that

c′0 = 0 when A = I:

ζ(B, s) ∼
∑

j≥0, j−n

m
/∈N0

bj

s+ j−n

m

+
∑

k>0
b′k

s+k .

When B is a differential operator, some poles vanish due to parity

of symbol terms.

When B is selfadjoint nonnegative, ζ(B, s) can also be read as

ζ(B, s) =
∑

eigenvalues 6=0 λj(B)−s,

the eigenvalues repeated according to multiplicity.

When B is selfadjoint not lower bounded, one is interested in

ζ(B2, s/2) =
∑

eigenvalues 6=0 |λj(B)|−s = Tr(|B|−s),

with behavior as above, and also

η(B, s) =
∑

eigenvalues 6=0 signλj(B)|λj(B)|−s = Tr(B|B|−s−1),

the eta function. An interesting case is when B is a differential

operator system of order 1; let m = 1 in the following. The pole

structure of the eta function is covered by (7):
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Γ(s) Tr( B
|B| |B|−s) ∼

∑
j≥0

cj

s+j−n +
∑

k≥0

(
c′k

(s+k)2 +
c′′k

s+k

)
, (9)

which by division by Γ(s) gives the pole structure

η(B, s) = Tr( B
|B| |B|−s) ∼

∑
k≥−n

bk

s+k . (10)

The coefficient b0 equals res( B
|B| ) (cf. (8)); it is “local”.

There is a deep result here, shown partially by Atiyah, Patodi

and Singer in 1976 with the proof completed by Gilkey 1981, that

in fact b0 = 0, so that the eta function has a value at zero, η(B, 0)

(equal to c′′0 from (9)). This value is “global”.

Note that also the noncommutative residue of the positive eigen-

projection Π>(B) = 1
2 (I + B

|B| ) is zero then. Wodzicki 1984 ob-

served this and generalized it to a result on the stability of the

zeta value at 0 under different choices of the ray where λ−s has

its jump, also in nonselfadjoint cases.

We can view the eta-functions as

η(B, s) =
∑

eigenvalues>0 λj(B)−s −
∑

eigenvalues<0 |λj(B)|−s,

which measures the “spectral asymmetry” of B.
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Another function of interest in this connection is the derivative

ζ ′(B, s) = d
dsζ(B, s), extended meromorphically to C, in particu-

lar its value at s = 0. One can show that −ζ ′(B, 0) can be viewed

as the logarithm of a determinant of B (by generalization from

finite dimensional cases); it is often called the zeta-determinant

of B. It is nonlocal, and its evaluation is on the same level of

difficulty as the eta value. In view of the formula

Tr( d
dsB

−s) = −Tr((logB)B−s),

extended meromorphically from large Re s, we have

log detB ≡ −ζ ′(B, 0) = C0(logB,B),

extending the notation introduced for TrAB−s to the non-classical

case where A is replaced by logB. This goes rather naturally for

ψdo’s on closed manifolds, but is somewhat problematic for gen-

eralizations to manifolds with boundary.

V. The Atiyah-Patodi-Singer problem.

The Atiyah-Singer index theorem can with some extra efforts
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be generalized to elliptic differential operators on manifolds with

boundary, provided with differential boundary conditions satisfy-

ing the Shapiro-Lopatinskii condition (also called “elliptic bound-

ary problems”), the index is then local as in the boundaryless

case.

But while striving to break up the study of general higher-order

problems into first-order pieces, the authors got the idea of using

Dirac operators as building blocks, justified by geometric consider-

ations. The difficulty here is that a Dirac operator D is first-order

and does not always have a Shapiro-Lopatinskii boundary condi-

tion. They took recourse to certain pseudodifferential boundary

conditions. This makes the study technically harder and intro-

duces global constants along with the local ones.

Let X be a smooth compact n-dimensional manifold with bound-

ary ∂X = X ′, and let D be a first-order elliptic differential opera-

tor on X, going from a vector bundle E1 to E2, both of dimension
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N . On a collar neighborhood Xc = X ′ × [0, c[ of X ′ with points

x = (x′, xn), let D have the form

D = σ( ∂
∂xn

+ A),

where A is a selfadjoint elliptic first-order operator in the bundle

E′
1 = E1|X′ and σ is a unitary morphism from E′

1 to E′
2 (lifted to

Xc). Let Π≥ be the nonnegative eigenprojection for A. The APS

problem is the boundary value problem

Du = f on X, Π≥γ0u = 0; (11)

here γ0u = u|X′ . This problem is well-posed in the sense that the

L2-realization D≥ of D with domain

D(D≥) = {u ∈ H1(X,E1) | Π≥γ0u = 0}

is a Fredholm operator. Atiyah, Patodi and Singer (1975) showed

the index formula

indexD≥ =

∫

X

a(x) − 1
2 (η(A, 0) + ν0(A)); (12)
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here a(x) is the usual form entering in the index formula for D on

the doubled manifold (but integrated only over X), and ν0(A) =

dimkerA.

The proof by A-P-S is a tricky combination of functional anal-

ysis (using the spectral theory for A) with the study of D on the

doubled manifold. Although they used that

indexD≥ = Tr e−tD∗
≥D≥ − Tr e−tD≥D∗

≥ ,

they avoided the need to actually calculate trace expansions for

these two “heat traces” individually.

That was done much later, in G 1992 down to and includ-

ing the crucial constant term, showing that each of Tr e−tD∗
≥D≥

and Tr e−tD≥D∗
≥ contributes half of the piece 1

2 (η(A, 0) + ν0(A)).

Full expansions were established by G and Seeley 1996 with much

information on all the coefficients in terms of A and D. The “non-

product case” (where xn-dependence is allowed) was left open by

A-P-S; it was treated in G 1992, and full expansions were obtained

in another G and Seeley 1995 paper using ψdo methods.
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VI. Other boundary conditions.

In the product case, D∗ = D means on Xc that

σ2 = I, σA = −Aσ. (13)

In this case, D≥ is selfadjoint iff kerA = {0}. We can replace Π≥

by other projections Π, studying expansion coefficients.

(i) When kerA 6= {0}, there is a decomposition (Palais 1965,

Douglas-Wojciechowski 1991, Müller 1994, Dai-Freed 1994)

kerA = V ⊕ V ⊥, V ⊥ = σV .

Take Π = Π> +ΠV , then DΠ is selfadjoint (with index 0). Lesch-

Wojciechowski 1996 classified the selfadjoint cases with V ⊂ kerA.

Other finite rank perturbations have also been studied.

(ii) Take Π with

Π − Π≥ of order −∞ (e.g. Π equal to the true Calderón pro-

jector, Booss-Wojciechowski book 1993),

Π − Π≥ of order −n (several authors),

Π − Π≥ of order −1 (several authors).
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(iii) Allow projections differing principally from Π≥. Brüning and

Lesch 1999 introduced a family Π(θ) giving selfadjoint realiza-

tions; G 1999 studied all well-posed conditions (in the sense of

Seeley 1969), getting full trace expansions, also in non-product

cases.

We list the power operator versions expressing the pole structure

of meromorphic extensions. The zeta function expansion is

ζ(DΠ
∗DΠ, s) = Tr((DΠ

∗DΠ)−s) ∼

1

Γ(s)

[ ∑

−n≤k<0

ak

s+ k
2

+
ν0(DΠ)

s
+

∞∑

k=0

( a′k
(s+ k

2 )2
+

a′′k
s+ k

2

)]
. (14)

The eta function expansion is

η(DΠ
∗DΠ, s) = Tr(D(DΠ

∗DΠ)−
s+1

2 ) ∼

1

Γ( s+1
2 )

[ ∑

−n<k<0

bk
s+ k

+
∞∑

k=0

( b′k
(s+ k)2

+
b′′k

s+ k

)]
. (15)

Pole at s = 0? (14) implies

ζ(DΠ
∗DΠ, s) ∼

∑

−n≤k<0

āk

s+ k
2

+

∞∑

k=0

ā′k
s+ k

2

, (16)
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with ā′0 = a′0. This coefficient is local, and it has been a challenge

to show its vanishing; the most general result is (to my knowledge)

from G 2003:

Theorem 7. If the principal symbol of Π commutes with the prin-

cipal symbol of A2, then a′0 = 0.

Moreover, the value a′′0 = ζ(DΠ
∗DΠ, 0) is then explicitly derived

from Π and kerDΠ, modulo local contributions.

For the eta function expansion in (15), division by Γ( s+1
2 ) does

not remove the double pole at 0. However, consider selfadjoint

cases; they require

Π = −σΠ⊥σ

in addition to (13). We find here that b′0 = 0 under the hypotheses

of Theorem 7, so there is at most a simple pole. Moreover, if

b′′0(DΠ) = 0 for a selfadjoint DΠ, it will also be 0 for a selfadjoint

perturbation DΠ when Π − Π has order ≤ −n. (Results from G

2003, Lei 2003, proved earlier for particular cases.)
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Final remark. The lectures moreover included: 1) An introduc-

tion to Boutet de Monvel’s theory of pseudodifferential boundary

operators, furnishing a complete calculus where elliptic boundary

value problems and their solution operators are incorporated. 2)

An explanation of the Calderón projectors C± associated with a

Dirac-type operator, and the solvability of the problem (11) with

Π≥ replaced by C+. (More on these topics e.g. in Ch. 10–11 of

the book referred to on page 5 and below.) 3) The definition of

well-posed boundary conditions for D — they are not elliptic in

the usual sense, only injectively elliptic. (More details in G 1999.)

The works listed below refer to further contributions to the

theories.
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