- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

Eigenvalue asymptotics for nonsmooth singular Green operators

Gerd Grubb Copenhagen University

Graz, August 2012

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

- 1. Singular Green operators in the smooth case
- 2. Spectral estimates for nonsmooth ψ dbo's
- 3. Nonsmooth resolvent differences

Singular Green operators in the smooth case
 Spectral estimates for nonsmooth ψdbo's
 Nonsmooth resolvent differences

1. Singular Green operators in the smooth case

- Ω bounded open $\subset \mathbb{R}^n$ with C^{∞} -boundary $\partial \Omega = \Sigma$.
- A strongly elliptic on Ω , C^{∞} -coefficients,

$$\begin{aligned} & \mathcal{A}u = -\sum_{j,k=1}^{n} \partial_j (a_{jk}\partial_k u) + \sum_{j=1}^{n} a_j \partial_j u + a_0 u, \text{ with} \\ & \mathsf{Re} \sum_{j,k=1}^{n} a_{jk}(x) \xi_j \xi_k \geq c_0 |\xi|^2 \text{ for } x \in \overline{\Omega}, \xi \in \mathbb{R}^n; \quad c_0 > 0. \end{aligned}$$

- $\partial_n^j u|_{\Sigma} = \gamma_j u, j \in \mathbb{N}_0$. $\nu u = \sum n_j \gamma_0(a_{jk}\partial_k u) (= \gamma_1 u \text{ when } A = -\Delta),$ $\vec{n} = (n_1, \dots, n_n)$ the normal to Σ .
- The Dirichlet realization A_{γ} acts like A with $D(A_{\gamma}) = \{u \in H^2(\Omega) \mid \gamma_0 u = 0\},\$
- Define a *Neumann-type realization* $A_{\nu,C}$ with $D(A_{\nu,C}) = \{u \in H^2(\Omega) \mid \nu u = C\gamma_0 u\}$; *C* a first-order diff.op. on Σ .

If both are invertible, then $A_{\nu,C}^{-1} - A_{\gamma}^{-1}$ is a singular Green operator.

Singular Green operators in the smooth case
 Spectral estimates for nonsmooth ψdbo's
 Nonsmooth resolvent differences

When *B* is compact in a Hilbert space *H*, set $s_j(B) = \mu_j(B^*B)^{\frac{1}{2}}$. It is well-known (starting with Weyl 1912,...) that each of the operators A_{γ} and $A_{\nu,C}$ has a spectral asymptotic behavior

$$s_j(A_\gamma^{-1}) ext{ and } s_j(A_{
u,C}^{-1}) \sim c_A j^{-2/n} ext{ for } j o \infty, \quad (1)$$

with a constant c_A determined from A. Remainders improved to $O(j^{-3/n})$ or more exact formulas (Hörmander '69, Ivrii '80s,...). It is also well-known (Birman and Solomyak, Grubb in '70s and '80s) that

$$s_j (A_{
u,C}^{-1} - A_{\gamma}^{-1}) \sim c \, j^{-2/(n-1)}$$
 for $j o \infty$. (2)

Again the remainder can be refined using Hörmander, lvrii results. The "weak Schatten class" $\mathfrak{S}_{p,\infty}(H)$ consists of those *B* such that $s_j(B)$ is $O(j^{-1/p})$ for $j \to \infty$; with quasi-norm $\mathbf{N}_p(B) \equiv \sup_j s_j(B) j^{1/p}$. These are just *upper estimates*.

Here A_{γ}^{-1} and $A_{\nu,C}^{-1}$ are in $\mathfrak{S}_{n/2,\infty}$, and $A_{\nu,C}^{-1} - A_{\gamma}^{-1} \in \mathfrak{S}_{(n-1)/2,\infty}$.

・ロン ・雪 ・ ・ ヨ ・

1. Singular Green operators in the smooth case

2. Spectral estimates for nonsmooth ψ dbo's

3. Nonsmooth resolvent differences

The dimension n-1 comes in because the resolvent difference has its essential effect in the neighborhood of the boundary $\partial \Omega$. More generally, the *singular Green operators* defined by Boutet de Monvel '71 in a calulus of *pseudodifferential boundary operators* (ψ dbo's) satisfy, by G '84:

When G is a singular Green operator on Ω of order -t < 0 (and class zero), then

$$s_j(G) \sim c_G j^{-t/(n-1)}$$
 for $j \to \infty$. (3)

Question: Extend asymptotic estimates like (2) and (3) to operators with nonsmooth *x*-dependence.

Upper estimates for (2) are known from Birman '62, when the coefficients are in $C^0 \cap W^{1,\infty}$ and $\partial \Omega$ is C^2 .

Reference: G '12, arXiv:1205.0094.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

The ψ dbo calculus deals with matrices:

$$\mathcal{A} = \begin{pmatrix} P_+ + G & K \\ & & \\ T & S \end{pmatrix} \stackrel{H^{s+d}(\Omega)^N}{\underset{H^{s+d}(\Sigma)^M}{\to} \overset{H^s(\Omega)^{N'}}{\underset{H^{s}(\Sigma)^{M'}}{\to}}, \text{ where }$$

- *P* is a pseudodifferential operator (ψdo) on ℝⁿ of order *d*, and *P*₊ = *r*⁺*Pe*⁺ is its truncation to Ω (*r*⁺ restricts to Ω and *e*⁺ extends by zero).
- T is a trace operator from Ω to Σ of order d ¹/₂, K is a Poisson operator from Σ to Ω of order d + ¹/₂, S is a ψdo on Σ of order d.
- G is a singular Green operator of order d, e.g. of type KT.
- P and G are defined in local coordinates by Fourier integrals

$$(Pu)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-ix \cdot \xi} p(x,\xi) \hat{u}(\xi) d\xi,$$

$$(Gu)(x) = (2\pi)^{1-n} \int_{\mathbb{R}^{n-1}} e^{-ix' \cdot \xi'} \int_0^\infty \tilde{g}(x', x_n, y_n, \xi') \hat{u}(\xi', y_n) dy_n d\xi',$$

Singular Green operators in the smooth case
 Spectral estimates for nonsmooth ψdbo's
 Nonsmooth resolvent differences

(when G is of class 0). Here $\hat{u} = \mathcal{F}u$, $\hat{u}(\xi', y_n) = \mathcal{F}_{y' \to \xi'}u(y', y_n)$, $y' = (y_1, \ldots, y_{n-1})$.

For the 2' order elliptic operator A we have the examples:

- $Q = A^{-1}$ is the ψ do inverse of A on \mathbb{R}^n , Q_+ its truncation to Ω ,
- $A_{\gamma}^{-1} = Q_{+} + G_{\gamma}$, where G_{γ} is the s.g.o. $-K_{\gamma}\gamma_{0}Q_{+}$; here K_{γ} is the Poisson solution operator for the Dirichlet problem.
- $A_{\nu,C}^{-1} A_{\gamma}^{-1} = K_{\gamma}L^{-1}(K_{\gamma}')^*$, a *Krein resolvent formula*. Here $L = C P_{\gamma,\nu}$, where $P_{\gamma,\nu}$ is the Dirichlet-to-Neumann operator νK_{γ} , a ψ do on Σ .

The ψ dbo calculus was generalized to symbols with C^{τ} - Hölder continuity in x ($\tau > 0$) by Abels '05. The Krein resolvent formula was extended to nonsmooth cases by Abels-G-Wood '12, when the coefficients of A are in W_q^1 (for some q > n) and the domain has a $B_{p,2}^{3/2}$ -boundary; this contains $C^{3/2+\varepsilon}$ -domains for all $\varepsilon > 0$. Some tools for spectral estimates:

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

Lemma A. If \equiv is bounded smooth *m*-dimensional, and $B \in \mathcal{L}(L_2(\equiv), H^t(\equiv))$ with t > 0, then $B \in \mathfrak{S}_{m/t,\infty}$; indeed,

$$\mathbf{N}_{m/t}(B) \equiv \sup_{j} s_{j}(B) j^{t/m} \leq C \|B\|_{\mathcal{L}(L_{2},H^{t})}.$$

Lemma B. 1° *Let* $B = B_0 + R$, then for $j \to \infty$,

$$\lim s_j(B_0)j^{1/p} = C_0, \ \lim s_j(R)j^{1/p} = 0 \implies \lim s_j(B)j^{1/p} = C_0.$$

2° Let $B = B_M + B'_M$ for $M \in \mathbb{N}_0$, then $\lim s_j(B_M)j^{1/p} = C_M$, $\lim_M C_M = C_0$ and $\lim_M \mathbf{N}_p(B'_M) = 0$ imply $\lim s_j(B)j^{1/p} = C_0$.

Lemma C. When *P* is a classical ψ do system of order -t < 0, cut down to Ξ , with principal symbol $p^0(x,\xi)$, then $\lim_j s_j(P)j^{t/m} = c(p^0)^{t/m}$, where

$$c(p^0) = rac{1}{m(2\pi)^m} \int_{\Xi} \int_{|\xi|=1} \operatorname{tr}((p^{0*}p^0)^{m/2t}) d\omega dx.$$
 (4)

2. Spectral estimates for nonsmooth ψ dbo's

3. Nonsmooth resolvent differences

2. Spectral estimates for nonsmooth ψ dbo's

The pseudodifferential calculus for symbols $p(x, \xi)$ with full estimates in ξ but only C^{τ} -smoothness in x ($\tau > 0$) was developed by Kumano-go and Nagase '78, J. Marschall '87 and M. Taylor '91. Here when $P_i = OP(p_i(x, \xi))$ of order d_i , we only have

 $P_i \colon H^{s+d_i}(\mathbb{R}^m) \to H^s(\mathbb{R}^m)$ for $|s| < \tau$,

 $P_1P_2-\mathsf{OP}(p_1p_2)\colon H^{s+d_1+d_2-\theta}(\mathbb{R}^m)\to H^s(\mathbb{R}^m) \text{ for } s,s+d_1\in]-\tau+\theta,\tau[\,.$

Marschall shows that operator norms depend on N symbol estimates (N linked with the dimension). Then Lemma C extends:

Theorem 1. If *P* is a classical C^{τ} -smooth ψ do system of order -t < 0, defined on a compact *m*-dimensional C^{∞} -manifold Ξ without boundary, then

$$s_j(P)j^{t/m}
ightarrow C(p^0), ext{ for } j
ightarrow \infty.$$

Proof: Approximate *P* by C^{∞} -smooth operators P_k obeying Lemma C. Now $||P - P_k||_{\mathcal{L}(H^{-t}, H^0)} \to 0$, so $P_k \to P$ in $\mathfrak{S}_{m/t, \infty}$ by Lemma A. Apply Lemma B to the decompositions $P = P_k + (P - P_k)_{\mathbb{T}} + (P - P_k)_{\mathbb{T}}$

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

We now address the question for nonsmooth singular Green operators on smooth bounded domains $\Omega \subset \mathbb{R}^n$, in particular resolvent differences, where the *boundary dimension* n - 1 should come in.

The nonsmooth ψ dbo calculus (Abels '05) has similar difficulties as the ψ do calculus: Sobolev mapping properties are valid only for *s* in a small interval, in particular this holds for remainders in composition rules $A_1A_2 - OP(a_1 \circ a_2)$.

For spectral estimates the calculus must be sharpened to operator norms depending on specific *finite* sets of symbol seminorms, as in Marschall's ψ do treatment.

However, there is an additional difficulty in the application of spectral theory to nonsmooth singular Green operators:

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

If $G = G_0 + R$ on Ω , where G_0 of order -t has the expected asymptotic behavior

$$s_j(G_0)\sim C(G_0)j^{-t/(n-1)},$$

and *R* is of lower order, bounded from $H^{-t-\theta}(\Omega)$ to $H^0(\Omega)$ for some $\theta > 0$, then Lemma A for operators on Ω only gives that

$$s_j(R) \leq C j^{-(t+\theta)/n}.$$

But $j^{-(t+\theta)/n}$ decreases faster than $j^{-t/(n-1)}$ only when

$$\theta > t/(n-1),$$

and we usually do not have such large values of θ available.

So the remainders arising in compositions and approximations are a major problem. One has to involve the boundary more directly.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's

3. Nonsmooth resolvent differences

Consider a C^{τ} -smooth s.g.o. of order -t and class 0 on \mathbb{R}^{n}_{+} ,

$$(Gu)(x) = (2\pi)^{1-n} \int_{\mathbb{R}^{n-1}} e^{-ix'\cdot\xi'} \int_0^\infty \tilde{g}(x', x_n, y_n, \xi') \dot{u}(\xi', y_n) \, dy_n d\xi'.$$

Theorem 2. Let *G* be selfadjoint ≥ 0 on \mathbb{R}^n_+ , and let $\psi(x) = \psi_0(x')\psi_n(x_n)$ with C_0^{∞} functions equal to 1 near 0. Then

$$\mu_j(\psi G\psi)j^{t/(n-1)}
ightarrow c(\psi_0^2 g^0)^{t/(n-1)}$$
 for $j
ightarrow \infty$;

$$c(\psi_0^2 g^0) = \frac{1}{(n-1)(2\pi)^{(n-1)}} \int_{\Sigma} \int_{|\xi'|=1} \operatorname{tr}((\psi_0^2 g^0(x',\xi',D_n))^{(n-1)/t}) \, d\omega dx'.$$
(5)

The proof uses that the symbol-kernel \tilde{g} has a *rapidly convergent* double expansion in Laguerre functions $\varphi_m(x_n, \sigma)$,

$$\tilde{g}(x', x_n, y_n, \xi') = \sum_{l,m \in \mathbb{N}_0} c_{lm}(x', \xi') \varphi_l(x_n, \langle \xi' \rangle) \varphi_m(y_n, \langle \xi' \rangle).$$

Here $\langle \xi' \rangle = (1 + |\xi'|^2)^{\frac{1}{2}}$, the c_{lm} are ψ do symbols of order -t, and the $\varphi_m(x_n, \sigma)$ are of the form $\text{pol}_m(x_n)e^{-x_n\sigma}$, with polynomials of degree m in x_n with coefficients depending on σ . The $\varphi_m(x_n, \sigma)$, $m \in \mathbb{N}_0$, are an orthonormal basis of $L_2(\mathbb{R}_+)$.

2. Spectral estimates for nonsmooth $\psi {\rm dbo's}$

3. Nonsmooth resolvent differences

Let Φ_m denote the Poisson operator with symbol-kernel $\varphi_m(x_n, \langle \xi' \rangle)$, then we can write, with C^{τ} -smooth ψ do's C_{lm} of order -t on \mathbb{R}^{n-1} ,

$$G = \sum_{I,m\in\mathbb{N}_0} \Phi_I C_{Im} \Phi_m^*.$$

The idea of proof is then (we leave out cut-off functions): Write

$$G = G_M + G_M^{\dagger}$$
, where
 $G_M = \sum_{I,m < M} \Phi_I C_{Im} \Phi_m^*$, $G_M^{\dagger} = \sum_{I \text{ or } m \ge M} \Phi_I C_{Im} \Phi_m^*$.

We can use the rapid decrease of the C_{lm} , combined with the control of $\mathfrak{S}_{p,\infty}$ -quasinorms in terms of finite sets of symbol seminorms, to show that $G_M^{\dagger} \to 0$ in $\mathfrak{S}_{(n-1)/t,\infty}$ for $M \to \infty$. Next,

$$G_{M} = \begin{pmatrix} \Phi_{0} & \cdots & \Phi_{M-1} \end{pmatrix} \begin{pmatrix} C_{00} & \cdots & C_{0,M-1} \\ \vdots & & \vdots \\ C_{M-1,0} & \cdots & C_{M-1,M-1} \end{pmatrix} \begin{pmatrix} \Phi_{0}^{*} \\ \vdots \\ \Phi_{M-1}^{*} \end{pmatrix}$$
$$= \mathcal{K}_{M} \mathcal{C}_{M} \mathcal{K}_{M}^{*}.$$

・ 戸 ト ・ 三 ト ・ 三 ト

- 1. Singular Green operators in the smooth case
 - 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

Hence the *j*-th eigenvalue satisfies

$$\mu_j(\mathbf{G}_M) = \mu_j(\mathcal{K}_M \mathcal{C}_M \mathcal{K}_M^*) = \mu_j(\mathcal{C}_M \mathcal{K}_M^* \mathcal{K}_M) = \mu_j(\mathcal{C}_M),$$

since $\mathcal{K}_M^* \mathcal{K}_M = I_M$ in view of the orthonormality of the Laguerre system.

Here C_M is an $M \times M$ -matrix-formed C^{τ} -smooth ψ do of order -t on \mathbb{R}^{n-1} , to which Theorem 1 applies to give a spectral asymptotic estimate.

Now Lemma B is applied to the decomposition $G = G_M + G_M^{\dagger}$ for $M \to \infty$, to complete the proof.

There is an extension of the theorem to selfadjoint C^{τ} -smooth s.g.o.s on bounded open smooth sets $\Omega \subset \mathbb{R}^n$.

2. Spectral estimates for nonsmooth ψ dbo's

3. Nonsmooth resolvent differences

3. Nonsmooth resolvent differences

Finally consider the Krein resolvent formula

$$A_{\nu,C}^{-1}-A_{\gamma}^{-1}=K_{\gamma}L^{-1}(K_{\gamma}')^*\equiv G_C,$$

for *A* with W_q^1 -coefficients; take Ω smooth to begin with. We want to find spectral asymptotics of G_C ; recall that K_γ is the Dirichlet Poisson operator, and $L = C - P_{\gamma,\nu}$.

In the selfadjoint case, G_C the sum of a s.g.o. of order -2 (as treated above) and a lower-order term. However, perturbation methods fail, since the lower-order term is linked with dimension n. Instead we shall use that G_C is here already in a product form passing via the boundary, and we can even allow nonselfadjointness. In the original boundary problems for $A = -\sum_{j,k=1}^{n} \partial_j a_{jk} \partial_k + \sum_{j=1}^{n} a_j \partial_j + a_0$, we approximate the coefficients by C^{∞} -functions a_{jk}^{ε} , a_j^{ε} (by convolution with an approximate identity), and we likewise approximate C by smoothed out versions C^{ε} .

- 2. Spectral estimates for nonsmooth ψ dbo's
 - 3. Nonsmooth resolvent differences

Following the construction of A_{γ}^{-1} , K_{γ} and L^{-1} in Abels-G-Wood '12, we can show that for $\varepsilon \to 0$,

$$\begin{split} \|K_{\gamma}^{\varepsilon} - K_{\gamma}\|_{\mathcal{L}(H^{s-\frac{1}{2}}(\Sigma), H^{s}(\Omega))} &\to 0, \text{ each } s \in [0, 2], \\ \|K_{\gamma}^{\prime \varepsilon} - K_{\gamma}^{\prime}\|_{\mathcal{L}(H^{s-\frac{1}{2}}(\Sigma), H^{s}(\Omega))} &\to 0, \text{ each } s \in [0, 2], \\ \|(L^{\varepsilon})^{-1} - L^{-1}\|_{\mathcal{L}(H^{\frac{1}{2}}(\Sigma), H^{\frac{3}{2}}(\Sigma))} &\to 0. \end{split}$$

It follows by use of Lemma A that

$$G^{\varepsilon}_{\mathcal{C}} - G_{\mathcal{C}} = K^{\varepsilon}_{\gamma}(L^{\varepsilon})^{-1}(K^{\prime \varepsilon}_{\gamma})^* - K_{\gamma}L^{-1}(K^{\prime}_{\gamma})^* \to 0 \text{ in } \mathfrak{S}_{(n-1)/2,\infty},$$

for $\varepsilon \to 0$.

Then, since the result is known in the smooth case, we conclude by use of Lemma B:

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

2. Spectral estimates for nonsmooth $\psi {\rm dbo's}$

3. Nonsmooth resolvent differences

Theorem 3. For the resolvent difference $G_C = K_{\gamma}L^{-1}(K'_{\gamma})^*$ defined from the Dirichlet realization and a Neumann-type realization of a strongly elliptic operator A with W_q^1 -smooth coefficients, q > n, on a bounded smooth set Ω ,

$$s_j(G_C)j^{2/(n-1)}
ightarrow c(g_C^0)^{2/(n-1)}$$
 for $j
ightarrow\infty,$

where $c(g_C^0)$ is defined similarly to (5).

Earlier, Birman '62 had upper estimates when coefficients are in $C^0 \cap W^{1,\infty}$. The constant satisfies:

Theorem 4. With $l^0(x', \xi')$ denoting the principal symbol of L and $\lambda^{\pm}(x', \xi')$ denoting the root in \mathbb{C}_{\pm} of the principal symbol $a^0(x', 0, \xi', \xi_n)$ of A (as a polynomial in ξ_n , in local coordinates)

$$c(g_{C}^{0}) = \frac{1}{(n-1)(2\pi)^{(n-1)}} \int_{\Sigma} \int_{|\xi'|=1} |4(l^{0})^{2} \operatorname{Im} \lambda^{+} \operatorname{Im} \lambda^{-}|^{-(n-1)/4} d\omega dx'.$$
(7)

There is a recent extension to nonsmooth sets Ω_{-1}^{c}

2. Spectral estimates for nonsmooth ψ dbo's

3. Nonsmooth resolvent differences

Assume that Ω has a $B_{p,2}^{3/2}$ -boundary; here $p, q > 2, p < \infty$, with

$$1-\frac{n}{q}\geq \frac{1}{2}-\frac{n-1}{p}\equiv \tau_0>0.$$

Note that $C^{3/2+\varepsilon} \subset B^{3/2}_{p,2} \subset C^{1+\tau_0}$ for all $\varepsilon > 0$. Birman assumed a C^2 -boundary to get upper estimates (in $\mathfrak{S}_{(n-1)/2,\infty}$).

Theorem 5. The asymptotic estimate for G_C extends to this case.

Proof ingredients: One can construct a sequence of $C^{1+\tau_0}$ -diffeomorphisms $\lambda_I : \overline{\Omega} \to \overline{\Omega}_I$ where the $\overline{\Omega}_I$ are C^{∞} -domains, such that $\lambda_I \to \text{Id on a neighborhood of } \overline{\Omega}$, for $I \to \infty$.

The boundary value problems carried over to $\overline{\Omega}_l$ define Krein terms G_{C_l} , to which the preceding considerations apply.

Moreover, with $\rho_l(x)$ denoting the square root of the Jacobian,

$$\varrho_l = (|\det(\partial \lambda_{l,j}/\partial x_k)_{j,k=1,...,n})|)^{1/2},$$

 G_C is *unitarily equivalent* with $\varrho_l^{-1}G_{C_l}\varrho_l$, for each *l*. Since $\sup \varrho_l$, $\sup \varrho_l^{-1} \to 1$ for $l \to \infty$, we can use perturbation arguments to carry the spectral estimates for the G_{C_l} over to G_C .