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Introduction

Consider Pa equal to (−∆)a or to Aa for some symmetric, strongly elliptic
second-order operator A on Rn with real C∞-coefficients, 0 < a < 1.
The Dirichlet-to-Neumann operator is principally of this type, with a = 1

2 .
Assume for simplicity (Pau, u) ≥ 0 for all u ∈ C∞0 (Rn).
For Ω open ⊂ Rn, the Dirichlet realization Pa,Dir is defined by a
variational construction, as the Friedrichs extension of Pa,C∞0 (Ω) in L2(Ω).
Assume Ω smooth bounded. We shall use the notation

Hs
p(Rn) = {u ∈ S ′(Rn) | F−1(〈ξ〉s û) ∈ Lp(Rn)},

Ḣs
p(Ω) = {u ∈ Hs

p(Rn) | supp u ⊂ Ω}, H
s

p(Ω) = r+Hs
p(Rn).

Here 〈ξ〉 = (1 + |ξ|2)
1
2 ; r+ restricts to Ω, e+ extends by zero on {Ω. (The

notation with Ḣ and H stems from Hörmander’s books ’63 and ’85.)

The operator r+Pa maps continuously from Ḣa
2 (Ω) to H

−a
2 (Ω), and

Pa,Dir is the restriction with domain

D(Pa,Dir) = {u ∈ Ḣa
2 (Ω) | r+Pau ∈ L2(Ω)}.

The operator is selfadjoint ≥ 0 with compact resolvent; for Pa = (−∆)a

the operator is known to have a positive lower bound.
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Q1. What is the domain? It is relatively easy to show that for a < 1
2 ,

D(Pa,Dir) = Ḣ2a
2 (Ω). But for a ≥ 1

2 ?

Q2. What is the spectrum? Is there a Weyl-type asymptotic formula for
the eigenvalues, λk ∼ C kn/2a? The answer yes is known for
Pa = (−∆)a, but for general A?

Q3. Are eigenfunctions smooth in some sense? To my knowledge, very
little is known.

We shall deal with all three questions, and some more.
Consider the problem

r+Pau = f in Ω, supp u ⊂ Ω,

called the homogeneous Dirichlet problem. Unique solvability in L∞(Ω) is
known for Pa = (−∆)a. But the results on the regularity of the solutions
have been sparse.

• Vishik, Eskin, Shamir 1960’s: u ∈ Ḣ
1
2 +a−ε

2 (Ω) if 1
2 < a < 1.

• Some analysis of the behavior of solutions at ∂Ω when data are C∞,
Eskin ’81, Bennish ’93, Chkadua and Duduchava ’01.

Q4. When f ∈ H
s

p(Ω) for some s ≥ 0, 1 < p <∞, how regular is u?

Q5. Same question in Hölder spaces C t , t ≥ 0 (continuously
differentiable functions when t is integer).
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Recent activity:
• Ros-Oton and Serra (arXiv 2012) showed for (−∆)a by potential
theoretic and integral operator methods, when Ω is C 1,1, that

f ∈ L∞(Ω) =⇒ u ∈ daCα(Ω),

for a small α > 0. Here d(x) = dist(x , ∂Ω). Moreover,
u ∈ C a(Ω) ∩ C 2a(Ω). Lifted to at most α ≤ 1 when f is more smooth.
They stated that they did not know of other regularity results for (−∆)a

in the literature.

Pa is a pseudodifferential operator (ψdo), why not ψdo methods? There
is a calculus initiated by Boutet de Monvel 1971 for ψdo boundary value
problems. But it does not cover Pa.

I have been asked about such operators through the years, but only
recently found an answer. It is presented in arXiv ’13 as a new systematic
theory of pseudodifferential boundary problems covering the operators
Pa. A consquence is:

f ∈ L∞(Ω) =⇒ u ∈ daC a (−ε)(Ω), (1)

f ∈ C t(Ω) =⇒ u ∈ daC a+t (−ε)(Ω), all t > 0; (2)

(−ε) is included when a = 1
2 in (1), a + t or 2a + t ∈ N in (2).

This theory will be the subject of the talk.
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1. Pseudodifferential operators

Pseudodifferential operators (ψdo’s) were introduced in the 1960’s as a
generalization of singular integral operators (Calderòn, Zygmund, Seeley,
Kohn, Nirenberg, Hörmander, Giraud, Mikhlin, . . . .) They systematize
the use of the Fourier transform Fu = û(ξ) =

∫
Rn e
−ix·ξu(x) dx :

Pu =
∑
|α|≤m

aα(x)Dαu = F−1
(
p(x , ξ)û(ξ)

)
= OP(p)u,

where p(x , ξ) =
∑
|α|≤m

aα(x)ξα, the symbol.

This extends to more general functions p(x , ξ) as symbols. In the
classical theory, symbols are taken polyhomogeneous:

p(x , ξ) ∼
∑

j∈N0

pj(x , ξ), where pj(x , tξ) = tm−jpj(x , ξ)

for |ξ| ≥ 1, t ≥ 1 (here the order m ∈ C).
The elliptic case is when the principal symbol p0 is invertible; then
Q = OP(p−1

0 ) is a good approximation to an inverse of P. The theory
extends to manifolds by use of local coordinates.
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An example of a ψdo is (−∆)a = OP(|ξ|2a), of order 2a, but also variable
coefficients are allowed. E.g. Aa, and much more general operators.

When Ω is a smooth open subset of Rn, there is a need to consider
boundary value problems

P+u = f on Ω, Tu = ϕ on ∂Ω;

with P+ = r+Pe+, the truncation of P to Ω, and T a trace operator.
Boutet de Monvel in 1971 introduced a calculus treating this when P is
of integer order and has the transmission property:

P+ maps C∞(Ω) into C∞(Ω).

Solution operators for the problem are typically of the form(
Q+ + G K

)
,

where Q ∼ P−1 and G is an auxiliary operator called a singular Green
operator, and K is a Poisson operator (going from ∂Ω to Ω).

But there are many interesting ψdo’s not having the transmission
property, e.g. (−∆)

1
2 does not have it, although of order 1.
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2. The µ-transmission property

Definition 1. For Reµ > −1, Eµ(Ω) consists of the functions u of the
form

u(x) =

{
d(x)µv(x) for x ∈ Ω, with v ∈ C∞(Ω),

0 for x ∈ {Ω;

where d(x) is > 0 on Ω, belongs to C∞(Ω), and is proportional to
dist(x , ∂Ω) near ∂Ω. More generally for j ∈ N, Eµ−j is spanned by the
distribution derivatives up to order j of functions in Eµ.

In Hörmander’s book ’85 Th. 18.2.18, for a classical ψdo P of order m:

Theorem 2. r+P maps Eµ(Ω) into C∞(Ω) if and only if the symbol
has the µ-transmission property for x ∈ ∂Ω, with N denoting the interior
normal:

∂βx ∂
α
ξ pj(x ,−N) = eπi(m−2µ−j−|α|)∂βx ∂

α
ξ pj(x ,N),

for all indices.

It is a, possibly twisted, parity along the normal to ∂Ω. Simple parity is
the case m = 2µ; it holds for |ξ|2a with m = 2a, µ = a. Boutet de
Monvel’s transmission property is the case m ∈ Z, µ = 0.
The operators are for short said to be of type µ.
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3. Solvability with homogeneous boundary conditions

The µ-transmission property was actually introduced far earlier by
Hörmander in a lecture note from IAS 1965-66, distributed by
photocopying. I received it in 1980, and have only last year studied it in
depth. It contains much more, namely a solvability theory in L2 Sobolev
spaces for operators of type µ, which in addition have a certain
factorization property of the principal symbol.

Definition 3. P (of order m) has the factorization index µ0 when, in
local coordinates where Ω is replaced by Rn

+ with coordinates (x ′, xn),

p0(x ′, 0, ξ′, ξn) = p−(x ′, ξ′, ξn)p+(x ′, ξ′, ξn),

with p± homogeneous in ξ of degrees µ0 resp. m − µ0, and p± extending
to {Im ξn ≶ 0} analytically in ξn.

Here OP(p±(x ′, ξ)) on Rn preserve support in Rn

+ resp. Rn

−.

Example: For (−∆)a on Rn we have

|ξ|2a = (|ξ′|2 + ξ2
n)a = (|ξ′| − iξn)a(|ξ′|+ iξn)a,

so that p± = (|ξ′| ± iξn)a, and the factorization index is a.
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The operators Ξµ± = OP((〈ξ′〉 ± iξn)µ) play a great role in the theory.

Based on the factorization, Vishik and Eskin showed in ’64 (extension to
Lp by Shargorodsky ’95, 1 < p <∞, 1/p′ = 1− 1/p):

Theorem 4. When P is elliptic of order m and has the factorization
index µ0, then

r+P : Ḣs
p(Ω)→ H

s−Re m

p (Ω)

is a Fredholm operator for Reµ0 − 1/p′ < s < Reµ0 + 1/p.

Note that s runs in a small interval ] Reµ0 − 1/p′,Reµ0 + 1/p[ . The
problem is now to find the solution space for higher s.
For this, Hörmander introduced for p = 2 a particular space combining
the Ḣ and the H definitions:

Definition 5. For µ ∈ C and s > Reµ− 1/p′, the space H
µ(s)
p (Rn

+) is
defined by

Hµ(s)
p (Rn

+) = Ξ−µ+ e+H
s−Reµ

p (Rn
+).

Here H
µ(s)
p (Rn

+) ⊂ S ′(Rn), supported in Rn

+. Note the jump at xn = 0 in

e+H
s−Reµ

p (Rn
+).
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Proposition 6. Let s > Reµ− 1/p′. Then

Ξ−µ+ e+ : H
s−Reµ

p (Rn
+)→ Hµ(s)

p (Rn

+) has the inverse

r+Ξµ+ : Hµ(s)
p (Rn

+)→ H
s−Reµ

p (Rn
+),

and H
µ(s)
p (Rn

+) is a Banach space with the norm

‖u‖µ(s) = ‖r+Ξµ+u‖Hs−Re µ
p (Rn

+)
.

One has that H
µ(s)
p (Rn

+) ⊃ Ḣs
p(Rn

+), and elements of H
µ(s)
p (Rn

+) are
locally in Hs

p on Rn
+, but they are not in general Hs

p up to the boundary.
The definition generalizes to Ω ⊂ Rn by use of local coordinates.

These are Hörmander’s µ-spaces, very important since they turn out to
be the correct solution spaces.

The spaces H
µ(s)
p replace the Eµ in a Sobolev space context, in fact one

has:

Proposition 7. Let Ω be compact, and let s > Reµ− 1/p′. Then

Eµ(Ω) ⊂ Hµ(s)
p (Ω) densely, and

⋂
s
Hµ(s)

p (Ω) = Eµ(Ω).
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We can now state the basic theorems:

Theorem 8. When P is of order m and type µ, r+P maps H
µ(s)
p (Ω)

continuously into H
s−Re m

p (Ω) for all s > Reµ− 1/p′.

Theorem 9. Let P be elliptic of order m, with factorization index µ0,
and of type µ0 (mod 1). Let s > Reµ0 − 1/p′. When

u ∈ Ḣ
Reµ0−1/p′+ε
p (Ω), then

r+Pu = f ∈ H
s−Re m

p (Ω) =⇒ u ∈ Hµ0(s)
p (Ω).

Moreover, the mapping

r+P : Hµ0(s)
p (Ω)→ H

s−Re m

p (Ω) (4)

is Fredholm.

This answers Q4 in a precise way, with m = 2a, µ0 = a.
The proofs in the old 1965 notes (for p = 2) are long and difficult. One
of the difficulties is that the Ξµ± are not truly ψdo’s in n variables, the
derivatives of the symbols (〈ξ′〉 ± iξn)µ do not decrease for |ξ| → ∞ in
the required way.
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More recently we have found (G ’90) a modified choice of symbol that

gives true ψdo’s Λ
(µ)
± with the same holomorphic extension properties for

Im ξn ≶ 0; they can be used instead of Ξµ±, also for p 6= 2.
This allows a reduction of some of the considerations to cases where the
Boutet de Monvel calculus (extended to Hs

p in G ’90) can be applied.

In fact, when we for Theorem 9 introduce

Q = Λ
(µ0−m)
− PΛ

(−µ0)
+ ,

we get a ψdo of order 0 and type 0, with factorization index 0; then

r+Pu = f , with supp u ⊂ Ω,

can be transformed to the equation

r+Qv = g , where v = Λ
(µ0)
+ u, g = r+Λ

(µ0−m)
− e+f .

Here the Boutet de Monvel calculus applies to Q and provides good
solvability properties for all s > Reµ0 − 1/p′.
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Since
⋂

sH
µ(s)
p (Ω) = Eµ(Ω), and

⋂
sH

s−Re m

p (Ω) = C∞(Ω), one finds as a
corollary when s →∞:

Corollary 10. Let P be as in Theorem 9 and let u be a function
supported in Ω. If r+Pu ∈ C∞(Ω), then u ∈ Eµ0 (Ω). Moreover, the
mapping

r+P : Eµ0 (Ω)→ C∞(Ω)

is Fredholm.

One can furthermore show that the finite dimensional kernel and cokernel
(a complement of the range) of the mapping in Corollary 10 serve as
kernel and cokernel also in the mappings for finite s in Theorem 9.

Note the sharpness: The functions in Eµ0 have the behavior
u(x) = d(x)µ0v(x) at the boundary with v ∈ C∞(Ω); they are not in
C∞ themselves, when µ0 /∈ N0 !

Now, answers to the remaining Q1, Q2, Q3, Q5:

Q1. The domain of Pa,Dir.

D(Pa,Dir) = H
a(2a)
2 (Ω) = Λ

(−a)
+ e+H

a

2(Ω)


= Ḣ2a

2 (Ω), if 0 < a < 1
2 ,

⊂
⋂
ε>0 Ḣ

1−ε
2 (Ω), if a = 1

2 ,

⊂ daH
a

2(Ω) + Ḣ2a
2 (Ω), if 1

2 < a < 1.
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The last line shows the appearance of a factor da; the proof uses Poisson
operators from the Boutet de Monvel calculus. (Recall also that

D(Pa,Dir) ⊂ Ḣ
1
2 +a−ε(Ω) when 1

2 < a < 1.)

Q2. P−1
a,Dir has the structure (Λ

(−a)
+ )+(Q̃+ + G )(Λ

(−a)
− )+, where Q̃ is a

ψdo and G a singular Green operator of order 0. This can be used to
show that indeed, the eigenvalues λk of Pa,Dir satisfy

λk ∼ C (Pa,Ω) kn/2a, for k →∞.
Extends to any bounded open Ω, by approximation from smooth cases.

Q5. The theory extends, using Johnsen ’96, to Besov-Triebel-Lizorkin
spaces F s

p,q and Bs
p,q, in particular to the Hölder-Zygmund spaces Bs

∞,∞,
that coincide with Hölder spaces C s for s ∈ R+ \ N. This leads to:

f ∈ C t(Ω) =⇒ u ∈ daC a+t(Ω), all t ≥ 0;

with a + t replaced by a + t − ε if a + t or 2a + t is integer. Optimal in
the non-exceptional cases.

Q3. Smoothness of eigenfunctions uk? If 0 is an eigenvalue, its
eigenfunctions are in Ea(Ω). For λk > 0, one finds by an iterative
argument using the regularity theory:

uk ∈ daC 2a (−ε)(Ω) ∩ C∞(Ω); ε active if 2a ∈ N.
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4. Nonhomogeneous boundary conditions

For simplicity, consider just Pa. The Fredholm map from Th. 9, Cor. 10,

r+Pa : Ha(s)
p (Ω)→ H

s−2a

p (Ω), s > a− 1/p′, (6)

r+Pa : Ea(Ω)→ C∞(Ω),

represents the homogeneous Dirichlet problem for Pa. Recall that

Ea−1(Ω) = e+{u(x) = d(x)a−1v(x) | v ∈ C∞(Ω)}.

Here we have:

Theorem 11. The boundary mapping

Ea−1(Ω) 3 u 7→ γa−1,0u = γ0(d1−au) ∈ C∞(∂Ω)

extends for s > a− 1/p′ to a continuous surjective mapping

γa−1,0 : H(a−1)(s)
p (Ω)→ Bs−a+1−1/p

p (∂Ω),

with kernel H
a(s)
p (Ω); in other words,

γa−1,0 : H(a−1)(s)
p (Ω)/Ha(s)

p (Ω)
∼→ Bs−a+1−1/p

p (∂Ω). (7)

Combination with (6) gives a nonhomogeneous Dirichlet problem:
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Theorem 12. The following maps are Fredholm, for s > a− 1/p′:

{r+Pa, γa−1,0} : H(a−1)(s)
p (Ω)→ H

s−2a

p (Ω)× Bs−a+1−1/p
p (∂Ω),

{r+P, γa−1,0} : Ea−1(Ω)→ C∞(Ω)× C∞(∂Ω).

What is perhaps suprising is that this naturally defined nonhomogeneous
Dirichlet problem involves a blow-up at ∂Ω! Namely, even for the
smoothest possible data, the solutions behave like da−1 at ∂Ω, with
a− 1 < 0.

There is a general version in Hölder spaces:

Theorem 13. For t ≥ 0, the problem

r+Pau = f ∈ C t(Ω), γa−1,0u = ϕ ∈ C a+1+t(∂Ω);

is Fredholm solvable, with solution

u ∈ e+d(x)a−1C a+1+t(Ω) + Ċ 2a+t(Ω), (8)

(with t replaced by t − ε in (8) if a + t or 2a + t is integer).

The component e+d(x)a−1C t+a+1(Ω) enters nontrivially. Whenever
ϕ 6= 0, it creates a term in that space, which is unbounded at ∂Ω,
behaving like da−1.
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In the studies by potential- and integral operator-methods, this
phenomenon is called “large solutions” (blowing up at ∂Ω), e.g. by
Abatangelo arXiv ’13 working in low-regularity spaces. It is rather
precisely described by our methods.

Further remarks. Our study moreover allows treatments of other
boundary conditions (also vector valued). For example, r+(−∆)au = f
with a Neumann condition γa−1,1u ≡ ∂n(d(x)1−au)|∂Ω = ψ can be
shown to be define a Fredholm operator:

{r+(−∆)a, γa−1,1} : H(a−1)(s)
p (Ω)→ H

s−2a

p (Ω)×Bs−a−1/p
p (∂Ω), s > a+1/p.

The current efforts for problems involving the fractional Laplacian are
often concerned with nonlinear equations where it enters, and there is an
interest also in generalizations with low regularity of the domain or the
coefficients.

For problems where ∆ itself enters, one has a old and well-known
background theory of boundary value problems in the smooth case. Such
a background theory has been absent in the case of (−∆)a, and we can
say that the present results provide that missing link.
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The methods used in the current literature on (−∆)a are often integral
operator methods and potential theory. Here is one of the strange
formulations used there:

Because of the nonlocal nature of (−∆)a, when we consider a subset
Ω ⊂ Rn, auxiliary conditions may be given as exterior conditions, where
the value of the unknown function is prescribed on the complement of Ω.

Then the homogeneous Dirichlet problem is formulated as:{
r+(−∆)aU = f on Ω,

U = g on Rn \ Ω. (8)

The nonhomogeneous Dirichlet problem is then formulated (for more
general U) as:

r+(−∆)aU = f on Ω,

U = g on Rn \ Ω, (9)

d(x)1−aU = ϕ on ∂Ω.

(Abatangelo arXiv November ’13.) We can show, when Ω is smooth:

Within the framework of our function spaces, (8) and (9) can be reduced
to problems with the unknown u supported in Ω (i.e., g = 0), uniquely
solved by our preceding theorems.
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