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Introduction

Recent interest in so-called M-functions connected with boundary
value problems for elliptic operators have lead to a revival of old
theories, with modern generalizations. We shall explain a so-called
Krein resolvent formula — different from the standard decomposition
of the resolvent into an interior pseudodifferential term and a singular
Green operator term — and give an account of how it may be
established in non-smooth situations.

Gerd Grubb Copenhagen University Resolvent studies on nonsmooth domains



1. Pseudodifferential boundary operators
2. A Krein resolvent formula

3. Neumann-type boundary conditions
4. Extensions to nonsmooth domains

5. Application of the nonsmooth ψdbo calculus

1. Pseudodifferential boundary operators
Consider a strongly elliptic 2m-order differential operator A on a
bounded smooth open subset Ω of Rn with coefficients in C∞(Ω).
Denote ∂Ω = Σ, and γju = ∂ j

nu|Σ; then %u = {γ0u, . . . , γ2m−1u} are
the Cauchy data.
The maximal operator Amax acts like A in L2(Ω) with domain

D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)},

and the minimal operator Amin = A|C∞0 , with D(Amin) = H2m
0 (Ω). The

operators Ã in L2(Ω) with Amin ⊂ Ã ⊂ Amax are the realizations of A.
For suitable matrices B of differential operators on Σ, the condition
B%u = 0 is an elliptic boundary condition for A, and the realization Ã
of A with domain

D(Ã) = {u ∈ H2m(Ω) | B%u = 0}

has a resolvent (Ã− λ)−1 existing for λ in a sectorial region of C.
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We shall regard this from the point of view of the pseudodifferential
boundary operator (ψdbo) calculus of Boutet de Monvel ’71, extended
to general parameter-dependent situations in the book G ’86 (2nd ed.
’96). The matrix-formed operator(

A− λ
B%

)
has the inverse

(
R(λ) K (λ)

)
.

Here R(λ) and K (λ) solve the semi-homogeneous problems:{
(A− λ)u = f in Ω,

B%u = 0 on Σ;
resp.

{
(A− λ)u = 0 in Ω,

B%u = g on Σ.

K (λ) is a so-called Poisson operator.

Gerd Grubb Copenhagen University Resolvent studies on nonsmooth domains



1. Pseudodifferential boundary operators
2. A Krein resolvent formula

3. Neumann-type boundary conditions
4. Extensions to nonsmooth domains

5. Application of the nonsmooth ψdbo calculus

R(λ) is a sum of two terms:

R(λ) = Q(λ)+ + G(λ) (1)

where Q(λ) is the pseudodifferential operator Q(λ) = (A− λ)−1 on
Rn (defined in an approximate sense), Q(λ)+ is its truncation to Ω,

Q(λ)+ = r+Q(λ)e+

(where e+ extends by 0, r+ restricts to Ω), and G(λ) is a singular
Green operator.
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Boutet de Monvel defined pseudodifferential boundary operators
(ψdbo’s) in general as systems (called Green operators):P+ + G K

T S

 :
C∞(Ω)N

×
C∞(Σ)M

→
C∞(Ω)N′

×
C∞(Σ)M′

, where

P is a pseudodifferential operator (ψdo) on Rn (or on a
neighborhood Ω̃ of Ω), satisfying the transmission condition at Σ
(always true for operators stemming from elliptic PDE),

P+ = r+Pe+ (the transmission condition assures that P+ maps
C∞(Ω) into C∞(Ω)).

T is a trace operator from Ω to Σ, K is a Poisson operator from
Σ to Ω, S is a ψdo on Σ.

G is a singular Green operator, e.g. of type KT . (All can be
matrix-formed.)
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In local coordinates near the boundary, the operators T , K and G
can be regarded as ψdo’s in the tangential variables, with values in
Poisson or singular Green operators in one variable (the normal
variable xn).
The ψdbo calculus defines an “algebra” of operators, where the
composition of two systems leads to a third one (when the
dimensions N,M, . . . match). It has the advantage that when a
system is elliptic, then there exists a parametrix (an inverse in an
approximate sense) which also belongs to the calculus.
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2. A Krein resolvent formula
The realization Aγ defined by the Dirichlet condition

D(Aγ) = {u ∈ H2m(Ω) | γu = 0},

where γ = {γ0, . . . , γm−1}, can be assumed to have its spectrum in a
sectorial region of {λ ∈ C | Reλ > 0}; then it is bijective.
We denote by prX the orthogonal projection onto a closed subspace
X of H = L2(Ω). The (non-orthogonal) projections

prγ u = A−1
γ Amaxu, prζ = I − prγ ,

define a decomposition of D(Amax) into a direct sum:

D(Amax) = D(Aγ)+̇Z , Z = {u ∈ L2(Ω) | Au = 0}.

With the analogous decomposition for the formal adjoint A′ indicated
by primes everywhere, we have:
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Theorem 1. [G ’68] There is a 1–1 corrspondence between the
closed realizations Ã and the closed densely defined operators
T : V →W, where V ⊂ Z, W ⊂ Z ′ (closed subspaces), such that Ã
corresponds to T : V →W if and only if

D(Ã) = {u ∈ D(Amax) | prζ u ∈ D(T ), prW Au = T prζ u}.

In this correspondence,

Ã∗ corresponds analogously to T ∗ : W → V.

ker Ã = ker T ; ran Ã = ran T + (H 	W ).

When Ã is bijective,

Ã−1 = A−1
γ + iV→HT−1 prW . (2)

The result builds on previous work by Krein and Vishik.
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The condition prW Au = T prζ u is an “abstract boundary condition”.
From now on, let m = 1, then the abstract condition is interpreted by
means of the bijective maps

γ0 : Z ∼→ H− 1
2 (Σ), γ0 : Z ′ ∼→ H− 1

2 (Σ),

that have the Poisson operators Kγ resp. K ′
γ as inverses. (For

2m-order operators, Z is mapped to an m-tuple.)
Consider the case V = Z , W = Z ′. Here we carry T : Z → Z ′ over to
the closed, densely defined operator L : H− 1

2 (Σ)→ H
1
2 (Σ) by the

diagram

Z
Kγ←−−−− H− 1

2 (Σ)

T

y yL

Z ′ −−−−→
(K ′γ)∗

H
1
2 (Σ)

D(L) = γD(T ),

where the horizontal maps are homeomorphisms.
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We explain later how this turns prZ ′ Au = T prζ u into a concrete
boundary condition.
Formula (2) becomes

Ã−1 = A−1
γ + KγL−1(K ′

γ)∗. (3)

A replacement of A by A− λ gives for λ ∈ %(Aγ) ∩ %(Ã),

(Ã− λ)−1 = (Aγ − λ)−1 + K λ
γ (Lλ)−1(K ′λ̄

γ )∗, (4)

where the dependence on λ is indicated by an upper index. This is a
so-called Krein resolvent formula.
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The present version is proved in G-Brown-Wood Math. Nachr. ’09,
with generalizations to cases where V and W are subspaces of Z ,Z ′;
many of the ingredients come from papers G ’68 - ’74.

When Ã is determined from an elliptic differential boundary condition,
the term K λ

γ (Lλ)−1(K ′λ̄
γ )∗ is a singular Green operator, but it differs

from G(λ) in (1) by carrying more precise eigenvalue information.
Moreover, (4) is valid for general closed realizations, allowing more
general operators Lλ.
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Meanwhile, there has been a development in the treatment of
boundary value problems, mostly aimed towards ODE. A key word is
boundary triplets, where the Weyl-Titchmarsh m-function plays an
important role. Many Russian mathematicians have taken part in this,
e.g. Kochubei ’75, Gorbachuk and Gorbachuk book ’84 (translated
’91), Derkach and Malamud ’87, Malamud and Mogilevski ’97, ’02,
. . . . They characterize realizations not just by operators defined over
the nullspaces, but also relations (subsets of graphs).
For PDE cases, the concept of m-function has been generalized to
M-functions in recent years (Amrein, Pearson, Behrndt, Langer,
Brown, Marletta, Naboko, Wood, Ryshov. . . ). The function M(λ) for Ã
is a family of operators in spaces over the boundary, holomorphic in
λ ∈ %(Ã) and encoding spectral information on Ã. We found (as
explained in G-Brown-Wood ’09) that

M(λ) = −(Lλ)−1, when λ ∈ %(Aγ) ∩ %(Ã).

Then the preceding analysis sheds light on the M-function too.
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3. Neumann-type boundary conditions
Now let us explain the boundary condition, still assuming m = 1,
V = Z , W = Z ′. A has a Green’s formula (for smooth u, v )

(Au, v)Ω − (u,A′v)Ω = (ν1u, γ0v)Σ − (γ0u, ν′1v)Σ,

where
ν1 = sγ1 +Aγ0, ν′1 = s̄γ1 +A′γ0,

with a nonvanishing smooth function s and suitable first-order
differential operators A, A′ on Σ.
Let λ ∈ %(Aγ). In addition to the Poisson operators K λ

γ resp. K ′λ̄
γ

solving the Dirichlet problems for A− λ resp. A′ − λ̄, we introduce the
Dirichlet-to-Neumann operators

Pλ
γ0,ν1

= ν1K λ
γ , P ′λ̄

γ0,ν′1
= ν′1K ′λ̄

γ ,

that map the Dirichlet boundary value into the Neumann boundary
value for null-solutions. They are elliptic ψdo’s of order 1 on Σ.
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Theorem 2. Let Γ = ν1 − P0
γ0,ν1

γ0; it maps D(Amax) into H
1
2 (Σ).

Let Ã correspond to the closed densely defined operator
L : H− 1

2 (Σ)→ H
1
2 (Σ) as described above; then

D(Ã) = {u ∈ D(Amax) | γ0u ∈ D(L), Γu = Lγ0u}.

In other words, if we define

C = L + P0
γ0,ν1

,

then D(Ã) is defined by the Neumann-type boundary condition:

ν1u = Cγ0u, (5)

(with γ0u ∈ D(L)).

Here C can be a quite general operator.
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How do elliptic boundary conditions fit in?
If there is given a first-order differential operator (or ψdo) C on Σ such
that (5) is an elliptic boundary condition for A, then it can be shown
that the realization it defines has domain in H2(Ω) and corresponds to
L described by:

L = C − P0
γ0,ν1

, D(L) = H
3
2 (Σ).

In fact, L is an elliptic ψdo then.

Gerd Grubb Copenhagen University Resolvent studies on nonsmooth domains



1. Pseudodifferential boundary operators
2. A Krein resolvent formula

3. Neumann-type boundary conditions
4. Extensions to nonsmooth domains

5. Application of the nonsmooth ψdbo calculus

For the λ-dependent situation we have, for λ ∈ %(Aγ).

Lλ = C − Pλ
γ0,ν1

= L + P0
γ0,ν1
− Pλ

γ0,ν1
,

D(Lλ) = D(L); again D(Lλ) = H
3
2 (Σ) in elliptic cases.

Under the hypotheses for Theorem 2, we have moreover:
Theorem 3. For any λ ∈ %(Aγ),

dim ker(Ã− λ) = dim ker Lλ

dim coker(Ã− λ) = dim coker Lλ.

The associated M-function satisfies, for λ ∈ %(Aγ) ∩ %(Ã),

Mλ = −(Lλ)−1 ∈ L(H
1
2 (Σ),H− 1

2 (Σ)),

and extends to a holomorphic function of λ ∈ %(Ã). For elliptic
boundary conditions, the poles of Mλ are the eigenvalues of Ã.

Note that Lλ lives on %(Aγ) and Mλ lives on %(Ã); they supplement
each other.
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Consider again the Krein resolvent formula

(Ã− λ)−1 = (Aγ − λ)−1 + K λ
γ (Lλ)−1(K ′λ̄

γ )∗. (4)

Note that it has three universal ingredients:

(Aγ − λ)−1 : Hs(Ω)→ Hs+2(Ω), s > − 1
2 ,

K λ
γ : Hs− 1

2 (Σ)→ Hs(Ω), s ∈ R,

(K ′λ̄
γ )∗ : Hs(Ω)→ Hs+ 1

2 (Σ), s > − 1
2 ,

all belonging to the ψdbo calculus; (K ′λ̄
γ )∗ is a trace operator of class

0. In (4), the mapping properties are especially important for s = 0.
Only Lλ depends on the choice of Ã (but is linked to C by the
subtraction of Pλ

γ0,ν1
).
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4. Extensions to nonsmooth domains
There exist a few works from ’08 dealing with extensions to
nonsmooth domains:

Gesztesy and Mitrea have some results on Robin problems
(essentially C is of order < 1) for the Laplacian on Lipschitz
domains. To establish a Krein resolvent formula, they assume a
little more smoothness, namely C

3
2 +ε.

Posilicano and Raimondi have announced related results on
selfadjoint realizations of more general second-order elliptic
operators with nonsmooth coefficients, provided the domain is
C1,1.

In G ’08 (Rendiconti Torino), second-order nonselfadjoint
operators with smooth coefficients on a C1,1 domain are treated;
here Neumann-type boundary conditions (5) are allowed.

The C1,1 hypothesis is made to use results from Grisvard’s ’82 book.
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The main aim in G ’08 was to allow C of order 1 and get ellipticity into
play, dealing with operators having a principal part that governs the
regularity results plus a remainder with a minor effect. We present
this below, but mention already now that we have work in progress
(jointly with Abels and Wood) on lowering the regularity hypotheses,
essentially down to C

3
2 +ε, and including 2m-order operators. The

work G ’08 is a pilot project.
Our general strategy is to get the results by use of a “machine” such
as the ψdbo calculus. The ψdo calculus (on Rn or open subsets) was
generalized to symbols with limited smoothness in the x-variable by
Kumano-go and Nagase ’78, Marschall ’85, Taylor ’91 and 2000. The
results were extended to ψdbo’s (on Rn

+ and coordinate transformed
versions) by Abels ’05. (All these works have purposes in nonlinear
applications.)
There are of course other methods, especially if the differential
operator has a simple form, but we think the ψdbo method has an
interest in principle.
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5. Application of the nonsmooth ψdbo calculus
We denote as usual

Rn
+ = {x = (x1, . . . , xn) | xn > 0}, with (x1, . . . , xn−1) = x ′.

Consider ψdbo’s on Rn
+ with Ck,σ-smoothness, k ∈ N0 and σ ∈ ]0,1],

i.e., their symbols satisfy the usual estimates in the cotangent
variables ξ′, ξn, ηn, but only with respect to Ck,σ Hölder norms in the
x ′-variable. (Assume for simplicity that the ψdo term P has symbol
independent of xn.) From Abels ’05 we have:
Theorem I. If P, G, T , K and S are of order m and Hölder
smoothness Ck,σ, T of class r , then

P+ and G : Hs+m(Rn
+)→ Hs(Rn

+) for |s| < k + σ,

T : Hs+m(Rn
+)→ Hs− 1

2 (Rn−1) for |s − 1
2 | < k + σ, s + m > r − 1

2 ,

K : Hs+m− 1
2 (Rn−1)→ Hs(Rn

+) for |s| < k + σ

S : Hs+m− 1
2 (Rn−1)→ Hs− 1

2 (Rn−1) for |s − 1
2 | < k + σ.
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Theorem II. If A1 and A2 are systems of order m1 resp. m2 and
Hölder smoothness Ck1,σ1 resp. Ck2,σ2 ,

A1 =

P1+ + G1 K1

T1 S1

 , A2 =

P2+ + G2 K2

T2 S2

 ,

that can be composed (the dimensions match), then A3 = A1A2 is
the sum of a term Op(a1 ◦n a2) with entries as in Th. I, of order
m3 = m1 + m2 and Hölder smoothness Ck3,σ3 , k3 = min{k1, k2} and
σ3 = min{σ1, σ2}, plus a remainder with the Sobolev space mapping
properties improved by θ for small θ > 0.
Theorem III. If A has entries as in Th. I and is polyhomogeneous and
uniformly elliptic, with principal symbol a0, then there is a Green
operator B0 (with symbol (a0)−1 if m = 0) of order −m and Hölder
smoothness Ck,σ, continuous in the opposite direction, such that the
remainder R = AB0 − I has Sobolev space mapping properties
impoved by θ for small θ > 0.
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This all looks very promising for an “automatic” construction of
solution operators in elliptic cases. But there are some difficulties in
the application to our resolvent formula: We need the mapping
properties to be valid in a certain range of Sobolev spaces, both with
high and low values of s, but when k + σ is small, the above results
set severe limitations on the values s that are allowed.
A difficulty in applying Th. III is that the parametrix B0 is only really
simple when m = 0, otherwise one needs to reduce to the zero-order
case by use of “order-reducing operators”:

Λr
0 : Hs+r (Rn−1)

∼→ Hs(Rn−1), Λr
− : Hs+r (Rn

+)
∼→ Hs(Rn

+).

These operators have smooth coefficients, but compositions of
nonsmooth operators with them of course gives nonsmooth
operators.
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There is also the issue of operators “in x-form” or “in y -form”:

(Pu)(x) =

∫
eix·ξp(x , ξ)û(ξ) d\ξ or (Pu)(x) =

∫
ei(x−y)·ξp(y , ξ)u(y) d\ξdy .

The theorems above describe operators in x-form, but their adjoints
will be in y -form (with Sobolev mapping properties in different
intervals), and compositions lead to operators of more general types.
Let us describe the construction of the operators

(Aγ − λ)−1, K λ
γ , Pλ

γ0,ν1
,

in the case where Ω is C1,1 and A has smooth coefficients (for
simplicity); then in local coordinates near the boundary, we are
dealing with operators with C0,1-smoothness (since the normal vector
field is C0,1).

Gerd Grubb Copenhagen University Resolvent studies on nonsmooth domains



1. Pseudodifferential boundary operators
2. A Krein resolvent formula

3. Neumann-type boundary conditions
4. Extensions to nonsmooth domains

5. Application of the nonsmooth ψdbo calculus

It is found by application of Theorems I–III in local coordinates that

A(λ) =

(
A− λ
γ0

)
: Hs+2(Ω)→

Hs(Ω)
×

Hs+ 3
2 (Σ)

,

continuous for − 3
2 < s ≤ 0, has a parametrix

B0(λ) =
(
R0(λ) K 0(λ)

)
:

Hs(Ω)
×

Hs+ 3
2 (Σ)

→ Hs+2(Ω),

continuous for − 1
2 < s ≤ 0. The remainder

R(λ) = A(λ)B0(λ)− I :

Hs−θ(Ω)
×

Hs−θ+ 3
2 (Σ)

→
Hs(Ω)
×

Hs+ 3
2 (Σ)

maps continuously for − 1
2 + θ < s ≤ 0, small θ.
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Using the parameter-dependent calculus (actually it here suffices to
appeal to an old trick of Agmon), one finds that for large λ on rays
with argument in [π

2 − ε,
3π
2 + ε], the remainder has norm ≤ 1

2 , so that
an inverse B(λ) can be constructed by a Neumann series; here

B(λ) =
(
(Aγ − λ)−1 K λ

γ

)
:

Hs(Ω)
×

Hs+ 3
2 (Σ)

→ Hs+2(Ω),

for − 1
2 < s ≤ 0.

The same properties hold for the Dirichlet problem for the formal
adjoint A′.
The mapping properties of (Aγ − λ)−1 are satisfactory, but those of
K λ

γ do not include Sobolev exponents near 0, which are needed for
the Krein resolvent formula.
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Here there is another device, namely the observation that

K λ
γ = (ν′1(A

′
γ − λ̄)−1)∗;

(derived from Green’s formula); it allows a proof that

K λ
γ : Hs− 1

2 (Σ)→ Hs(Ω), (6)

for 0 ≤ s < 1
2 . By interpolation, we get the mapping property (6) for all

0 ≤ s ≤ 2.
For s ∈ ] 3

2 ,2], K λ
γ is the sum of a C0,1 Poisson operator and a lower

order term.
We can furthermore deduce that

Pλ
γ0,ν1

: Hs− 1
2 (Σ)→ Hs− 3

2 (Σ) for 0 ≤ s ≤ 2.

For s ∈ ] 3
2 ,2], it is the sum of a C0,1 ψdo and a lower order term.
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Based on these mapping properties, we can conclude:
Theorem 4. The whole set-up for the smooth case extends to
this nonsmooth case, including the diagram that defines L
(resp. Lλ) for the general realization Ã (resp. Ã− λ), and the
Krein resolvent formula.
Also the interpretation in terms of boundary conditions remains
valid: When V = Z, W = Z ′, the boundary condition for Ã is

γ0u ∈ D(L), ν1u − P0
γ0,ν1

γ0u = Lγ0u

With C = L + P0
γ0,ν1

, this is a Neumann-type boundary condition

ν1 = Cγ0u.
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Moreover, we have for the elliptic case:
Theorem 5. If C is a given first-order differential operator on Σ such
that the ψdo Lλ = C − Pλ

γ0,ν1
is parameter-elliptic on a ray in

{Imλ ≤ 0}, then the realization Ã− λ determined by the boundary
condition

ν1u = Cγ0u

has domain in H2(Ω) and corresponds to Lλ with domain H
3
2 (Σ), and

it is invertible for large λ on the ray.
Here the Krein resolvent formula holds with all terms belonging to the
nonsmooth ψdbo calculus, modulo lower order remainders.

In the mentioned recent studies of Gesztesy and Mitrea, Posilicano
and Raimondi, essentially only operators that are compact relative to
first-order operators are allowed in the place of C.
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About the ongoing project with Helmut Abels and Ian Wood: We shall
include higher-order operators and hence more general boundary
conditions, and expect to improve the smoothness assumptions,
adapted more carefully to what is minimally needed.

Nonsmooth ψdbo’s have been applied before, to Navier-Stokes
problems, by Abels ’03—’09 and Abels-Terasawa ’08. Probably useful
in many other contexts.. . .
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