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Introduction

The lecture brings together two subjects: 1) Nonsmooth
pseudodifferential boundary operators. 2) Extension theories and
Krein resolvent formulas for elliptic operators.
1) The theory of pseudodifferential operators, ψdo’s, originally
developed for smooth symbols and manifolds, was extended to
nonsmooth x-dependence through works of Kumano-go, Nagase,
Taylor and others. Recently, also the theory of pseudodifferential
boundary operators, ψdbo’s (as initiated by Boutet de Monvel), was
generalized by Abels to situations with nonsmooth x-dependence.
2) Characterizations of extensions of elliptic operators A on a set with
boundary have been known for many years in smooth cases.
Recently, efforts have been made to implement such theories in
nonsmooth situations. We shall show how this can be done by use of
a calculus of nonsmooth ψdbo’s, on domains with regularity including
C

3
2 +ε; here we obtain a Krein resolvent formula for arbitrary closed

realizations of A. Joint work with Helmut Abels and Ian Wood.
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1. Pseudodifferential boundary operators
Let Ω ⊂ Rn smooth, ∂Ω = Σ. Denote ∂ j

nu|Σ = γju, j ∈ N0.
Recall the pseudodifferential boundary operator (ψdbo) calculus
introduced by Boutet de Monvel ’71:

A =

P+ + G K

T S

 :
C∞(Ω)N

×
C∞(Σ)M

→
C∞(Ω)N′

×
C∞(Σ)M′

, where

P is a pseudodifferential operator (ψdo) on Rn (or on a
neighborhood Ω̃ of Ω), satisfying the transmission condition at Σ
(always true for operators stemming from elliptic PDE),

P+ = r+Pe+ (the transmission condition assures that P+ maps
C∞(Ω) into C∞(Ω)). P must be of integer order.

T is a trace operator from Ω to Σ, K is a Poisson operator from
Σ to Ω, S is a ψdo on Σ.

G is a singular Green operator, e.g. of type KT .
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In local coordinates near the boundary, the operators T , K and G can
be regarded as ψdo’s in the tangential variables, with values in trace,
Poisson or singular Green operators in one variable (the normal
variable xn).
The mappings extend to Sobolev spaces: For A of order m,

A : Hs+m(Ω)N × Hs+m− 1
2 (Σ)M → Hs(Ω)N′ × Hs− 1

2 (Σ)M′ ,

for s + m > d − 1
2 , when T and G are of class d , i.e. contain

{γ0, . . . , γd−1}.
The ψdbo calculus defines an “algebra” of operators, where the
composition of two systems leads to a third one (when the matrix
dimensions match). It allows operators of all orders, both positive and
negative. In particular, when a system is elliptic of order m, then there
exists a parametrix (an approximate inverse) of order −m, which also
belongs to the calculus.
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The ψdo calculus (on Rn or open subsets) has been generalized to
symbols with limited smoothness in the x-variable by Kumano-go and
Nagase ’78, Marschall ’85, Taylor ’91 and ’00. The results were
extended to ψdbo’s (on Rn

+ and coordinate transformed versions) by
Abels ’05. (All these works have purposes in nonlinear applications.)
The main principles for ψdo’s with Cτ -smoothness (τ ∈ ]0,1[ ) are:

The m-order space CτSm
1,0(Rn × Rn) consists of functions p(x , ξ)

that are Cτ in x along with all their ξ-derivatives, satisfying

‖∂αξ p(., ξ)‖Cτ ≤ Cα〈ξ〉m−|α| for all ξ ∈ Rn.

The subset of classical symbols moreover have asymptotic
expansions in terms homogeneous in ξ (for |ξ| ≥ 1) of degree
m − j , for j ∈ N0.

The symbols define operators “in x-form” as follows:

Op(p(x , ξ))u(x) = 1
(2π)n

∫
eix·ξp(x , ξ)û(ξ) dξ.
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Rules of calculus:

When P = Op(p) is of order m, one has for |s| < τ .

P : Hs+m(Rn)→ Hs(Rn).

When P1,P2 are of orders m1,m2, one has for 0 < θ < τ ,
−τ + θ < s < τ ,

P1P2 −Op(p1p2) : Hs+m1+m2−θ(Rn)→ Hs(Rn).

When P = Op(p) is elliptic of order 0, with invertible principal
symbol p0, the ψdo Q0 = Op((p0)−1) is a parametrix in the
sense that PQ0 − I and Q0P − I map Hs−θ(Rn)→ Hs(Rn) for
0 < θ < τ , −τ + θ < s < τ .

In Abels ’05, the rules are generalized to ψdbo’s.
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For the parametrix construction, one difficulty is that it is only really
simple when the order is 0, otherwise one needs to reduce to the
zero-order case by use of “order-reducing operators”, such as:

Λt = Op(〈ξ〉t ) : Hs+t (Rn)
∼→ Hs(Rn), s ∈ R,

and related variants for ψdbo’s. But here, whereas composition of
Op(p(x , ξ)) with Λt to the right gives the simple operator
Op(p(x , ξ)〈ξ〉t ) : Hs+m+t → Hs, |s| < τ , composition to the left gives a
ψdo Op(p(x , ξ)〈ξ〉t ) plus a qualitative remainder (not in x-form),
where the sum of them maps Hs+m → Hs−t , |s| < τ .
A helpful tool can be symbol-smoothing:
For every p ∈ CτSm

1,0(Rn × Rn) and 0 < δ < 1 there is a
decomposition

p = p] + pb, where p] ∈ Sm
1,δ(Rn × Rn), pb ∈ CτSm−rδ

1,δ (Rn × Rn);

here Op(p]) : Hs+m → Hs for all s ∈ R. Polyhomogeneity is lost.
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2. Extension theory and Krein resolvent formulas

Consider a strongly elliptic 2m-order differential operator on Ω

A =
∑

|α|,|β|≤m

Dαaα,β(x)Dβ with Re
∑

|α|,|β|=m

aα,β(x)ξα+β ≥ c|ξ|2m,

c > 0 (smooth Ω and aα,β). For simplicity, take m = 1.
The maximal operator Amax acts like A in H = L2(Ω) with domain

D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)};

the minimal operator Amin equals A|C∞0 , with D(Amin) = H2
0 (Ω). The

setM of realizations Ã of A are the operators with Amin ⊂ Ã ⊂ Amax.
The Dirichlet realization Aγ has

D(Aγ) = H2(Ω) ∩ H1
0 (Ω) = {u ∈ H2(Ω) | γ0u = 0};

we can assume Aγ invertible with positive lower bound.
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A′max, A′min and A′γ are defined similarly for the formal adjoint A′; here
A′max = A∗min and A∗γ = A′γ .
Assume 0 ∈ %(Aγ) (or replace A by A− λ where λ ∈ %(Aγ)). Denote
Z = ker Amax, Z ′ = ker A′max.
By use of the mapping prζ = I − A−1

γ Amax : D(Amax)→ Z and its
analogue for A′, one can establish an “abstract” characterization of all
closed realizations of A (Krein ’47, Vishik ’52, Grubb ’68) in terms of
operators in Z ,Z ′:

Ã ∈M closed ↔

{
V ⊂ Z ,W ⊂ Z ′, closed subspaces
T : V →W closed, densely defined

In this correspondence, D(T ) = prζ D(Ã), and Tuζ = prW (Ãu). (prW is
orthog. proj.) Here Ã∗ corresponds similarly to T ∗ : W → V , and
many properties carry over between Ã and T . In particular, if Ã−1

exists, we have an abstract resolvent formula:

Ã−1 = A−1
γ + iV T−1 prW . (1)
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To rewrite the formulas in terms of operators acting in the boundary,
we consider the problem

Au = 0 in Ω, γ0u = ϕ on Σ.

It has a solution operator Kγ , a Poisson operator, mapping
Hs− 1

2 (Σ)→ Hs(Ω) for all s ∈ R. In particular:
γ0 defines a bijection from Z to H−

1
2 (Σ) with Kγ acting as inverse.

We denote the restrictions of γ0 to V by γV , etc. Then

γV : V ∼→ X = γ0(V ), γW : W ∼→ Y = γ0(W ),

where X ,Y closed ⊂ H−
1
2 (Σ). By use of these homeomorphisms,

T : V →W is carried over to a map L : X → Y ∗:

V ∼−−−−→
γV

X

T

y yL

W ∼←−−−−
γ∗W

Y ∗
D(L) = γ0D(T ).
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In other words,
L = (γ∗W )−1Tγ−1

V .

NB! When A is replaced by A− λ in the whole construction, V ,W are
replaced by Vλ,Wλ̄, but X and Y remain fixed. L is replaced by Lλ

with D(Lλ) = D(L), and L− Lλ is bounded.
The abstract resolvent formula (1) now carries over to the formula:

Ã−1 = A−1
γ + Kγ,X L−1(K ′γ,Y )∗

where Kγ,X = iVγ−1
V : X → V ⊂ H, (K ′γ,Y )∗ = (γ∗W )−1 prW : H → Y ∗.

With explicit λ-dependence, the formula reads:

(Ã− λ)−1 = (Aγ − λ)−1 + Kλ
γ,X (Lλ)−1(K ′λ̄γ,Y )∗, (2)

when λ ∈ %(Ã) ∩ %(Aγ); a Kreı̆n resolvent formula. Observe that the
formula (2) applies to any closed realization with %(Ã) ∩ %(Aγ) 6= ∅.
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There is a different line of extension theories, based on boundary
triples and relations, and first aimed at applications in ODE, by
Russian mathematicians such as Kochubei ’75, Gorbachuk and
Gorbachuk book ’84 (translated ’91), Derkach and Malamud ’87,
Malamud and Mogilevski ’97, ’02. . . . When X and Y equal the full
space H−

1
2 (Σ), the operator Lλ is the inverse of a certain

Weyl-Titchmarsh operator family M(λ) arising from these other
theories. The connection between our results and theirs was clarified
in a joint work Brown-G-Wood ’09.
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To show how L enters in the boundary condition that Ã represents, we
recall that A has a Green’s formula for u, v ∈ H2(Ω):

(Au, v)Ω − (u,A′v)Ω = (νu, γ0v)Σ − (γ0u, ν′v)Σ, (3)

where

νu = s(x)γ1u +Aγ0u, ν′v = s̄(x)γ1v +A′γ0v ;

here s(x) 6= 0, smooth, and A, A′ are suitable first-order differential
operators on Σ.
Define the Dirichlet-to-Neumann operator

Pγ,ν = νKγ : Hs− 1
2 (Σ)→ Hs− 3

2 (Σ);

it is an elliptic ψdo of order 1.
Introduction of the reduced Neumann trace operator Γ by

Γ = ν − Pγ,νγ0 : D(Amax)→ H
1
2 (Σ)

allows a generalized Green’s formula, for u ∈ D(Amax), v ∈ D(A′max):

(Au, v)Ω − (u,A′v)Ω = (Γu, γ0v) 1
2 ,−

1
2
− (γ0u, Γ′v)− 1

2 ,
1
2
. (4)
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Then in fact D(Ã) consists of the functions u ∈ D(Amax) that satisfy
the boundary condition

γ0u ∈ D(L), (Γu, ϕ) 1
2 ,−

1
2

= (Lγ0u, ϕ)Y∗,Y for all ϕ ∈ Y .

The second condition may be rewritten as i∗Y Γu = Lγ0u, or

i∗Yνu = (L + i∗Y Pγ,ν)γ0u.

The analysis covers all closed realizations.
In the case X = Y = H−

1
2 (Σ), this is a Neumann-type condition

νu = Cγ0u, with C = L + Pγ,ν . (5)

In recent other works based on boundary triples theory
(Amrein-Pearson, Behrndt-Langer,...) the tendency has been to avoid
“negative Sobolev spaces” by assuming that the realizations have
domains where γ0u, νu ∈ L2(Σ); then not all closed realizations are
covered.
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3. Generalizations to nonsmooth domains

Can we extend the Krein resolvent formula

(Ã− λ)−1 = (Aγ − λ)−1 + Kλ
γ,X (Lλ)−1(K ′λ̄γ,Y )∗. (2)

to nonsmooth cases? Note that there are three universal ingredients:

(Aγ − λ)−1 : Hs(Ω)→ Hs+2(Ω), s > − 1
2 ,

Kλ
γ : Hs− 1

2 (Σ)→ Hs(Ω), s ∈ R,

(K ′λ̄γ )∗ : Hs(Ω)→ Hs+ 1
2 (Σ), s > − 1

2 ,

all belonging to the ψdbo calculus; (K ′λ̄γ )∗ is a trace operator of class
0. For (2), the mapping properties are especially important at s = 0.
Only X , Y and Lλ depend on which realization Ã we are considering.
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There exist a few works dealing with extensions to nonsmooth
domains:

Gesztesy and Mitrea ’09 have some results on Robin problems
(essentially C is of order < 1) for −∆ on Lipschitz domains.
Krein-type resolvent formulas are shown under the hypothesis
that the domain is C

3
2 +ε.

Gesztesy and Mitrea in a paper to appear, have Krein resolvent
formulas for selfadjoint realizations of −∆ on so-called
quasi-convex Lipschitz domains (containing C

3
2 +ε and convex

domains). They use G’68. The interesting new aspect is that
{γ0, γ1} maps D(Amax) onto (N

1
2 )∗ × (N

3
2 )∗ that differs from

H−
1
2 (Σ)×H−

3
2 (Σ) in the roughest cases (for C

3
2 +ε-domains they

are the same).

Posilicano and Raimondi ’09 have outlines of related results for
selfadjoint realizations of more general second-order elliptic
operators with nonsmooth coefficients, when the domain is C1,1.

Gerd Grubb Copenhagen University Extension theory for nonsmooth boundary value problems



1. Pseudodifferential boundary operators
2. Extension theory and Krein resolvent formulas

3. Generalizations to nonsmooth domains

In G ’08, second-order nonselfadjoint operators with smooth
coefficients on a C1,1 domain are treated; here Neumann-type
boundary conditions (5) are allowed.
The C1,1 hypothesis served to use results from Grisvard’s ’82
book.

A very recent joint work Abels-G-Wood treats second-order
strongly elliptic operators with nonsmooth coefficients on a scale
of domains containing C

3
2 +ε, obtaining a full extension theory

and Krein resolvent formulas. In particular, Neumann type
conditions with C of order 1 are included, with regularity in
elliptic cases.

It is one of the main aims of G’08 and AGW’10 to allow C of order 1
and get ellipticity into play, dealing with operators having a principal
part that governs the regularity results, plus a remainder with a minor
effect. About AGW’10:

Gerd Grubb Copenhagen University Extension theory for nonsmooth boundary value problems



1. Pseudodifferential boundary operators
2. Extension theory and Krein resolvent formulas

3. Generalizations to nonsmooth domains

We work in a scale of spaces containing C
3
2 +ε(Ω), but to profit from

precise rules for products and traces, the considerations take place
not only in Hölder spaces but also in some slightly larger Besov and
Bessel-potential spaces. We consider

Au = −
∑

∂j (ajk∂k u) +
∑

aj∂ju + a0u in Ω,

where Ω is B
3
2
p,2, and ajk ,aj ∈ H1

q (Ω), a0 ∈ Lq(Ω); with p,q ≥ 2 and

τ := 1
2 −

n−1
p > 0, 1− n

q ≥ τ. (6)

Here C
3
2 +ε ⊂ B

3
2
p,2 ⊂ C1+τ , so indeed Ω being C

3
2 +ε is allowed.

Proposition 1 Each boundary point x0 has a neighborhood U and a
C1-diffeomorphism F : U → B(0,1) with ∇F in Cτ such that
F (U ∩ Ω) = B(0,1) ∩ Rn

+, and the coordinate change defined by F
preserves Hs for − 1

2 < s ≤ 2.
Moreover, the induced coordinate change from U ∩ Σ to
{x ∈ B(0,1) | xn = 0} preserves Hs for − 1

2 ≤ s ≤ 3
2 .
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Theorem 2 Green’s formula (3) is valid for u, v ∈ H2(Ω); here ν and

ν′ have coefficients in H
1
2

p (Σ)

The hypothesis (6) assures that H
1
2

p (Σ) ⊂ Cτ (Σ).
Now, using the ψdbo calculus with Cτ -smoothness of coefficients, in
a λ-dependent version, we can show:
Theorem 3 When λ ∈ %(Aγ), the operators (Aγ − λ)−1, Kλ

γ and Pλ
γ,ν

are defined as continuous maps:

(Aγ − λ)−1 : Hs−2(Ω)→ Hs(Ω), for s ∈ ]2− τ,2]

Kλ
γ : Hs− 1

2 (Σ)→ Hs(Ω), for s ∈ ]2− τ,2]

Pλ
γ,ν : Hs− 1

2 (Σ)→ Hs− 3
2 (Σ), for s ∈ ]2− τ,2],

with a ψdbo principal part and a remainder of lower order.

The result for (Aγ − λ)−1 is satisfactory since it includes the map from
L2(Ω) to H2(Ω), but the other results are insufficient for the extension
analysis since they do not allow s = 0.
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This requires another effort. We can define an extension of Kλ
γ by

Kλ
γ = (ν′(A∗γ − λ̄)−1)∗;

It has the desired continuity for s ∈ [0, τ [ , and we use interpolation to
get the full interval s ∈ [0,2]. But for s ≤ 2− τ , the operator is not of
the standard type; however, a symbol smoothing argument allows to
write it as the sum of an operator with symbol of an S1,δ-type plus a
remainder of lower order, when s > 0.
Also for the Dirichlet-to-Neumann operator Pλ

γ,ν , we can get a
continuous extension to s ∈ [0,2], but with a nonstandard structure
for s ≤ 2− τ . Symbol smoothing can be used for s > 0, and there is
an additional construction leading to inclusion of the case s = 0.

Theorem 4. The whole extension theory for the smooth case remains
valid in the considered nonsmooth case, including the diagrams that
define Lλ : X → Y ∗ for a general realization Ã, and its Krein resolvent
formula when %(Ã) ∩ %(Aγ) 6= ∅.
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As in the smooth case, we have that when X = Y = H−
1
2 (Σ), the

boundary condition for Ã is of Neumann-type:

νu = Cγ0u, where C = L + Pγ,ν . (7)

Here we can single out elliptic cases: Let Ã be defined by the
boundary condition (7), where C is a first-order differential operator
on Σ with coefficients in H

1
2

p (Σ). If the ψdo Lλ = C − Pλ
γ,ν is

parameter-elliptic on a ray in %(Aγ), then Ã has domain in H2(Ω) ( and
D(L) = H

3
2 (Σ)). Moreover, Ã− λ is invertible for large λ on the ray.
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