COMMENTS TO
 G. GRUBB: "DISTRIBUTIONS AND OPERATORS"

Springer Verlag, New York 2009

Corrections, updated May 6, 2017.
Notation: x means page x, with x^{y} indicating line y from above, x_{y} indicating line y from below.

```
    4 }\mp@subsup{}{}{15}\mathrm{ replace "differention" by "differentiation"
    106}\mathrm{ replace " }\mp@subsup{f}{2}{}(x)\geq0\mathrm{ for all }x\mathrm{ " by }\mp@subsup{f}{2}{}(t)\geq0\mathrm{ for all }t\mathrm{ "
13 19+23 replace " }\mp@subsup{p}{j,k}{}\mathrm{ " by " }\mp@subsup{p}{k,j}{}\mathrm{ "
    147}\mathrm{ replace "mapping T" by "linear mapping T" (as in Theorem
        B.18)
18}\mp@subsup{}{}{12+18}\mathrm{ replace " }\mp@subsup{L}{}{1}\mathrm{ " by " }\mp@subsup{L}{1}{}\mathrm{ "
    24 8+7 replace " }i=0\mathrm{ " by " }j=0\mathrm{ "
    247 add the sentence "The conclusion of Theorem 2.17 also holds
                when the V}\mp@subsup{V}{j}{}\mathrm{ are arbitrary open sets, since they can be replaced
                by bounded sets }\mp@subsup{V}{j}{}\capB(0,R)\mathrm{ with }R\mathrm{ taken so large that }K
                B(0,R)."
            425}\mathrm{ replace " ( }\varphi\mathrm{ " by " (ॅ"
            42 10 replace "(2.35)" by "(2.32)"
            44 15 replace " Jo T T - " by " JT T
            60 13 add the line "here }\partialf=g.
            62 14 replace "(C.11)" by "(C.10)"
            634}\mathrm{ replace " }v\mathrm{ " by " }u\mathrm{ " in two places
            64}\mp@subsup{7}{7}{}\mathrm{ replace " }\mp@subsup{\chi}{N}{}u\mathrm{ " by " }\mp@subsup{\chi}{N}{}u=\chi(x/N)u\mathrm{ "
65 2+5+6}\mathrm{ replace " }\mp@subsup{L}{}{2}\mathrm{ " by " }\mp@subsup{L}{2}{}\mathrm{ " in the subscripts
    652 replace " }B(0,\frac{1}{j})\mathrm{ " by " }B(x,\frac{1}{j})\mathrm{ "
            6 6 \text { let the footnote refer to (3.60) instead of (3.43)}
            72 11 change the definition of }\mp@subsup{\tilde{v}}{\delta}{}\mathrm{ to
\[
\tilde{v}_{\delta}(x)=\tilde{u}\left(\frac{\alpha+\beta}{2}+\frac{1}{1-\delta}\left(x-\frac{\alpha+\beta}{2}\right)\right)
\]
\(73^{9}\) replace "perioodic" by "periodic"
    7646}\mathrm{ replace " }m-1\mathrm{ )" by " }m-1\mathrm{ "
    799 replace "d\mp@subsup{y}{n}{}d\mp@subsup{x}{}{\prime\prime}\mathrm{ " by " dx'dyn"}
    839 replace " }\mp@subsup{\Omega}{b}{}={x\in\mp@subsup{\mathbb{R}}{}{n}|0\leq\mp@subsup{x}{j}{}\leqb}\mathrm{ " by " }\mp@subsup{\overline{\Omega}}{b}{}\mathrm{ , where }\mp@subsup{\Omega}{b}{
        ={x\in\mp@subsup{\mathbb{R}}{}{n}|0<\mp@subsup{x}{j}{}<b}"
    84}\mp@subsup{}{6}{}\mathrm{ replace " }\mp@subsup{\Omega}{R}{}\mathrm{ " by " }\mp@subsup{\Omega}{b}{}\mathrm{ "
    84}\mp@subsup{}{}{9}\mathrm{ replace "the lemma" by "Theorem 4.29"
    897}\mathrm{ replace "( }H,V,l(u,v))" by "(H,V,\mp@subsup{l}{0}{}(u,v))
\(121_{8}\) replace " \((-1)^{m-1}(m-1)\) !" by " \(\frac{(-1)^{m-1}}{(m-1)!}\) "
\(126_{14}\) replace "Exercise 12.36 " by "Exercise 12.35 "
\(126_{10}\) replace "this theorem" by "Theorem 6.3"
\(127_{1}\) add "(The constant \(4 / 3\) can e.g. be found as the maximum of \((1+2 s+2 t) /(1+s+t+s t)\) for \(\left.s=|x|^{2}, t=|y|^{2} \in \overline{\mathbb{R}}_{+}.\right) "\)
\(135_{4}\) replace " \(d \eta d \zeta\) " by " \(d \zeta d \eta\) "
\(136^{17}\) replace "when \(u\) " by "when \(\varphi\) "
\(141^{7-10}\) replace "each \(\varphi \in C_{0}^{\infty}(\Omega)\), that \(\ldots\), and \(D_{j} \varphi \in C_{0}^{\infty}(\Omega)\)." by "each \(\eta_{l}\) as in Corollary 2.14:
\[
\eta_{l} D_{j} u=\eta_{l} D_{j}\left(\eta_{l+1} u\right) \in H^{s-1}\left(\mathbb{R}^{n}\right),
\]
since \(\eta_{l+1}=1\) on \(\operatorname{supp} \eta_{l}\), and here \(\eta_{l+1} u \in H^{s}\left(\mathbb{R}^{n}\right)\) implies \(\eta_{l} D_{j}\left(\eta_{l+1} u\right) \in H^{s-1}\left(\mathbb{R}^{n}\right)\) by Lemma 6.7."
\(158^{1}\) replace "Show that" by "Let \(\operatorname{Re} b>-2\). Show that"
\(187^{17}\) add the sentences "For \(u \in \mathscr{D}^{\prime}(\Omega)\) on can obtain this by using a parametrix \(Q\) together with nested cutoff functions as in the proof of Theorem 6.29. The induction argument is to write
\[
P \psi_{j+1} u=\left[P, \psi_{j+1}\right] \psi_{j} u+\psi_{j+1} P u+\psi_{j+1} P\left(\psi_{j}-1\right) u,
\]
where \(\left[P, \psi_{j+1}\right]\) is of order \(d-1, \psi_{j+1} P u \in H^{s}\) and \(\psi_{j+1} P\left(\psi_{j}-1\right) u \in C^{\infty}\), so that application of \(Q\) lifts the regularity one step."
\(224^{11}\) replace "belong to \(\mathscr{S}\left(\overline{\mathbb{R}}_{+}^{n}\right)\) " by "belongs to \(\mathscr{O}_{M}\left(\mathbb{R}^{n-1}, \mathscr{S}\left(\overline{\mathbb{R}}_{+}\right)\right.\)"
\(224^{12}\) replace "then also" by "then"
\(224_{8}\) replace " \(d x_{n} d \xi\) "" by " \(d x\) "
\(226_{9-7}\) " \(\rho_{(m)}\) " should be " \(\varrho_{(m)}\) " (such wrong fonts occur here and there in the book)
\(305_{13}\) replace " \(\mathscr{S}^{\prime}(\mathbb{R})\) " by " \(\mathscr{D}^{\prime}(\mathbb{R})\) "
\(320^{15}\) replace " \(L i C^{-}\)" by " \(C^{-}\)"
\(349_{3}\) replace " \(|p(\xi)| \leq C\) for \(\xi \in X\) " by " \(|p(x)| \leq C\) for \(x \in \Omega\) "
\(350_{11}\) replace " \(\beta a x_{2}\) " by " \(\beta a\left(x_{2}\right.\) "
\(352_{13}\) replace " \(12.93^{\circ}\) " by " 12.9 "
\(353_{5}\) add the sentence "Moreover, \(H\) is dense in \(V^{*}\); this is seen e.g. by observing that the mapping \(f \mapsto \ell_{f}\) from \(H\) to \(V^{*}\) is the adjoint of the injection of \(V\) into \(H\); here one can apply Theorem 12.7."
\(359_{8}\) replace "at" by "as"
\(362^{11}\) replace " \(e^{i} \theta\) " by "e \(e\) "
\(368^{19+20}\) remove "see in particular Exercise 4.14"
\(370^{23}\) remove " \(r\) "
\(434^{5}\) replace "Exercise B.1" by "Exercise B.3"
\(436_{1}\) the signs " \(\mid\) " are superfluous
\(437^{6-10}\) The proof "In fact, if \(\ldots 1^{\circ}\)." can be replaced by a shorter proof: "In fact, assume that for some \(x_{0},\left|\Lambda\left(x_{0}\right)\right|>(\varepsilon / \delta) p\left(x_{0}\right)\).

Then \(\Lambda\left(x_{0}\right) \neq 0\), and \(p\left(\left|\Lambda\left(x_{0}\right)\right|^{-1} \varepsilon x_{0}\right)<\delta\). By \((*)\), this implies \(\varepsilon>\left|\Lambda\left(\left|\Lambda\left(x_{0}\right)\right|^{-1} \varepsilon x_{0}\right)\right|=\varepsilon\), a contradiction. This shows \(1^{\circ}\)."
\(437^{13}\) the signs " "" are superfluous
\(448^{18}\) replace "order \(m\) " by "order \(k\) "```

