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Introduction
Closed manifolds
Manifolds with boundary

The noncommutative residue has been defined for classical
pseudodifferential operators (ψdo’s) on closed manifolds, for
operators in the Boutet de Monvel calculus on manifolds with
boundary, for logarithms of ψdo’s on closed manifolds, and in other
cases.

We shall show how the analysis of the basic zeta coefficient — the
zeta-regularized trace — for operators on manifolds with boundary
leads to still other constants, involving logarithms of boundary
operators, with tracial properties that justify seeing them as new
cases of noncommutative residues.
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Introduction
Closed manifolds
Manifolds with boundary

X̃ — n-dimensional compact boundaryless C∞ manifold,

X ⊂ X̃ , smoothly imbedded, with boundary X ′,

Ẽ — hermitian C∞ vector bundle over X̃ , E = Ẽ |X , E ′ = Ẽ |X ′ .

On X̃ :

A — classical (1-step polyhomogeneous) pseudodifferential
operator (ψdo) of order σ ∈ R acting in Ẽ ,

P1 — classical elliptic ψdo of order m > 0 acting in Ẽ , with no
eigenvalues on R−, such that P1 − λ is invertible for λ in a sector
V around R−.
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Introduction
Closed manifolds
Manifolds with boundary

Simple example of boundary operators
On X :
Simple example when X ⊂ Rn:(

1−∆
γ0

)
and its inverse

(
R K

)
, R = Q+ + G;

Here R and K solve the semi-homogeneous problems:{
(1−∆)u = f in X ,

γ0u = 0 on X ′;
resp.

{
(1−∆)u = 0 in X ,

γ0u = g on X ′.

γ0 is the trace operator u 7→ u|X ′ ,
Q = (1−∆)−1 = Op( 1

1+|ξ|2 ) on Rn,
Q+ = r+Qe+ (e+ extends by 0, r+ restricts to X ),
G is a singular Green operator (the “boundary correction”),
K is a Poisson operator.
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Introduction
Closed manifolds
Manifolds with boundary

General case
Boutet de Monvel ‘71 defined pseudodifferential boundary operators
(ψdbo’s) in general as systems (Green operators):P+ + G K

T S

 :
C∞(X ,E)

×
C∞(X ′,F )

→
C∞(X ,E1)

×
C∞(X ′,F1)

,

where:
P is a ψdo on a closed manifold X̃ ⊃ X , satisfying the transmission

condition at X ′ (always true for operators stemming from elliptic PDE),
P+ = r+Pe+.
G is a singular Green operator. NB! The “leftover operator”

L(P,Q) = (PQ)+ − P+Q+ is such one.
T is a trace operator from X to X ′, K is a Poisson operator from X ′

to X , S is a ψdo on X ′.
Traces apply when E = E1, F = F1; the new object is B = P+ + G.
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Introduction
Closed manifolds
Manifolds with boundary

The transmission condition requires integer order. For G alone one
can study all real orders. We consider classical symbols
(polyhomogeneous). The setup consists of

B = P+ + G — of order σ ∈ Z acting in E ,

An elliptic differential boundary operator
(

P1
T

)
defining the

realization P1,T acting like P1 in L2(X ,E) with domain

D(P1,T ) = {u ∈ Hm(X ,E) | Tu = 0},

having no eigenvalues on R−, such that Rλ = (P1,T − λ)−1

exists for λ ∈ V .

Then we study the traces of B(P1,T − λ)−1, BP−s
1,T , etc.
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1. The residue for closed manifolds
2. The residue for manifold with boundary
The residue for logarithms

II. Some definitions of noncommutative residues
1. res A, by Wodzicki and Guillemin ’84.
Let A be a ψdo on X̃ with symbol a ∼

∑
j≥0 aσ−j ; aσ−j(x , ξ)

homogeneous of degree σ − j in ξ. Define in local coordinates

resx(A) =

∫
|ξ|=1

tr a−n(x , ξ) d\S(ξ).

Here d\ = (2π)−nd . Then

res(A) =

∫
eX

∫
|ξ|=1

tr a−n(x , ξ) d\S(ξ)dx =

∫
eX

resx(A) dx

has a meaning independent of the choice of local coordinates. It is
tracial, i.e., vanishes on commutators:

res([A,A′]) = 0.

It vanishes if σ < −n, if σ is not integer, and if A is a diff. op.
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1. The residue for closed manifolds
2. The residue for manifold with boundary
The residue for logarithms

2. res B = res(P+ + G), by Fedosov-Golse-Leichtnam-Schrohe ’96.
Let B = P+ + G on X , with symbols p(x , ξ) resp. g(x ′, ξ′, ξn, ηn),.
From P we define resx P as above. From G we first define the normal
trace, in local coordinates;

trn g = s(x ′, ξ′) =

∫ +

g(x ′, ξ′, ξn, ξn)d\ξn, trn G = Op(s(x ′, ξ′)),

it is a ψdo on X ′. We define as above, in n − 1 dimensions,

resx′(trn G) =

∫
|ξ′|=1

tr s1−n(x ′, ξ′) d\S(ξ′).

Then
res(B) = res+(P) + res(trn G), where

res+(P) =

∫
X

resx(P) dx , res(trn G) =

∫
X ′

resx′(trn G) dx ′.

It has an invariant meaning on X , and is tracial, res([B,B′]) = 0.
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1. The residue for closed manifolds
2. The residue for manifold with boundary
The residue for logarithms

3. res(log P1), by Okikiolu ’95. log P1 has symbol log[ξ]m + `(x , ξ) with
`(x , ξ) classical of order 0 ([ξ] is smooth positive, equal to |ξ| for
|ξ| ≥ 1), and the residue has an invariant meaning:

res(log P1) =

∫
eX

∫
|ξ|=1

tr `−n(x , ξ) d\S(ξ)dx .

Tracial? Yes and no. Yes in the sense that [A, log P1] is classical, and
res([A, log P1]) = 0. But the symbol r(x , ξ) of R = A log P1 is of the
form

r(x , ξ) ∼
∑
j≥0

(rσ−j,1(x , ξ) log[ξ] + rσ−j,0(x , ξ)),

with rσ−j,l homogeneous in ξ of degree σ − j . Integration over |ξ| = 1
gives

resx,0(A log P1) =

∫
|ξ|=1

tr r−n,0(x , ξ)d\S(ξ).

Only locally defined, does not integrate to a functional. (Lesch ’99
defined a “higher trace” res1 from r−n,1.)
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1. Closed manifolds
2. Manifolds with boundary
3. The logarithm

III. Occurrence as invariants

Case 1. Define the zeta function ζ(A,P1, s) = meromorphic extension
of Tr(AP−s

1 ), then

1
m res A = Ress=0 ζ(A,P1, s).

Equivalent resolvent formulation (take m > n + σ):

Tr(A(P1 − λ)−1) ∼
∑

0≤j<σ+n

aj(−λ)
σ+n−j

m −1

+ C−1(A,P1)(−λ)−1 log(−λ) + C0(A,P1)(−λ)−1 + O(λ−1−ε),

for λ→∞ in V . Here 1
m res A = C−1(A,P1), local. The regular value

of ζ(A,P1, s) at 0 (the constant behind the residue) is equal to
C0(A,P1) and is global.
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1. Closed manifolds
2. Manifolds with boundary
3. The logarithm

Case 2. Define the zeta function ζ(B,P1,T , s) = meromorphic
extension of Tr(BP−s

1,T ), then

1
m res B = Ress=0 ζ(B,P1,T , s).

This was shown via the resolvent formulation by G.-Schrohe ’01:

Tr(B(P1,T − λ)−1) ∼
∑

0≤j<σ+n

bj(−λ)
σ+n−j

m −1

+ C−1(B,P1,T )(−λ)−1 log(−λ) + C0(B,P1,T )(−λ)−1 + O(λ−1−ε),

for λ→∞ in V . Here 1
m res B = C−1(B,P1,T ), local.

The regular value of ζ(B,P1,T , s) at 0 is equal to C0(B,P1,T ) and is
global.
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1. Closed manifolds
2. Manifolds with boundary
3. The logarithm

Case 3. The zeta function ζ(P1, s) (= ζ(I,P1, s) = Tr P−s
1 ) is regular

at 0, and the value is

− 1
m res(log P1) = ζ(P1,0),

local. Shown by Scott ’05, reworked in resolvent setup by G. ’05.

Remarks. The logarithm of P1 is defined by

log P1 = lim
s↘0

i
2π

∫
C
λ−s logλ(P1 − λ)−1 dλ

strongly.

Scott and Paycha (GAFA ’07) have analysed all the poles of
ζ(A,P1,−s) = Tr(AP−s

1 ); here (log P1)
k come into the picture.
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IV. Hadamard finite-part integrals.

Another trace-like functional is the canonical trace of
Kontsevich-Vishik ’95, see also Lesch ’99. Let

TRx(A) =

∫
− tr a(x , ξ) d\ξ,

where
∫
−f (x , ξ) d\ξ is a partie finie integral:

When f (x , ξ) is a classical symbol of order σ, then∫
|ξ|≤R

f (x , ξ) d\ξ ∼
∑

j≥0,j 6=σ+n

cj(x)Rσ+n−j + C−1(x) log R + C0(x)

for R →∞, and one defines
∫
−f (x , ξ) d\ξ = C0(x); global.
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A symbol is said to have even-even (resp. even-odd) parity when the
even/odd-numbered symbols are even/odd in ξ (resp. odd/even).

When

1) σ < −n or /∈ Z, or
2) a(x , ξ) has even-even parity, n is odd, or
3) a(x , ξ) has even-odd parity, n is even,

then TR A =
∫
eX TRx A dx has an invariant meaning and is tracial; it is

the canonical trace. Then (when P1 is even-even)

TR A = C0(A,P1), res A = 0.

What happens outside these cases?
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General rules: C0(A,P1) is quasi-tracial, in the sense that the
trace-defects

C0(A,P1)− C0(A,P2) and C0([A,A′],P1) are local

(equal residues of − 1
m A(log P1 − log P2) resp. − 1

m A[A′, log P1],
Okikiolu, Kontsevich-Vishik, Melrose-Nistor, ’95-’96.)

But what is the value of C0(A,P1) itself? Must be a mix of local and
global terms. Paycha-Scott showed (GAFA ’07):

C0(A,P1) =

∫
eX
[TRx A− 1

m resx,0(A log P1)] dx .

Both “almost-trace functionals” appear here!

The proof of Paycha and Scott relies heavily on studies of
holomorphic families of ψdo’s A(z) of order αz + β (α 6= 0). The proof
can also be based directly on resolvent considerations, G. ’06.
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Remark. C0 is important in index formulas: For an elliptic A with
parametrix A(−1),

ind A = C0([A,A(−1)],P1) = − 1
m res(A[A(−1), log P1]).

(These expressions are independent of P1 and of the choice of
parametrix.)
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V. C0 for cases with boundary
In the search for a similar result for manifolds with boundary, one can
expect the formulas to involve an operator log P1,T . This operator can
be defined by functional calculus applied to (P1,T −λ)−1 = Qλ,+ + Gλ,

log P1,T = (log P1)+ + i
2π

∫
C

logλGλ dλ = (log P1)+ + Glog
1 ,

formed of a ψdo term and a singular Green-like term.
When m is even, the classical part of log P1 has the transmission
property (required in the Boutet de Monvel calculus). The
symbol-kernel of Glog

1 will contain terms of the type

1
xn + yn

e−[ξ′](xn+yn)

with a singularity at xn = yn = 0. (More on log P1,T in Gaarde-G., to
appear in Math. Scand.)
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The main result is the following (G., Math. Ann. ’08):
Theorem 1. When P1 is of even order, C0(B,P1,T ) is a sum of terms,
calculated in local coordinates (recall B = P+ + G):

C0(B,P1,T ) =

∫
X
[TRx P − 1

m resx,0(P log P1)] dx (1)

+ 1
m res(L(P, log P1)) (2)

+

∫
X ′

[TRx′ trn G − 1
m resx′,0 tr′n(G(log P1)+)] dx ′ (3)

− 1
m res(P+Glog

1 ) (4)

− 1
m res(GGlog

1 ). (5)

Each line is an invariant defined from P, G, log P1 and Glog
1 .

Gerd Grubb Copenhagen University New residue definitions arising from zeta values for boundary value problems



I. Preliminaries
II. Some definitions of noncommutative residues

III. Occurrence as invariants
IV. Hadamard finite-part integrals

V. C0 for cases with boundary
VI. Sectorial projections

Here, (1): ∫
X
[TRx P − 1

m resx,0(P log P1)] dx

is like the formula of Paycha-Scott for X̃ , but integrated only over X .
The contribution (3):∫

X ′
[TRx′ trn G − 1

m resx′,0 tr′n(G(log P1)+)] dx ′

was the hardest to pin down; it also has both global and local
components, and tr′n is a special variant of trn.
The contributions (2), (4) and (5) are local and appear as various
generalizations of the FGLS residue:

1
m res(L(P, log P1)), − 1

m res(P+Glog
1 ), − 1

m res(GGlog
1 ).
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Background: If Mλ is a family of ψdbo’s such that for λ→∞ in V ,

Tr Mλ =
∑

finite set of σj>−1

cj(−λ)σj

+ C−1(−λ)−1 log(−λ) + C0(−λ)−1 + O(λ−1−ε), (6)

denote C−1 = `−1(Mλ), C0 = `0(Mλ). With (P1,T − λ)−1 = Qλ,+ + Gλ,
we have

BQλ,+ = P+Qλ,+ + GQλ,+ = (PQλ)+ − L(P,Qλ) + GQλ,+

BGλ = P+Gλ + GGλ.

Here each function has an expansion (6), with `0-coefficient

`0(BQλ,+) = `0((PQλ)+) + `0(−L(P,Qλ)) + `0(GQλ,+)

= (1) + (2) + (3);

`0(BGλ) = `0(P+Gλ) + `0(GGλ)

= (4) + (5) = − 1
m res(BGlog

1 ).
Gerd Grubb Copenhagen University New residue definitions arising from zeta values for boundary value problems



I. Preliminaries
II. Some definitions of noncommutative residues

III. Occurrence as invariants
IV. Hadamard finite-part integrals

V. C0 for cases with boundary
VI. Sectorial projections

Theorem 1 is shown using the “positive regularity” concept from
G-book ’96, assuring convergent integrals of strictly homogeneous
symbols, this gives the local terms. For the terms without positive
regularity, one compares with special operators using defect
formulas, to get the global terms. A difficulty in (3) is that
homogeneity properties of G and Qλ do not match well.

Are the new residues tracial? Yes, to some extent:
When B is of order and class 0, we may as well place it to the right,
studying Qλ,+B and GλB; here

Tr(Qλ,+B) = Tr(BQλ,+), Tr(GλB) = Tr(BGλ),

so the `0 values are the same:

`0(Qλ,+B) = `0(BQλ,+), `0(GλB) = `0(BGλ).

This leads to:
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Theorem 2. When B is of order and class 0,

res(BGlog
1 ) = res(Glog

1 B).

Moreover, [B, (log P1)+] has a residue, defined as

res([P, log P1]+)−res(L(P, log P1)−L(log P1,P))+res([G, (log P1)+]),

and it equals zero. Altogether:

res([B, log P1,T ]) = 0.

However, B log P1,T itself is — like A log P1 on X̃ — not assigned a
residue generalizing FGLS.
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VI. Sectorial projections.
If the spectrum of P1,T lies in two sectors of C, separated by two rays
eiθR+ and eiϕR+ free of eigenvalues (θ < ϕ < θ + 2π), then, with
Γθ,ϕ = eiθR+ ∪ eiϕR+, the operator (studied in Gaarde-G.)

Πθ,ϕ(P1,T ) = i
2π

∫
Γθ,ϕ

λ−1P1(P1,T − λ)−1 dλ

is a projection in L2, essentially projecting onto the generalized
eigenspace for eigenvalues with argument in ]θ, ϕ[ , and vanishing on
the generalized eigenspace for the other evs. Moreover,

Πθ,ϕ(P1,T ) = i
2π (logθ P1,T − logϕ P1,T ),

where logθ P1,T is defined using a logarithm with cut at eiθR+. For
Πθ,ϕ(P1,T ), the ψdo part belongs to the Boutet de Monvel calculus if
m is even, and the s.g.o. part may or may not do so.
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We can show using Theorems 1–2 (m even):

Theorem 3. When B is of order and class 0, B Πθ,ϕ(P1,T ) and
Πθ,ϕ(P1,T )B have residues, and

res([B,Πθ,ϕ(P1,T )]) = 0.

Recall the result for closed manifolds that res Πθ,ϕ(P1) vanishes
(Atiyah-Patodi-Singer, Gilkey, Wodzicki). For manifolds with boundary,
Gaarde has recently obtained by use of K-theoretic results for
operators in the Boutet de Monvel calculus (by Nest, Schrohe et al.):

Theorem 4. If Πθ,ϕ(P1,T ) belongs to the Boutet de Monvel calculus,
then

res Πθ,ϕ(P1,T ) = 0.

It is still an open question whether this holds in general.
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