SUPPLEMENT TO
 G. GRUBB: "DISTRIBUTIONS AND OPERATORS"

Springer Verlag, New York 2009

Additional miscellaneous exercises, updated January 23, 2012.

Exercise 6.39. Denote by $\ell_{2}^{N}(\mathbb{N})$ the Hilbert space of complex sequences $\underline{x}=\left(x_{k}\right)_{k \in \mathbb{N}}$ with norm $\|\underline{x}\|_{\ell_{2}^{N}(\mathbb{N})}=\left(\sum_{k \in \mathbb{N}}\left|k^{N} x_{k}\right|^{2}\right)^{\frac{1}{2}}<\infty$; the corresponding scalar product is $(\underline{x}, \underline{y})_{\ell_{2}^{N}(\mathbb{N})}=\sum_{k \in \mathbb{N}} k^{2 N} x_{k} \bar{y}_{k}$.
(a) Show that $V=\ell_{2}^{1}(\mathbb{N})$ and $H=\ell_{2}^{0}(\mathbb{N})$ satisfy the hypotheses around (12.36).
(b) Show that when V^{*} is considered as in Lemma 12.16, it may be identified with $\ell_{2}^{-1}(\mathbb{N})$.
(c) Let $a(\underline{x}, \underline{y})=(\underline{x}, \underline{y})_{\ell_{2}^{1}(\mathbb{N})}+2(\underline{x}, \underline{y})_{\ell_{2}^{0}(\mathbb{N})}$, with domain V. Find the associated operator A in H defined by Definition 12.14, and check the properties resulting from Theorem 12.18.
Exercise 6.40. Let I be an interval of \mathbb{R}. Show, by construction, that the equation $D u=f$ has a solution $u \in \mathscr{D}^{\prime}(I)$ for any $f \in \mathscr{D}^{\prime}(I)$. Describe all solutions for a given f.
(Hint: The mapping from φ to ψ defined in the proof of Theorem 4.19 may be helpful.)
Exercise 6.41. Define the sesquilinear form a_{1} by

$$
a_{1}(u, v)=\int_{0}^{\infty}\left(u^{\prime \prime} \bar{v}^{\prime \prime}+2 u^{\prime} \bar{v}^{\prime}+u \bar{v}\right) d x, \quad u, v \in H^{2}\left(\mathbb{R}_{+}\right)
$$

and let a_{0} be its restriction to $H_{0}^{2}\left(\mathbb{R}_{+}\right)$. Let $H=L_{2}\left(\mathbb{R}_{+}\right), V_{1}=H^{2}\left(\mathbb{R}_{+}\right)$, $V_{0}=H_{0}^{2}\left(\mathbb{R}_{+}\right)$.
(a) Show that the triples $\left(H, V_{0}, a_{0}\right)$ and $\left(H, V_{1}, a_{1}\right)$ satisfy the conditions for application of the Lax-Milgram theorem (Theorem 12.18).
(b) Denoting the hereby defined operators by A_{0} resp. A_{1}, find how these operators act and what their domains are.
(c) Show that the operators are selfadjoint positive.

Exercise 6.42. Let $Q=]-1,1[\times]-1,1\left[\subset \mathbb{R}^{2}\right.$, and let $u(x, y)$ be the function on \mathbb{R}^{2} defined by

$$
u(x, y)= \begin{cases}x+y & \text { for }(x, y) \in Q \\ 0 & \text { for }(x, y) \notin Q\end{cases}
$$

(a) Find the Fourier transform of u.
(Hint. One can first determine the Fourier transform of the function 1_{Q} and then use rules of calculus.)
(b) Find the Fourier transforms of $D_{x} u$ and $D_{y} u$.
(c) Determine whether $u \in H^{0}\left(\mathbb{R}^{2}\right)$, and whether $u \in H^{1}\left(\mathbb{R}^{2}\right)$.

Exercise 6.43. Let $I=]-1,1[$, and let \mathscr{B} denote the space of functions $\varphi \in C^{\infty}(\bar{I})$ satisfying $\varphi(0)=0$. Show that \mathscr{B} is dense in $L_{2}(I)$, but not in $H^{1}(I)$.
(Hint. Recall that convergence in $H^{1}(I)$ implies convergence in $C^{0}(\bar{I})$.)
Exercise 6.44. (a) Show that all distributions in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ are of finite order.
(b) Let $f(t)$ be the function on \mathbb{R} defined as $f(x)=1-|x|$ for $x \in$ $[-1,1]$ and $f(x)=0$ outside $[-1,1]$. Let Λ be the functional on $\mathscr{D}(\mathbb{R})$ defined by

$$
\langle\Lambda, \varphi\rangle=\sum_{j \in \mathbb{N}_{0}}\left\langle f(x-3 j), \partial^{j} \varphi\right\rangle, \quad \varphi \in \mathscr{D}(\mathbb{R}) .
$$

Show that $\Lambda \in \mathscr{D}^{\prime}(\mathbb{R})$.
(c) Is $\Lambda \in \mathscr{S}^{\prime}(\mathbb{R})$?

Exercise 6.45. Consider the differential operator

$$
A=-\partial_{1}^{2}-2 \partial_{2}^{2}+3 \partial_{1}+4 \partial_{2}
$$

on $\Omega=B(0,1) \subset \mathbb{R}^{2}$.
(a) Show that A is elliptic.
(b) Let $H=L_{2}(\Omega)$ and $V=H_{0}^{1}(\Omega)$. Find a sesquilinear form $a(u, v)$ with domain V, such that the triple $\{H, V, a\}$ satisfies the hypotheses of the Lax-Milgram Theorem Th. 12.18, and the associated operator A_{0} extends $\left.A\right|_{C_{0}^{\infty}(\Omega)}$.
(c) Find a lower bound for A_{0}, striving for a large value (one can obtain 3/2).
(d) Find constants c_{1} and c_{2} such that the spectrum of A_{0} is contained in the set

$$
\left\{z \in \mathbb{C}\left||\operatorname{Im} z| \leq c_{1}\left(\operatorname{Re} z+c_{2}\right)\right\} .\right.
$$

(Hints. Show that $\left(\partial_{j} u, u\right)$ is purely imaginary when $u \in V$. The Poincaré inequality can also be of use.)

Exercise 6.46. Let $a \in \mathbb{R}$, and let N be a positive integer.
(a) Show that the Fourier transform of δ_{a} is the function $e^{-i a \xi}$, and find the Fourier transforms of $\delta_{a}{ }^{\prime}$ and $(x-a) \delta_{a}$.
[We recall that for $a \in \mathbb{R}, \delta_{a}$ denotes the distribution defined by $\left\langle\delta_{a}, \varphi\right\rangle=\varphi(a)$.]
(b) Find all solutions $u \in \mathscr{S}^{\prime}(\mathbb{R})$ to the equation

$$
x^{N} u=0 .
$$

(c) Find all solutions $u \in \mathscr{S}^{\prime}(\mathbb{R})$ to the equation

$$
x^{N} u=\delta_{a} .
$$

Exercise 6.47. Show that the function $(x+i y)^{-1}$ on \mathbb{R}^{2} is in $L_{1, \text { loc }}\left(\mathbb{R}^{2}\right)$ and satisfies

$$
\left(\partial_{x}+i \partial_{y}\right) \frac{1}{x+i y}=-2 \pi \delta .
$$

(Hint. Application of the left-hand side to a testfunction reduces, by integration by parts, to a sum of integrals over $B(0, \varepsilon)$ and $\partial B(0, \varepsilon)$, that can be evaluated for $\varepsilon \rightarrow 0$.)
(Comment. This allows giving a very explicit description of the solution of Exercise 5.8.)

