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Introduction

This series of lectures1 consists of two parts. The first is a study of pseudo-differential
operators, and the second consists of applications to boundary problems for elliptic (pseu-
do-)differential operators. However, when sketching the aims of I and II change the order
since the second part gives some of the motivation for the first.

The standard theory of boundary problems for elliptic differential equations (or sys-
tems), as it can be found for example in the last chapter of my book, runs as follows:
One first considers a model for the local behavior in the case of an elliptic homogeneous
differential equation Pu = f in a half space with boundary conditions Bju = fj involving
some homogeneous constant coefficient differential equations. Fourier transformation along
the boundary reduces the study to that of a boundary problem for ordinary differential
equations involving as parameters an element of the bounding hyperplane. When these
equations always have unique solutions, the problem is called elliptic. Using L2 norms one
then finds that the derivatives of u of order m = order of P can be estimated in terms
of the norm of f and suitable norms on fj . Changing lower order terms or adding small
perturbations in the leading ones in P and Bj leads to perturbations which are compact
or of small norm, so one can immediately pass to local results for the case where P and
Bj have variable coefficients and lower order terms. From there a partition of unity easily
leads to global existence and regularity theorems for boundary problems in manifolds with
boundary satisfying the ellipticity condition if viewed “microscopically” at any boundary
point (and interior point).

The class of boundary value problems which is covered by this technique is called elliptic,
coercive or of Lopatinski-Shapiro type. It is clearly stable under arbitrary perturbations of
lower order terms and small perturbations in the leading terms, therefore for perturbations
of the boundary which are small in the C1 topology. This property is of course appealing
but it is also shown that many important boundary problems must fail to be elliptic. For
example, if we are interested in boundary problems like the ∂ Neumann problem in the
theory of functions of several complex variables we know that existence theorems can only
be expected to hold when the boundary satisfies certain convexity conditions. These are
not stable under small perturbations of the boundary in the C1 topology, so in questions
of this kind one will always encounter non-elliptic boundary problems.

1TEX-typed by G. Grubb in 2013 (Ch. II) and 2018 (Introduction).
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Another weak point is that if there is a jump in boundary conditions we cannot control
the perturbations and the methods outlined break down, although there are problems of
this kind which can easily be studied with variational methods.

A third drawback is that much work has to be done which is closely analogous to what
one does in studying elliptic differential equations in an open manifold. This makes it
natural to try to reduce the study of boundary problems to that of equations only inside
the boundary and in that way also be able to exploit the techniques developed for the
study of non-elliptic equations to the study of non-elliptic boundary problems. This is
indeed possible by essentially classical arguments, which I wish to indicate in a special
case.

Suppose we want to solve the boundary problem

∆u = 0, b0u0 + b1u1 = f on ω,

where Ω is an open set in R
n with smooth boundary ω, ∆ is the Laplacean, and b0, b1 are

differential operators in ω acting respectively on the boundary value u0 and the normal
derivative u1 of u. If E = c|x|2−n is a fundamental solution of the Laplacean, we obtain
from Green’s formula

u(x) =

∫
∂E(x− y)/∂ny u0(y) dS(y)−

∫
E(x− y) u1(y) dS(y), x ∈ Ω.

Thus it suffices to determine u0 and u1. Letting x approach ω we obtain a relation between
u0 and u1 of the form

u0 = k0u0 + k1u1

where k0 and k1 are (singular) integral operators. Conversely, it is easily seen that this
implies that the normal derivative of the expression defined by Green’s formula is also
equal to u1. Our boundary problem is therefore reduced to the solution of the system of
equations

(1− k0)u0 − k1u1 = 0

b0u0 + b1u1 = f

where the unknowns are functions in the manifold without boundary ω. What is involved
is therefore the existence of solutions of systems of singular integral equations. If we had
different boundary conditions on different parts of the boundary it is easily seen that we
are led to a boundary problem for a system of singular integral equations. Such have
recently been discussed by Vishik and Eskin. This in turn should be possible to reduce
to the study of some other singular integral equations in the manifold separating regions
with different boundary conditions.

A closer inspection of the argument just outlined will indicate how to choose a class
of operators which is large enough to make possible the argument outlined and still lies
sufficiently close to the class of partial differential operators so that one can hope to extend
what is known about these to the more general class of operators. Thus let us now consider
a more general elliptic operator than the Laplacean, an operator P (D) where D = −i∂/∂x
and P is a homogeneous polynomial with P (ξ) 6= 0 when Rn ∋ ξ 6= 0. A fundamental
solution is then formally given by

Eu(x) = (2π)−n

∫
ei〈x,ξ〉û(ξ)/P (ξ) dξ,
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where we have to make some modification near zero to guarantee convergence — it does
not matter very much how we do that since Fourier integrals over compact sets are C∞

functions and we are mainly concerned with singularities anyway. In the classical tradition
of singular integral operators one would now rewrite E as an integral operator acting on
u — which will be of convolution type. When P is perturbed by an operator with small
variable coefficients the solution of an integral equation will then yield a fundamental
solution of the new equation in the form of a Neumann series. However, there is very little
one can say about that kernel apart from the type of regularity properties it has. The
reason is of course that for example convolution of functions should be expressed in terms
of the Fourier transform where it appears simply as multiplication. The recent trend of
the theory of integral equations has therefore been to forget the kernels almost entirely
and thus also for equations with variable coefficients try to write fundamental solutions in
the form of Fourier integrals

Eu(x) = (2π)−n

∫
e(x, ξ)û(ξ)ei〈x,ξ〉 dξ.

It turns out that indeed one will then be able to determine the function e almost exactly
by algebraic calculations alone. Since no singularities are visible any longer it is natural
to talk about pseudo-differential operators — a term suggested by Friedrichs — instead of
singular integral operators.

Thus we are led to consider operators of the following form — I change e to p at this
moment —

p(x,D)u(x) = (2π)−n

∫
p(x, ξ)û(ξ)ei〈x,ξ〉 dξ, u ∈ C∞

0 (Ω), x ∈ Ω,

where Ω is an open subset of Rn. The first question is what one should assume concerning
the function p. The following should certainly be accepted:

a) p(x, ξ) = arbitrary polynomial in ξ. Then p(x,D) is just a differential operator with
the characteristic polynomial p. This motivates the notation.

b) Any p(x, ξ) which is a positively homogeneous function of ξ and is smooth when ξ 6= 0
(ξ ∈ Rn), being suitably modified near ξ = 0.

We should also allow linear combinations of the preceding functions p and suitable limits.
Starting from functions homogeneous of a real degree this is precisely what gives rise to
the pseudo-differential operators of Mihlin-Calderón-Zygmund-Seeley-Kohn-Nirenberg and
others; Seeley has also written a paper where he allows complex orders of homogeneity
which is essential in some questions. However, we shall take a more general class. First
note that the functions which we have allowed so far will satisfy estimates of the form

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|α|, x ∈ K ⊂⊂ Ω, ξ ∈ R

n,

for arbitrary multi-indices α and β. (Notations!) Two students of Schwartz, Unterberger
and Bokobza have carried out a study of the operators defined by arbitrary functions of
this kind. However, I want to allow still greater generality in order not to restrict the
usefulness of the machinery to elliptic equations. The next simplest class of operators is
the class of hypoelliptic operators. If for example P (D) is a constant coefficient differential
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operator, then it is known that P (D) is hypoelliptic (that is, all solutions of P (D)u = 0
are C∞) if and only if the derivatives DαP (ξ) are decisively smaller than P (ξ) at infinity.
For the function E(ξ) = 1/P (ξ) which occurs in the fundamental solution of P this means
that for a suitable m

|DαE(ξ)| ≤ Cα(1 + |ξ|)m−̺|α|,

where 0 < ̺ ≤ 1 is a number which is closely related to the regularity properties of the
solutions of P (D)u = 0. (The solutions are of Gevrey class 1/̺ but no better, if ̺ is the
smallest number that can be used.)

Suppose we make a simple modification of E, by taking an invertible matrix A(x) and
forming E(A(x)ξ). Then we notice that derivatives with respect to x may grow faster and
faster,

|Dβ
xD

α
ξ E(A(x)ξ)| ≤ Cα,β(1 + |ξ|)m−̺|α|+(1−̺)|β|.

We allow for such behavior in the following definition: Enter page 1, Definition 1.1.1. [This
seems to be Definition 2.1 of [1].]2

Chapter I

Pseudo-differential operators

[Not available. The text seems to have been essentially incorporated in the contribu-
tion ”Pseudo-differential operators and hypoelliptic equations” to the Symposium in Pure
Mathematics X “Singular Integrals” 1966, listed at the end of these notes as [1].]

2Remarks made by G. Grubb during the typing are given in square brackets.
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Chapter II

Boundary problems for “classical”

pseudo-differential operators

2.1. Preliminaries. In this chapter we shall restrict the use of the term pseudo-differential
operator to the subset Lm

1,0 consisting of operators with symbol
∑∞

0 pj(x, ξ) where pj is
positively homogeneous of degree mj , Rem1 ≥ Rem2 ≥ · · · → −∞. (Note that any such
sum, conveniently modified at the origin, satisfies the hypotheses of Theorem 1.1.5 [seems
to be covered by Theorem 2.7 of [1]] with ̺ = 1, δ = 0. Every such sum can therefore
occur as symbol.) This class of operators is first defined in open subsets of Rn but since
it is invariant for a change of variables in view of Theorem 1.1.11 [seems to be Theorem
2.16 of [1]], the extension to manifolds is immediate.

Let M be a fixed paracompact C∞ manifold, and let Ω be an open subset of M with a
C∞ boundary ∂Ω. Our purpose is to study boundary problems for the pseudo-differential
operator P in Ω. This means that we shall look for distributions u with support in Ω
such that Pu = f is given in Ω and u satisfies some conditions on ∂Ω in addition. In
particular we shall make a detailed study of the regularity of u at the boundary when f
and the boundary data are smooth. Examples involving α-potentials due to M. Riesz and
extended in part by Wallin show that one should not expect u to be smooth up to the
boundary but that one has to expect u to behave as the distance to the boundary raised
to some power. This leads us to define a family of spaces of distributions Eµ as follows.

If Reµ > −1 and if d is a real valued function in C∞(M) such that

Ω = {x; d(x) > 0}

and d vanishes only to the first order on ∂Ω, then Eµ(Ω) consists of all functions u such

that u = 0 in ∁Ω and u = dµv in Ω for some v ∈ C∞(Ω). This definition is independent
of the choice of d for if d1, d2 are two functions with the required properties the quotient
d1/d2 is positive and infinitely differentiable. In order to extend the definition to arbitrary
µ we note that if D is a first order differential operator with C∞ coefficients and if Reµ > 0
then DEµ ⊂ Eµ−1, for D(dµv) = dµ−1V for some V ∈ C∞. The linear hull of the spaces
DEµ when D varies is in fact equal to Eµ−1. It is sufficient to prove that it contains any
element in Eµ−1 with support in a coordinate patch where Ω is defined by xn > 0. Then
we can take D = ∂/∂xn noting that if v ∈ C∞ then

∫ xn

0

tµ−1v(x1, . . . , xn−1, t) dt = xµnV (x),

where

V (x) =

∫ 1

0

tµ−1v(x1, . . . , xn−1, xnt) dt

is a C∞ function. If u = xµ−1
n v and U = xµnV χ, both functions being defined as 0 when

xn < 0, and χ ∈ C∞
0 is 1 in a neighborhood of supp u, then u = ∂U/∂xn is a C∞ function

[means “on Rn
+”?] with support in xn ≥ 0, so u ∈ ∂Eµ/∂xn + Eµ. It is thus legitimate

to define Eµ successively for decreasing Reµ so that Eµ−1 is always the linear hull of the
spaces DEµ when D varies over the first order differential operators with C∞ coefficients.
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The spaces Eµ so obtained have the local property that u ∈ Eµ(Ω) and ϕ ∈ C∞(M) implies

that ϕu ∈ Eµ(Ω). In fact, if D again denotes a first order differential operator we have

ϕDEµ+1 ⊂ DϕEµ+1 + Eµ+1 ⊂ DEµ+1 + Eµ ⊂ Eµ

where we have assumed that the assertion is already proved with µ replaced by µ+1. The
spaces Eµ are thus determined by local properties. Inside the set the condition u ∈ Eµ only
means that u is a C∞ function.

To determine the meaning of the condition u ∈ Eµ at a boundary point we consider
the case when u has compact support in a coordinate patch where Ω is defined by the
condition xn > 0.

Lemma 2.1.1. An element u ∈ E ′(Rn) belongs to Eµ(R
n

+), where Rn
+ is the half space of

Rn where xn > 0, if and only if u vanishes when xn < 0 and one can find u0, u1, · · · ∈
C∞

0 (Rn−1) such that for every N

(2.1.1) û(ξ)−
N−1∑

0

(ξn − i)−µ−j−1ûj(ξ
′) = O(|ξ|−Reµ−N−1), ξ → ∞.

Conversely, given such u0, u1, . . . one can find u ∈ Eµ(R
n

+) satisfying this condition.
Here the argument of ξn − i is chosen so that it tends to 0 when ξn → +∞.

Proof. Any element u ∈ Eµ can be written u = v + ∂w/∂xn where v and w belong to
Eµ+1. If the necessity of (2.1.1) has been proved when µ is replaced by µ + 1 it follows
therefore for µ. Hence we may assume that Reµ > 0, thus u = vxµn when xn > 0, where
v ∈ C∞

0 (Rn). By forming a Taylor expansion of vexn we can write for every N

v = e−xn

N∑

0

vj(x
′)xjn +RN (x)

where vj ∈ C∞
0 (Rn−1) and RN (x) = O(xNn ) when xn → 0, RN (x) = O(e−xn/2) when

xn → ∞. Set R0
N (x) = RN (x) when xn > 0 and R0

N (x) = 0 when xn ≤ 0. Then R0
N (x) [0

added] has integrable derivatives of order N , so the Fourier transform is O(|ξ|−N). Now

û =

∞∑

0

v̂j(ξ
′)

∫ ∞

0

e−xn(1+iξn)xj+µ
n dxn +

∫
R0

N (x)xµne
−i〈x,ξ〉 dx.

If we set

(2.1.2) uj = vjΓ(j + µ+ 1)e−πi(j+µ+1)/2,

it follows that (2.1.1) holds with the error term O(|ξ|−N). Taking a few additional terms
in the left hand side of (2.1.1) and noting that they can all be estimated in terms of the
quantity on the right, we thus conclude that (2.1.1) is valid. On the other hand, if u

satisfies (2.1.1) we obtain with vj defined by (2.1.2) that u − e−xn
∑N−1

0 vjx
j+µ
n will be

arbitrarily smooth if N is large. This proves the sufficiency of (2.1.1). To prove the last
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statement we again assume that Reµ > 0, take χ ∈ C∞
0 (R) equal to 1 when |xn| < 1

[replaces xn > 0] and define

u(x) = 0, xn ≤ 0; u(x) =
∞∑

0

e−xnvj(x
′)xµ+j

n χ(xnaj), xn > 0,

where aj is chosen so large that the derivatives of the jth term of order ≤ j are all ≤ 2−j .

This is possible since (xnaj)
νχ(k)(xnaj) is bounded uniformly in xn and aj if Re ν ≥ 0.

This completes the proof.

The particular case where µ is an integer is of special importance. When µ ≥ 0 the space
Eµ then consists of all functions in C∞(Ω) which vanish to the order µ at the boundary
(that is the derivatives of order < µ vanish there), extrapolated by 0 outside. When µ < 0
we have the sum of a function in C∞(Ω), [probably means C∞(Ω)] extrapolated as 0 in
the complement of Ω, and multiple layers with C∞ densities and of order < −µ on ∂Ω.
This is the only case when Eµ contains elements supported by ∂Ω; in other words, the
restriction of an element in Eµ to Ω determines it uniquely except when µ is a negative
integer.

One final notation: we shall denote by C
∞
(Ω) the set of restrictions to Ω of functions

in C∞(M).
It was convenient in the proof of Lemma 2.1.1 to work with powers of (ξn − i) instead

of powers of ξn, but it will be less convenient in the applications. With the notation (ξ−n )a

for the boundary values from the lower half plane of za, defined to be real and positive on
the positive real axis, we can rewrite (2.1.1) in the form

(2.1.1′) û(ξ)−
N−1∑

0

(ξ−n )−µ−j−1û′j(ξ
′) = O(|ξ|−Reµ−N−1), ξ → ∞, |ξn| > 1,

where u′j is a linear combination of u0, . . . , uj with coefficient 1 for uj . Thus the u′j
occurring in (2.1.1′) are in one to one correspondence with the uj in (2.1.1) and can be
chosen arbitrarily.

2.2. Regularity at the boundary. The first question we shall discuss in this paragraph
is when a pseudo-differential operator P in M maps Eµ into C

∞
(Ω) (more precisely, the

restrictions to Ω belong to C
∞
(Ω)). By the pseudo-local property we know that Pu ∈

C∞(Ω) for all u ∈ Eµ. We shall therefore only expect a restriction on P at points on ∂Ω.
Of course it is no restriction to assume P compactly supported when studying a regularity
problem.

Theorem 2.2.1. Let P be a compactly supported pseudo-differential operator in M . In
order that Pu ∈ C

∞
(Ω) for all u ∈ Eµ(Ω) it is necessary and sufficient that in any local

coordinate system we have

(2.2.1) pj
(α)
(β)(x,−N) = eπi(mj−|α|−2µ)pj

(α)
(β)(x,N), x ∈ ∂Ω,

where
∑
pj(x, ξ) is the symbol of P in the local coordinate systems, pj is homogeneous of

degree mj, and N denotes the interior normal of ∂Ω at x.
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Since every polynomial satisfies this hypothesis with µ = 0 it follows from Theorem
1.1.11 that (2.2.1) is invariant under any change of variables. In the proof we may therefore
use local coordinates such that Ω is defined by the inequality xn > 0. The statement is
local so it is enough to consider Pu for u ∈ Eµ(R

n

+) with compact support in the coordinate
patch U ⊂ Rn. After modifying P by an operator with symbol 0 we may assume that P
is a compactly supported operator in U .

Proof of Theorem 2.2.1. Suppose that the theorem were already proved with µ replaced
by µ + 1. The necessity of (2.2.1) is then obvious for it holds with µ replaced by µ + 1

and e−2πi = 1. To prove its sufficiency we have to show that PDu ∈ C
∞
(Ω) if u ∈ Eµ+1

and D is a first order differential operator. Since PDu = DPu + [P,D]u and [P,D]
satisfies (2.2.1) if P does, the assertion follows. Hence we may assume in what follows that
Reµ > Rem0. Then the product of p(x, ξ) by the Fourier transform of any compactly

supported u ∈ Eµ(R
n

+) is integrable, so by an obvious regularization we obtain

(2.2.2) p(x,D)u = (2π)−n

∫
p(x, ξ)û(ξ)ei〈x,ξ〉 dξ.

We shall introduce a Taylor expansion of p in (2.2.2),

(2.2.3) p(x, ξ) =
∑

|α|<ν

∂|α|p(x′, 0, 0, ξn)/∂ξ
α′

∂xαn
n xαn

n ξα
′

/α! +
∑

|α|=ν

rα(x, ξ)xαn
n ξα

′

,

where

rα(x, ξ) = |α|/α!
∫ 1

0

(1− t)|α|−1p
(α′)
(αn)

(x′, txn, tξ
′, ξn) dt,

where somewhat incorrectly we have used the notation α′ for (α′, 0) and αn for (0, αn).

When |α′| > Rem0 we can estimate rα by (1 + |ξn|)Rem0−|α′| and when |α′| ≤ Rem0 we

can estimate by (1 + |ξ|)Rem0−|α′| instead. Now we have

∫
rα(x, ξ)xαn

n ξα
′

û(ξ)ei〈x,ξ〉 dξ =

∫
(i∂/∂ξn)

αn(rα(x, ξ)ξα
′

û(ξ))ei〈x,ξ〉 dξ.

[Moved a parenthesis.] Using (2.1.1) we conclude that the integral and its derivatives of
order ≤ k are absolutely convergent, thus the integral defines a Cl function, provided that

l +Rem0 − |α′| − αn − Reµ < 0.

If we choose ν > k +Re(m0 − µ) the error term in (2.2.3) will therefore only contribute a
Cl term to p(x,D)u. The remaining problem is only to study the regularity of the partial
sums of the series obtained by replacing p(x, ξ) by its Taylor expansion in (2.2.2). Since
û is rapidly decreasing when ξ → ∞ with |ξn| < 1, this part of the integral in (2.2.2) is
infinitely differentiable. In view of (2.2.1′) — where we drop the prime on u′j — it only
remains to examine when the partial sums of the series

∑

α,j,k

(2π)−n

∫

|ξn|>1

pj
(α′)
(αn)

(x′, 0, 0, ξn)x
αn
n ξα

′

ûk(ξ
′)(ξ−n )−µ−k−1ei〈x,ξ〉 dξ/α!
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become arbitrarily smooth when the order of the sum goes to infinity. We can remove the
factor xαn

n by an integration by parts with respect to ξn. The boundary terms which then
occur will give rise to only C∞ terms. Thus we are reduced to examining the differentia-
bility of the partial sums of the series

∑

α,j,k

Dα′

uk(x
′)(2π)−1

∫

|ξn|>1

(i∂/∂ξn)
αn

(
pj

(α′)
(αn)

(x′, 0, 0, ξn)(ξ
−
n )−µ−k−1

)
eixnξn dξn/α!.

[1/α! added.] Since the functions Dα′

uk can be chosen arbitrarily in the neighborhood of
any point, or rather, linear combinations of them are arbitrary, we conclude that for P to
have the required property it is necessary and sufficient that for any α′ and k = 0, 1, . . .
the partial sums of higher order of the series

(2.2.3)
∑

αn,j

(2π)−1

∫

|ξn|>1

(i∂/∂ξn)
αn

(
pj

(α′)
(αn)

(x′, 0, 0, ξn)(ξ
−
n )−µ−k−1

)
ei〈x,ξ〉 dξ/α!

[label (2.2.3) occurs twice] are in C
ν
(R+) [seems to stand for r+Cν(R)] for any given ν.

We now need an elementary lemma.

Lemma 2.2.2. Let q be a positively homogeneous function on R of degree σ, Reσ < −1.
For t > 0 we set ϕσ(t) = t−σ−1 if σ is not an integer and ϕσ(t) = t−σ−1 log t if σ is an
integer. Then ∫

|τ |>1

eitτq(τ) dτ, t > 0,

is on R+ equal to the sum of a function in C
∞
(R+) and Cϕσ(t), where C = 0 if and only

if q(−1) = eiπσq(1), that is, if q(τ) = q(1)(τ+)σ.

We postpone the proof of the lemma. Noting that a finite sum
∑
cjϕσj

(t) with different

σj is in C
ν
(R+) if and only if cj = 0 when −σj − 1 ≤ ν, we conclude that (2.2.3) has the

desired differentiability properties if and only if for each complex number σ, each α′ and
k = 0, 1, . . . , the sum

(2.2.4)
∑

mj−|α|−µ−1=σ

(i∂/∂ξn)
αn

(
pj

(α′)
(αn)

(x′, 0, 0, ξn)(ξ
−
n )−µ−k−1

)
/αn!

[parentheses added] is proportional to (ξ+n )
σ−k. (The sum of course contains only finitely

many terms.) Explicitly, this means that for fixed α′, k and σ

∑

mj−|α|−µ−1=σ

(mj−|α′|−µ−k−1)...(mj−|α|−µ−k)pj
(α′)
(αn)

(x′, 0, 0, 1)/αn! e
πi(σ−k)

=
∑

(−1)αn (mj−|α′|−µ−k−1)...(mj−|α|−µ−k)pj
(α′)
(αn)

(x′, 0, 0,−1)/αn! e
πi(−µ−k−1).

[Moved (−1)αn inside the summation. eπi(−µ−k−1) should probably be eπi(µ+k+1).] After
the exponential factors have been moved to the same side we find that k occurs only in
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the polynomial factors, which are of degree αn, all different. It follows that the coefficients
have to agree, that is,

(2.2.5) pj
(α′)
(αn)

(x′, 0, 0, 1)eπi(mj−|α′|−2µ) = pj
(α′)
(αn)

(x′, 0, 0,−1)

is a necessary and sufficient condition for P to map Eµ into C
∞
. But (2.2.5) is a conse-

quence of (2.2.1) and conversely, by differentiating (2.2.5) with respect to x′ and using the
homogeneity with respect to ξn we obtain (2.2.1). This completes the proof of Theorem
2.2.1.

Proof of Lemma 2.2.2. Let γ+ (γ−) consist of the real axis with the interval (−1, 1) replaced
by a semi-circle in the upper (lower) half plane. Then the two functions

∫

|τ |>1

(τ±)σeitτ dτ −
∫

γ±

(τ±)σeitτ dτ

are integrals of eitτ over semi-circles, hence obviously entire analytic functions of t. By
Cauchy’s integral formula one concludes that the integral over γ+ (γ−) vanishes for t > 0
(t < 0) and that it is homogeneous of degree −σ − 1 when t < 0 (t > 0). When σ is not
an integer the two functions (τ+)σ and (τ−)σ are linearly independent, hence form a basis
for positively homogeneous functions of degree σ. This proves the lemma for non-integral
σ, and to complete the proof it only remains to study

∫

|τ |>1

(τ±)σ−1|τ | eitτ dτ

when σ is an integer ≤ −2. When σ = −2 the last integral is equal to

2

∫ ∞

1

τ−2 sin tτ dτ = 2t

∫ ∞

1/t

τ−2 sin τ dτ.

A Taylor expansion of sin τ shows that the integral is equal to log 1/t plus a function in

C
∞
(R+). This proves the statement when σ = −2, and by successive integration it follows

for all integers σ < −2.

2.3. The spaces H(σ,τ). When studying boundary problems for the operator P we shall
have to introduce topologies in the spaces Eµ. Estimates in the corresponding norms will
be obtained locally at first, using coordinate systems where the boundary of Ω is flat.
We then need to consider spaces of distributions in the half spaces Rn

+ and Rn
− which

are obtained by imposing conditions of tangential regularity in addition to a requirement
of regularity in all variables. More precisely, as in my book, section 2.5, we denote by
H(σ,τ)(R

n) the space of all tempered distributions u in Rn such that

‖u‖(σ,τ) =
(
(2π)−n

∫
(1 + |ξ|2)σ(1 + |ξ′|2)τ |û(ξ)|2 dξ

) 1
2

<∞.

Here ξ′ = (ξ1, . . . , ξn−1). By H(σ,τ)(R
n
+) we denote the set of all u ∈ D′(Rn

+) such that
there exists a distribution U ∈ H(σ,τ)(R

n) with U = u in Rn
+; the norm of u is defined by

‖u‖•

(σ,τ) = inf ‖U‖(σ,τ),
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the infimum being taken over all such U . Further we set

◦

H(σ,τ)(R
n

+) = {u; u ∈ H(σ,τ)(R
n), suppu ⊂ R

n

+};

this is a closed subspace of H(σ,τ)(R
n) (but not necessarily a subspace of D′(Rn

+)). (The
notations differ slightly from those in my book; hopefully they are more clear.)

It is obvious that σ = τ = 0 gives L2 spaces. In my book it is proved that C
∞

0 (Rn
+) (=

set of restrictions to Rn
+ of functions in C∞

0 (Rn)) is dense in H(σ,τ)(R
n
+) and that C∞

0 (Rn
+)

is dense in
◦

H(σ,τ)(R
n

+). The spaces H(σ,τ)(R
n
+) and

◦

H(−σ,−τ)(R
n

+) are dual with respect
to an extension of the bilinear form

〈u, v〉 =
∫
uv dx, u ∈ C

∞

0 (Rn
+), v ∈ C∞

0 (Rn
+).

Later on when we solve boundary problems for pseudo-differential operators by the Wiener-
Hopf technique we shall sometimes have to consider the possibility of extending elements
in H(σ,τ)(R

n
+) by setting them equal to 0 in the lower half space. More precisely, we shall

have to know when the restriction mapping

(2.3.1)
◦

H(σ,τ)(R
n

+) → H(σ,τ)(R
n
+)

is injective or surjective. It is of course always continuous.

Lemma 2.3.1. If an element µ ∈ H(σ,τ)(R
n) has its support in the plane {x; xn = 0}, it

follows that xNn µ = 0 if N is an integer with σ +N + 1
2 ≥ 0.

Proof. The Fourier transform µ̂ of µ must be a polynomial in ξn with

∫
|µ̂(ξ′, ξn)|2(1 + |ξ|2)σ(1 + |ξ′|2)τ dξ <∞.

so the degree must be lower than−σ− 1
2 , hence lower thanN . It follows that ∂N µ̂/∂ξNn = 0,

which proves the lemma.

On the other hand, a measure on xn with density in C∞
0 (Rn−1) is an element in

H(σ,τ)(R
n−1) for all σ and τ with σ < −1

2
. The map (2.3.1) is therefore injective if

and only if σ ≥ −1
2 .

Lemma 2.3.2. The mapping (2.3.1) is an isomorphism onto if and only if −1
2 < σ < 1

2 .

Proof. The adjoint of (2.3.1) is the analogous map with (σ, τ) replaced by (−σ,−τ). To
prove the necessity it is therefore sufficient to show that (2.3.1) is not a homeomorphism
if σ = 1

2 . Thus take ϕ ∈ C∞
0 (Rn−1) and a nonnegative function ψ ∈ C∞

0 (R+). Set

uε(x) = ϕ(x′)ψ(xn/ε)ε
−1. Then it is easily seen that ‖uε‖(− 1

2
,τ) grows like log 1/ε when

ε → 0. Moreover, the norm of the restriction to Rn
+ is at most equal to ‖Uε‖− 1

2
,τ) where

Uε(x) = ϕ(x′)(ψ(xn/ε) − ψ(−xn/ε))ε−1 and using the fact that the Fourier transform
vanishes when ξn = 0 it is easily proved that this is bounded when ε→ 0.
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To prove the sufficiency it remains to show that (2.3.1) is a homomorphism when 0 ≤
σ < 1

2
, that is, we have to prove the inequality

(2.3.2) ‖u+‖(σ,τ) + ‖u−‖(σ,τ) ≤ C‖u+ + u−‖(σ,τ),

when u+, u− ∈
◦

H(σ,τ)(R
n

±). For σ = 0 the statement follows immediately from the fact
that

‖u‖2(0,τ) =
∫ ∞

−∞

‖u(·, xn)‖′(τ)
2
dxn

where ‖u(·, xn)‖′(τ) denotes the norm in H(τ)(R
n−1) of u as a function of x′ for fixed xn.

If 0 < σ < 1 we have instead by a vector valued version of Lemma 2.6.1 in my book that
‖u‖2(0,σ+τ) is equivalent to

‖u‖2(0,σ+τ) +

∫∫
‖u(·, xn)− u(·, yn)‖′(τ)

2|xn − yn|−1−2σ dxndyn.

To prove (2.3.2) it therefore suffices to show that if 0 < σ < 1
2 we have

(2.3.3)

∫
‖u(xn)‖2|xn|−2σ dxn ≤ C

∫ ∫
‖u(·, xn)− u(·, yn)‖′(τ)

2|xn − yn|−1−2σ dxndyn.

(We have dropped the subscripts on the norm for brevity.) This estimate is due to Aron-
szajn and Hardy; the following proof is used by Adams, Aronzajn and Smith. We may
assume that u vsnishes for large |xn|. Let t be a real number with |t| > 1. Then we have

(∫
‖u(xn)− u(tNxn)‖2x−2σ

n dxn

) 1
2 ≤

N−1∑

k=0

(∫
‖u(tkxn)− u(tk+1xn)‖2x−2σ

n dxn

) 1
2

≤
(∫

‖u(xn)− u(txn)‖2x−2σ
n dxn

) 1
2

N−1∑

k=0

|t|k(σ− 1
2
).

Letting N → ∞ we obtain

∫
‖u(xn)‖2x−2σ

n dxn ≤
∫

‖u(xn)− u(txn)‖2x−2σ
n (1− |t|−σ− 1

2 )2 dxn.

Now a change of variables gives

∫
‖u(xn)−u(yn)‖2|xn−yn|−1−2σ dxndyn = 2

∫∫

|t|>1

‖u(xn)−u(txn)‖2x−2σ
n |1−t|−1−2σ dxndt.

This gives (2.3.3) and so completes the proof of the lemma.

If u ∈ H(σ,τ)(R
n
+) for some (σ, τ) with |σ| < 1

2 , the unique element in H(σ,τ)(R
n)

which equals u in Rn
+ and vanishes in Rn

− will be denoted by e0u. This linear operator is

thus defined on the union of all the spaces H(σ,τ)(R
n
+) in question, which we denote by

H(− 1
2
+0,−∞)(R

n
+).
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Lemma 2.3.3. Let N be an integer ≥ 0 and σ a real number with −1
2 < σ < N + 1

2 . If

u ∈ H(σ,τ)(R
n
+) and has compact support, it then follows that xNn e0u ∈

◦

H(σ,τ)(R
n

+).

Proof. We know already the result when −1
2 < σ < 1

2 . When σ = 1
2 it follows by

application of the norm in
◦

H(σ,τ) given in the proof of Lemma 2.3.2, which shows that this
norm is equivalent to

∫ ∞

0

‖u‖′(τ)
2
dxn +

∫ ∞

0

‖u‖′(τ+ 1
2
) dxn +

∫ ∫
‖u(·, xn)− u(·, yn)‖′(τ)

2|xn − yn|−2 dxndyn.

[Inserted ·, in u(yn).] An induction is now immediately obtained by noting that

Djx
N
n e0u = xn(x

N−1
n e0Dju) + δjnNx

N−1
n e0u ∈

◦

H(σ−1,τ);

here we have used the fact that when σ > 1
2
we have Dne0u = e0Dnu+ u(0)⊗ δxn

, where

u(0) is the restriction of u to xn = 0, and this is annihilated by xNn .

2.4. The homogeneous Dirichlet problem. We shall now again consider a C∞ man-
ifold M , a relatively compact subset Ω with C∞ boundary ∂Ω, and a classical pseudo-
differential operator P in M . The operator P we assume to be elliptic in M , that is, in a
local coordinate system where the symbol is

∑
pj(x, ξ), the terms being homogeneous of

degree mj , we have Remj < Rem0 when j 6= 0 and

(2.4.1) p0(x, ξ) 6= 0, 0 6= ξ ∈ R
n.

Further we assume that the hypothesis of Theorem 2.2.1 [parentheses removed] is fulfilled
at least for j = α = β = 0, that is, we assume that there is a number µ such that

(2.4.2) p0(x,−N) = eπi(m0−2µ)p0(x,N), x ∈ ∂Ω,

where N denotes the interior normal of ∂Ω at x. If n > 2 the set {ξ; ξ ∈ Rn, ξ 6= 0} is
simply connected, so for fixed x we can define log p(x, ξ) uniquely by fixing the value at
one point. When n = 2, we impose this as a condition on p, called the root condition in
analogy with the corresponding condition in the case of differential equations. Then we
have

log p0(x, ξ + τN)− log p0(x, τN) = log
(
p0(x, ξ + τN)/p0(x, τN)

)
→ 0, τ → ∞.

Hence
log p0(x, ξ + τN)−m0 log |ξ| → a±(x), τ → ±∞,

where exp a± = p0(x,±N). It follows from (2.4.2) that ea− = eπi(m0−2µ)+a+ , that is,
µ ≡ m0/2 + (a+ − a−)/2πi (mod 1). We set

µ0 = m0/2 + (a+ − a−)/2πi

noting that for reasons of continuity this number which is always congruent to µ must be
a constant. (We assume here that ∂Ω is connected. In fact, it would make little difference
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if µ0 takes different values on different components of ∂Ω, and most of what follows goes
through with light modifications when m0 and µ0 are both variable. See the second note
by Vishik and Eskin and the definition of the spaces H(m) for variable m given in Chapter
I. [Taken up in Section 5 of [1].]) Note that we may replace µ by µ0 in (2.4.2). [Changed
(2.4.1) to (2.4.2).]

We can now state the basic existence theorem for the Dirichlet problem, due to Vishik

and Eskin. The spaces
◦

H(s)(Ω) and H(s)(Ω) which occur in the statement are of course
defined as in section 2.3.

Theorem 2.4.1. Let P be elliptic of order m0 satisfying the root condition if n = 2, and
assume the number µ0 introduced above to be constant on ∂Ω. Then the mapping

(2.4.4)
◦

H(s)(Ω) ∋ u 7→ Pu ∈ H(s−Rem0)(Ω)

is a Fredholm operator if s is a real number with |s− Reµ0| < 1
2 .

Proof. The mapping (2.4.4) is obviously continuous. The theorem will be proved if we show
that it is a homomorphism with finite dimensional kernel. Indeed, the adjoint mapping is

◦

H(Rem0−s)(Ω) ∋ u 7→ tPu ∈ H(−s)(Ω).

The operator tP satisfies the same conditions as P but with µ0 replaced by m0 − µ0.
Since |(Rem0 − s)− (Rem0 − µ0)| = |Reµ0 − s| < 1

2 , the adjoint must therefore also be
a homomorphism with a finite dimensional kernel and the theorem will be proved.

By a standard argument it suffices then to prove the a priori estimate

(2.4.5) ‖u‖(s) ≤ C(‖Pu‖•

(s−Rem0)
+ ‖u‖(s′)), u ∈

◦

H(s)(Ω),

for some s′ < s. If s′ ≥ s− 1 this estimate can be localized by use of a partition of unity.
In the local situation we may drop all lower order terms from p if s′ ≥ s +Re(m1 −m0),
and using Theorem 1.2.2 [possibly covered by localization arguments in [1]] we can reduce
to an operator with constant coefficients. Clearly there is no trouble in the interior of Ω
so we have to look at the boundary only.

The situation is now the following: We have

Pu(x) = (2π)−n

∫
p(ξ)û(ξ)ei〈x,ξ〉 dξ,

where p ∈ C∞ and p(ξ) = p0(ξ) when |ξ| > 1, for example. Here p0 is homogeneous of
degree m0, satisfies the root condition if n = 2, so a number µ0 is defined by (2.4.3). We
have to prove that if |s−Reµ0| < 1

2 , then

(2.4.6) ‖u‖(s) ≤ C(‖Pu‖•

(s−Rem0)
+ ‖u‖s−1), u ∈ C∞

0 (Ω),

where Ω = {x; xn > 0, |x| < 1}. (Note that the kernel of P is smooth and rapidly decreasing
at ∞ so if ϕ ∈ C∞

0 (Rn) is equal to 1 in a neighborhood of Ω we can replace Pu by ϕPu
in this estimate, incorporating the error committed in the term ‖u‖(s−1).) The proof of
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(2.4.6) is based on the Wiener-Hopf technique, so we shall now study the factorization of
p in a factor analytic and 6= 0 when Im ξn < 0 and another which has the same property
when Im ξn > 0.

Let χ ∈ C∞ be equal to 1 when |ξ| > 1 and 0 when |ξ| < 1
2 . We may assume without

restriction that p(ξ) = exp(χ(ξ) log p0(ξ)), so our aim is to represent χ(ξ) log p0(ξ) as a
sum of functions analytic when Im ξn ≷ 0. First note that when ξn → ±∞ for fixed ξ′ we
have with the notations in (2.4.3)

χ(ξ) log p0(ξ) = m0 log |ξn|+ a± +O(1/ξn).

We eliminate the main terms by introducing the difference

ψ(ξ) = χ(ξ) log p0(ξ)− µ0 log(ξn − iλ) − (m0 − µ0) log(ξn + iλ)− a+

where λ = (1 + |ξ′|2) 1
2 . Since a− = a+ + iπ(m0 − 2µ0) we obtain ψ(ξ) = O(1/ξn) when

ξn → ∞, uniformly for ξ′ in a bounded set. Noting that for |ξ′| > 1

ψ(ξ) = log p0(ξ
′/λ, ξn/λ)− µ0 log(ξn/λ− i)− (m0 − µ0) log(ξn/λ+ i)− a+,

where |ξ′|/λ lies between 1 and 1/
√
2 , it follows more precisely that

(2.4.7) |ψ(ξ)| ≤ Cλ(|ξn|+ λ)−1, |∂ψ/∂ξn)| ≤ Cλ(|ξn|+ λ)−2.

Now set for ξ′ ∈ Rn−1 and complex ξn, (ξ
′, ξn) 6= 0, [limits for Im ξn ց 0 resp. Im ξn ր 0

?]

ψ+(ξ) = (2πi)−1

∫
ψ(ξ′, τ)(τ − ξn)

−1 dτ, Im ξn ≥ 0,

ψ−(ξ) = −(2πi)−1

∫
ψ(ξ′, τ)(τ − ξn)

−1 dτ, Im ξn ≤ 0.

From (2.4.7) it follows that these functions are uniformly bounded, in view of the following
lemma:

Lemma 2.4.2. Let f ∈ L2(R), f ′ ∈ L2(R), and denote by f̃ the conjugate function

of f . Then f and f̃ are both uniformly continuous and bounded by ‖f‖‖f ′‖, [should be

(‖f‖‖f ′‖) 1
2 ?], where the norms are L2 norms. The Cauchy integrals (2πi)−1

∫
f(τ)(τ −

z)−1 dτ [plural? refers to the two integrals above?], whose boundary values are (f ± f̃)/2
therefore have the same bounds.

Proof. See e.g. Beurling, Helsingfors congress 1938.

From (2.4.7) it now follows immediately that the functions ψ+ and ψ− are uniformly
bounded and continuous. Their sum is of course equal to ψ(ξ) when ξ is real. Setting

p+(ξ) = (ξn + iλ)m0−µ0 exp(a+ + ψ+(ξ)), p−(ξ) = (ξn − iλ)µ0 exp(ψ−(ξ)),

we therefore have that p(ξ) = p+(ξ)p−(ξ) for real arguments. Furthermore p+ (p−) is by
the Paley-Wiener theorem the Fourier transform of a distribution with support in the half
space xn ≤ 0 (xn ≥ 0). (At this point our normalization of the Fourier transform turns
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out to be somewhat unfortunate but we do not wish to change signs. Vishik and Eskin
have a different normalization of the Fourier transform.)

We are now ready to prove (2.4.6). Write P+ and P− for the convolution operators
corresponding to multiplication by p+(ξ) and p−(ξ) of the Fourier transforms. Write
Pu = f , where u is chosen as in (2.4.6), and choose F equal to f in Rn

+ with ‖F‖(s−Rem0) =
‖f‖•

(s−Rem0)
. [Equality or similarity?] From the equation

P+P−u = Pu = f

valid in the whole space, we obtain

P−u = (P+)
−1f.

Now P−u has its support in R
n

+ and belongs to C∞ in the whole space. On Rn
+ we have

(P+)
−1f = (P+)

−1F since the support of P+ lies in the lower half space. [Means probably
that P+ preserves support in xn ≤ 0.] Hence, with the notation introduced at the end of
section 2.3 [e0 is an extension by zero], we have

P−u = e0(P+)
−1F.

Since |s−Reµ0| < 1
2 we can apply Lemma 2.3.2 and obtain

‖P−u‖(s−Reµ0) ≤ C‖P−1
+ F‖•

(s−Reµ0)
≤ C′‖F‖•

(s−Rem0)
,

which immediately implies (2.4.6), since P− is [elliptic] of order µ0.

Our next task is to examine the smoothness properties of a solution u of the Dirichlet
problem when Pu lies in a smaller space that H(s−Rem0). Interior regularity is of course
covered by the results of Chapter I, so we can confine our attention to the boundary.
Our first step is then to obtain results on “tangential regularity” which follow by classical
arguments due to Nirenberg.

Let Ω be the half ball {x; x ∈ Rn, |x| < 1, xn > 0}. The unit ball we denote by Ω̃. By
◦

H loc
(s)(Ω

′) and H
loc

(s−Rem0)
(Ω) we denote the distributions which multiplied with functions in

C∞
0 (Ω̃) give elements in the analogous spaces in Rn

+. Here Ω′ = {x; x ∈ Rn, |x| < 1, xn ≥
0}.
Theorem 2.4.3. Let P satisfy the hypotheses of Theorem 2.4.1. If |s − Reµ0| < 1

2
and

t0, t1 are real numbers then

(2.4.8) u ∈
◦

H loc
(s,t0)

(Ω′), Pu ∈ H
loc

(s−Rem0,t1)
(Ω)

implies that

(2.4.9) u ∈
◦

H loc
(s,t1)

(Ω′),

Proof. It is no restriction to assume that t1 − t0 is a positive integer, for we may always
decrease t0. It suffices to prove the theorem when t1− t0 = 1. Now we claim that for every
compact subset K of Ω, and every real number t there is a constant C such that

(2.4.5′) ‖u‖(s,t) ≤ C(‖Pu‖•

(s−Rem0,t)
+ ‖u‖(s−1,t))
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for all u ∈ C∞
0 (K), hence for all u ∈

◦

H(s,t) with support in K. In fact, this follows from
the proof of (2.4.5) or else by applying (2.4.5) to |D′|tu, cut off conveniently. We may
replace the last term in (2.4.5′) by the larger quantity ‖u‖(s,t−1). Now assume that (2.4.8)

is fulfilled with t0 = t, t1 = t + 1. Then ϕu satisfies the same hypothesis if ϕ ∈ C∞
0 (Ω̃).

(Note that a repetition of the simple case of the proof of Theorem 1.2.1 shows that P is
continuous from H(s,t) to H(s−Rem0,t) for all s, t.) Let therefore u have compact support
in Ω′. Denote by uh the convolution of u by the Dirac measure at (h1, . . . , hn−1, 0) = h,
that is, uh is a tangential translation of u. Let Ph be the analogous translation of P . Then

P (uh − u)/|h| = (fh − f)/|h|+ (P − Ph)/|h| u

where f = Pu. Since

‖(f − fh)/|h|‖•

(s,t) ≤ ‖f‖•

(s,t+1),

and since (P −Ph)/|h| is continuous from H(s,t) to H(s−Rem0,t) uniformly when h→ 0, we
conclude using (2.4.5)′ that ‖(uh−u)/|h|‖(s,t) is bounded when h→ 0. Hence ‖Dju‖(s,t) <
∞ when j < n, which proves that u ∈

◦

H(s,t+1). The proof is complete.

To study the regularity properties of u in non-tangential directions is much more delicate
and requires the full force of the conditions (2.2.1). This will be done in the next section.
Theorems 2.4.1 and 2.4.3 contain all the information we have to extract from the ellipticity,
so we shall consider more general operators again in the next paragraph.

2.5. Completion of the spaces Eµ, and “partial hypoellipticity at the bound-

ary”. Our purpose is to introduce a topology in Eµ which is analogous to that in H(s)(Ω).
(Ω still denotes a relatively compact subset with smooth boundary of a manifold M .) As
semi-norms in Ω we therefore introduce all semi-norms

(2.5.1) Eµ(Ω) ∋ u→ ‖Pu‖•

(s−m0)

where P is of type3 µ and order m0. [In (2.5.1), s−m0 should be replaced by s−Rem0.]
The norm ‖ ‖•

(t) is that of H(t)(Ω), defined by extension to all of M .

Lemma 2.5.1. The topology on Eµ is stronger than that of E ′(Ω). For every ϕ ∈ C∞(M),
the mapping u→ ϕu is continuous from Eµ to Eµ.

Proof. If ϕ, ψ ∈ C∞
0 (M), we can take Pu = ψu(ϕ), for this is an operator with symbol

0, hence of type µ. This proves that u → u(ϕ) is a seminorm of type (2.5.1), hence the
topology is stronger than that of E ′(Ω). For every P of type µ and order m0 the operator
u→ Pϕu is also of type µ and order m0. Hence the second assertion follows.

The completion Hµ(s) of Eµ in the toplogy just defined is therefore a subspace of E ′(Ω),
and it is determined by local properties. When studying its elements more closely we may
therefore restrict ourselves to a coordinate patch. For interior coordinate patches we get
of course the space H(s) so we only have to study what happens at the boundary.

3By this we mean that (2.2.1) is fulfilled.
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Theorem 2.5.2. Let s−Reµ > −1
2 . Then an element u ∈ E ′(R

n

+) is in Hµ(s) if and only
if

(2.5.2) F−1(ξn − iλ)µû ∈
◦

H(− 1
2
), ‖F−1(ξn − iλ)µû‖•

(s−Reµ) <∞.

Here λ = (1 + |ξ′|2) 1
2 . When the support of u belongs to a fixed compact set the last

expression in (2.5.2) defines the topology in Hµ(s). When s − Reµ ≤ 1
2 also [< 1

2?], then
C∞

0 (Rn
+) is a dense subset.

[Better say F−1(ξn − iλ)µû ∈
◦

H(− 1
2
+0), since that is shown in the proof and is more

useful.] From the last statement we conclude immediately that replacing µ by µ+ j where
j is a positive integer gives the same space if −1

2
< s− Reµ ≤ 1

2
. Hence

Corollary 2.5.3. If s−Reµ ≤ 1
2 , then Hµ(s) = Hµ+j(s) for every integer j ≥ 0.

In view of the corollary the theorem therefore describes Hµ(s) for all s, µ.

Proof of Theorem 2.5.2. To prove the necessity of (2.5.2) we note that (1−∆)µ is of type
µ, so we must have (1 − ∆)µu ∈ H(s−2Reµ). We can factor (1 + |ξ|2)µ into two factors
(ξn− iλ)µ and (ξn+ iλ)

µ which are analytic and 6= 0 in the lower and upper half spaces in

Rn−1 × C respectively, hence Fourier transforms of distributions with support in R
n

+ and

R
n

−. Now the convolution of a function f with a distribution with support in R
n

− is in Rn
+

independent of the values of f on Rn
−, so we can factor out the distribution with Fourier

transform (ξn + iλ)µ and obtain

F−1((ξn − iλ)µû) ∈ H(s−Reµ)

the embedding being of course topological. When u ∈ Eµ it follows from (2.1.1) that we

have an element in
◦

H(σ) for any σ <
1
2
. If −1

2
< σ < min( 1

2
, s− Reµ) it follows therefore

that the same is true for the completion Hµ(s). Hence the necessity of (2.5.2). The proof
of the sufficiency on the other hand requires a few preparations.

Lemma 2.5.4. If u satisfies (2.5.2) and N is an integer ≥ 0, it follows that xNn u ∈
◦

H(σ,s−σ) provided that σ ≤ s and σ < Reµ+N + 1
2 .

Proof. Define v so that v̂ = (ξn−iλ)µû. Then v ∈ H(s−Reµ) and v ∈
◦

H(− 1
2
) by hypothesis.

From Lemma 2.3.3 it follows therefore that

xjnv ∈
◦

H(σ,s−σ−Reµ) if σ ≤ s−Reµ and σ < j + 1
2 .

Now û = (ξn − iλ)−µv̂, so we obtain

xNn u = (−1)N
N∑

0

(
N

k

)
F−1

(
(Dk

n(ξn − iλ)−µ)DN−k
n v̂

)
.

The kth term is in
◦

H(σ,s−σ) if x
N−k
n v ∈

◦

H(σ−k−Reµ,s−σ) and we have seen that this is true

if σ − k − Reµ ≤ s − Reµ, σ − k − Reµ < N − k + 1
2 , which follows by the assumptions

since k ≥ 0.
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If N > s − Reµ − 1
2 we can take σ = s and conclude that xNn u ∈

◦

H(s), and that

xN−j
n u ∈

◦

H(s−j) for 0 ≤ j ≤ N . If P is a pseudo-differential operator of order m, we can

conclude that xNn Pu ∈ Hs−Rem. In fact, using Leibniz rule for the adjoints we can write

xNn Pu =
∑

Pjx
N−j
n u

where Pj is of order m− j. The norm of Pu in Hs−Rem can of course be estimated by the
semi-norm occurring in (2.5.2).

To study a general P of type µ we can take a Taylor expansion of order N of the symbol;
since the error term contains a factor xNn it has already been discussed. Each term in the
Taylor expansion contains a factor which is a power of xn and otherwise an operator which
is independent of xn. Thus it only remains to consider the case when P is of type µ and
the symbol is independent of xn.

Since (ξn + iλ)µ is the Fourier transform of a distribution with support on the negative
axis we have, reversing the first part of the proof of Theorem 2.5.2:

‖(1−∆)µu‖•

(s−Re 2µ) ≤ ‖(F−1(ξn − iλ)µû‖•

(s−Reµ) = N(u),

where the last inequality is a definition we shall use until the completion of the proof of
Theorem 2.5.2. [One should omit the parenthesis before F and replace “inequality” by
“equality”.] If P is a pseudo-differential operator of order m0 which is a linear combination
of convolutions with distributions having support in {x; xn ≤ 0}, we conclude that

(2.5.3) ‖P (1−∆)µu‖•

(s−Re(m0+2µ)) ≤ CN(u).

Furthermore when σ < 1
2 and σ ≤ s we have u ∈

◦

H(σ,s−σ), and it follows from Lemma
2.5.4 that

(2.5.4) ‖Pu‖(s−Rem0) ≤ CN(u)

if P is now any operator of order m0 which has order ≤ Rem0 − s + σ [replaced m0 by
Rem0] in the ξn direction, that is,

(2.5.5) |p(x, ξ)| ≤ C(1 + |ξ|)Rem0−s+σ(1 + |ξ′|)s−σ.

(This is a simple case of the proof of Theorem 1.2.1.) Conditions on some derivatives p
(α)
(β)

seem needed also.]
We shall combine these two types of results to complete the proof of the theorem.

However, first we have to see that there exist “sufficiently many” operators which can be
used in (2.5.3).

Lemma 2.5.5. For any µ one can find a homogeneous function p ∈ C∞(Rn−{0}) which
is homogeneous of degree µ, 6= 0 at any given ξ0 6= 0, and can be extended analytically to
{ξ; ξ′ ∈ Rn−1, Im ξn ≥ 0, ξ 6= 0} as a C∞ homogeneous function.
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Proof. Choose g ∈ C∞
0 (Rn

+) and set when ξ′ ∈ Rn−1, Im ξn > 0

(2.5.6) p(ξ) =

∫
〈x, ξ〉µg(x) dx.

(We define zµ in Im z ≥ 0 so that 1µ = 1.) Then p is obviously homogeneous and C∞

when Im ξn > 0. To prove that p assumes boundary values when Im ξn = 0, in the C∞

topology, we integrate by parts, using the fact that

〈x, ξ〉µ(µ+ 1) =
∑

ξ̄j |ξ|−2∂/∂xj〈x, ξ〉µ+1.

This gives if µ 6= −1,

p(ξ) = −(µ+ 1)−1

∫
〈x, ξ〉µ+1|ξ|−2

∑
ξ̄j∂g/∂xj dx.

If µ is not a negative integer we conclude after repeating this integration by parts k times
that p is Ck for ξ 6= 0 in the domain in question provided that Reµ + k − ν > −1. [Ck

should perhaps be Cν .] Hence p is in C∞. If µ is a negative integer we can also integrate
by parts in the same way until we reach an integral involving 〈x, ξ〉−1. The next time we
then have to allow log〈x, ξ〉 as a factor but apart from the occurrence of a logarithmic
factor nothing is changed in the continued integration by parts,

Remark. It does not seem clear that one can choose p elliptic and C∞. [This has been
clarified more recently.] If one drops the latter condition one can of course take (ξn+i|ξ′|)µ.
The following arguments could be simplified if we had an elliptic p with the properties in
the lemma.

End of proof of Theorem 2.5.2. Let now P be any operator of type µ with symbol inde-
pendent of xn. Denote the order by m0 and form

Q = P (1−∆)−µ

which is a pseudo-differential operator of type 0 and order m0 − 2µ. In view of (2.2.1) and
the fact that we have reduced consideration to the case when the symbol in independent

of xn, this means that if
∑
qk is the symbol of Q, then q

(α)
k (x, 0, . . . , 0, ξn) is an analytic

function of ξn when Im ξn ≥ 0, ξn 6= 0, for all k and α. By repeated application of Lemma
2.5.5 it follows that there exists an operator R of order m0 − 2µ whose symbol is a finite
linear combination of homogeneous functions with the properties listed in the lemma, so
that Q−R is of order < Rem0 − 2µ+ s = σ with respect to ξn, where σ is the number in
(2.5.5). Now

P = R(1−∆)µ + (Q−R)(1−∆)µ.

To the first term on the right we can apply (2.5.3) and to the second we can apply (2.5.4),
and conclude that Pu ∈ H(s−Rem0). [m0 replaced by Rem0.]

Summing up, we have now proved that if u satisfies (2.5.2) and P is any operator of
type µ and order m0, then Pu ∈ H(s−Rem0). Moreover, the proof (or the closed graph
theorem) gives an estimate

‖Pu‖•

(s−Rem0)
≤ C‖F−1(ξn − iλ)µû‖•

(s−Reµ),
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at least when P is compactly supported. [Dots added.] Thus it only remains to show that

Eµ ∩ E ′(R
n

+) is dense in the set of all u satisfying (2.5.2). We first take a sequence vj ∈
C

∞

0 (Rn
+) approximating F−1(ξn − iλ)µû in the norm ‖ ‖•

(s−Reµ), and also in the topology

of S outside a neighborhood of supp u, which is possible since the function to approximate
agrees with a function in S there. When σ − Reµ ≤ 1

2
we can take vj ∈ C∞

0 (Rn
+). Define

vj = 0 in Rn
−. Set uj = F−1((ξn − iλ)−µv̂j). [Replaced vj by v̂j .] This is an element of Eµ

in view of Lemma 2.1.1 (the Fourier transform is the product of that of vj and (ξn− iλ)−µ,
and the behavior of the Fourier transform of vj is described by Lemma 2.1.1 with µ = 0).
Then uj → u in the norm in (2.5.2) and also in the topology of S outside a neighborhood
of supp u. Hence we can cut off uj there without disturbing the convergence in order to
obtain an approximating sequence with compact supports.

The following is also an immediate consequence of Theorem 2.5.2.

Corollary 2.5.6. The intersection of Hµ(s) for all s is equal to Eµ.
Closely related to the proof of the sufficiency of (2.5.2) is the following result which com-

bined with Theorem 2.4.3 will complete our study of the regularity properties of solutions
of the Dirichlet problem.

Theorem 2.5.7. Assume that, with the notations of Theorem 2.4.3, u ∈
◦

H loc
(σ,s−σ)(Ω

′) for

some σ ≥ Reµ− 1
2 , and that Pu ∈ H

loc

(s−m0)(Ω) for some operator P of type µ and order

m0 such that the plane xn = 0 is non-characteristic, that is, p0(x, 0, . . . , 0, ξn) 6= 0 when
0 6= ξn, xn = 0, x ∈ Ω′. Then u ∈ Hµ(s).

The proof of this theorem will follow the second part of the proof of Theorem 2.5.2, but
first we have to find a substitute for Lemma 2.5.4.

Lemma 2.5.8. Let P be compactly supported, of order m0, and assume that the plane

xn = 0 is non-characteristic. If u ∈
◦

H loc
(σ,τ)(Ω

′) and xnPu ∈ H
loc

(σ+1−Rem0,τ−1)(Ω) [m0

changed to Rem0] it follows then that xnu ∈ H
loc

(σ+1,τ−1)(Ω
′).

Proof. The proof can immediately be reduced to the case when u has compact support
in Ω′, which we assume from now on. If Q is an operator of order −m0 as constructed
in Lemma 2.5.5, for which the plane xn = 0 is noncharacteristic, we obtain QxnPu ∈
H(σ+1,τ−1), and since [Q, xn]P is of order −1 it follows that xnQPu ∈ H(σ+1,τ−1). This
reduces the proof to the case where P is of order 0. Since we may add to P any operator
of order 0 and order −1 with respect to ξn we may reduce P to a finite sum of convolution
operators multiplied to the left by C∞ functions. [Builds on unavailable statement.] This
we do in order to have no difficulties in operating with convolution operators which do
not quite have the regularity asked for in Chapter I. First an application of (1+ |D′|2)τ−1

[should be its square root] reduces the proof to the case τ = 1. Secondly, setting (Dn −
i
√
D′2 + 1 )σu = v we have v ∈

◦

H(0,1) and

(Dn + i
√
D′2 + 1 )+σxnP (Dn − i

√
D′2 + 1 )−σv ∈ H(1)(R

n
+),

from which we conclude [how?] that Pxnv ∈ H(1,0)(R
n
+). [Changed R

n

+ to Rn
+.]



22 LARS HÖRMANDER

Now for any w ∈ L2 with support in the upper half space and any P of order 0 we
have Pxnw ∈ H(1,0)(R

n
−). [overline seems missing] Indeed, Pxnw is [in Rn

−] given by an
integral operator with kernel homogeneous of degree −n + 1, which can be estimated by
|x− y|−nyn ≤ |x− y|1−n when x is in the lower and y in the upper half space. The first
order derivatives are bounded by C|x − y|−n [illigible, guessed the power −n]. Now one
can find a kernel k which is homogeneous of degree −n such that the mean value of k over
the unit sphere is 0 and k(x) = |x|−n in the lower half space. [It seems to be used that
the convolution kernel of P for xn < 0, yn > 0, depends only on zn = xn − yn < 0, hence
can be chosen conveniently for zn > 0.] From the original Calderon-Zygmund estimates
we then obtain the required estimate. Hence Pxnv ∈ H(1,0) in the upper as well as the
lower half space. It remains to show that the boundary values from each half space are
identical, that is, that DnPxnv is in L2; a priori we only know that

DnPxnv = w + h⊗ δ(xn)

where w ∈ L2, h ∈ H( 1
2
). Thus take a function ϕ with compact support and set ϕε(x) =

ϕ(x′, xn/ε). Then

∫
hϕ(x′, 0) dx′ = −

∫
wϕε dx−

∫
vxn

tPDnϕε dx.

Since xn
tPDnϕε = tPxnDnϕε + [xn,

tP ]Dnϕε, the L
2 norm of this quantity is O(ε

1
2 ).

Since v ∈ L2 it follows when ε → 0 that
∫
hϕ(x′, 0) dx′ = 0, hence h = 0. Having proved

now that Pxnv ∈ H(1,0), we apply P and conclude that PPxnv ∈ H(1,0) and adding to

this a multiple of |D′|2/|D|2xnv ∈ H(1,0), we conclude that some elliptic operator of order
0 applied to xnv gives an element in H(1,0). Hence xnv ∈ H(1,0), and this implies the
statement.

A more general version of the lemma is the following

Theorem 2.5.9. Let u ∈
◦

H loc
(σ,τ)(Ω

′), xNn Pu = f ∈ H
loc

(σ+N−Rem,τ−N)(Ω), where P is

compactly supported [of order m] and the plane xn = 0 is non-characteristic for P . Then

it follows that xNn u ∈ H
loc

(σ+N,τ−N); if q is of order µ′ then xNn qu ∈ H
loc

(σ+N−Re µ′,τ−N).

Proof. When N = 1 the theorem follows from Lemma 2.5.8 since xnqu = qxnu+ [q, xn]u
where [q, xn] is of order µ′ − 1. Assume the theorem already proved for integers smaller
than N , N > 1. Then

xN−1
n P (xnu) = xNn Pu+ xN−1

n [P, xn]u ∈ H
loc

(σ+N−Rem,τ−N)

since [P, xn] = q is of order m − 1. Furthermore, xnu ∈ H
loc

(σ+1,τ−1). Hence xNn u ∈
H

loc

(σ+N,τ−N) and x
N
n qu = xN−1

n qxnu+ xN−1
n [xn, q]u ∈ H

loc

(σ+N−Re µ′,τ−N) since [xn, q] is of

order µ′ − 1.

Proof of Theorem 2.5.7. Choose N so large that σ+N ≥ s. Then it follows from Theorem

2.5.9 that xNn Qu ∈ H
loc

(s−Rem′) if Q is of order m′. Hence in proving that Qu ∈ H
loc

(s−Rem′)

for Q of order m′ and type µ it is enough to show that this is true for some Q′ which agrees
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with Q of order N when xn = 0. Now by a formal computation of symbols as in the proof
of Theorem 2.5.2 we can find R with symbol analytic when Im ξn > 0, so that RP differs
from (1−∆)µ only by terms which vanish to arbitrarily high order when xn = 0 or when
ξ′ = 0. The proof is then completed as before.

We are now ready to prove a theorem on the regularity of solutions of the Dirichlet
problem.

Theorem 2.5.10. Let P satisfy the hypotheses of Theorem 2.4.1. [It must be assumed

also that P is of type µ0.] If u ∈
◦

H(σ)(Ω) for some σ > Reµ0− 1
2 and Pu ∈ H(s−Rem0)(Ω),

where s > Reµ0 − 1
2 , it follows that u ∈ Hµ0(s)(Ω). In particular, if Pu ∈ C

∞
it follows

that u ∈ Eµ0
; the mapping

Hµ0(s)(Ω) ∋ u→ Pu ∈ H(s−Rem0)(Ω)

is a Fredholm operator for every s > Reµ0 − 1
2 .

Proof. This follows immediately from Theorem 2.4.1, Theorem 2.4.3 and Theorem 2.5.7,
if we also recall Corollary 2.5.6.

2.6. The inhomogeneous Dirichlet problem. Let P satisfy the hypotheses of Theo-
rem 2.4.1 and choose a number µ < µ0 which differs from µ0 by an integer.

If we introduce the natural mapping

γµ: Eµ → Eµ/Eµ0
,

the inhomogeneous Dirichlet problem can be stated as the study of the mapping

(2.6.1) u→ {Pu, γµu} ∈ C
∞ ⊕ (Eµ/Eµ0

).

It follows immediately from Theorem 2.5.10 that this mapping has finite index. However
we must discuss the dependence of the solution on the boundary data rather closely in
order to be able to handle more general boundary problems in the next section.

The first step is to represent Eµ/Eµ0
as the space of sections of a trivial bundle and

introduce norms in it. To do so we first choose a Riemannian metric in M and then a C∞

function d in Ω which is equal to the distance from ∂Ω sufficiently close to the boundary
and is positive and C∞ throughout Ω. Set Iµ(x) = d(x)µ/Γ(µ + 1) in Ω and Iµ = 0 in
∁Ω when Reµ > 0. This definition can be uniquely extended modulo C∞

0 (Ω) to arbitrary
values of µ so that DnI

µ = Iµ−1, where Dn denotes differentiation along the geodesics
perpendicular to ∂Ω sufficiently close to ∂Ω and is defined as a C∞ function elsewhere.
By our definition of Eµ it follows easily that every class in Eµ/Eµ+1 contains an element

of the form Iµ(x)f where f ∈ C
∞
(Ω), and that such elements are congruent to 0 if and

only if f = 0 on the boundary. By repeated application of this fact we conclude that any
element u ∈ Eµ can be written

(2.6.2) u = u0I
µ + u1I

µ+1 + · · ·+ uµ0−µ−1I
µ0−1 + v,

where uj ∈ C
∞
(Ω) are constant close to ∂Ω on normal geodesics, and v ∈ Eµ0

. The
boundary values of uj are uniquely determined by u, and it is natural to write

Dj+µ
n u = uj |∂Ω.
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The mapping
u→ {Dj+µ

n u}µ0−µ−1
j=0

has null space Eµ0
and identifies Eµ/Eµ0

with C∞(∂Ω)µ0−µ. The identification depends
of course on the choice of the Riemannian structure but we shall keep it fixed in all that
follows. (It would of course be more natural to regard Eµ/Eµ0

as the space of sections of a
bundle on ∂Ω with fiber dimension µ0 − µ.) We can now think of γµ as a mapping of Eµ
into C∞(∂Ω)µ0−µ.

We shall now introduce in Eµ/Eµ0
the quotient of the topology of Hµ(s). In view of

Corollary 2.5.3 we must then require that s−Re(µ0− 1) > 1
2 , for otherwise Eµ0−1 is dense

in Eµ0
in that topology and the quotient topology would not be Hausdorff. Thus we assume

that s − Reµ0 > −1
2 ; note that this is the same condition as in Theorem 2.5.10. When

discussing the quotient topology it is by Lemma 2.5.1 sufficient to consider sections with
support in a local coordinate patch.

Thus let u ∈ Eµ(R
n

+) ∩ E ′(K) where K is a compact set, and let d(x) = xn. Writing u
in the form (2.6.2) we have for large ξn (cf. (2.1.1′)) and any N

û(ξ) =

µ0−µ−1∑

j=0

ûj(ξ
′)ξ−µ−j−1

n +O((1 + |ξ′|)−Nξ−µ0−1
n ).

[Here ξ−a
n should be (ξ−n )−a. Moreover, exponential factors are missing, since FIµ(xn) =

eiπ(µ+1)/2(ξ−n )−µ−1 by [H83], Ex. 7.1.17.] Here uj denotes Dj+µ
n u. Hence

û(ξ)(ξn − iλ)µ =

µ0−µ−1∑

j=0

j∑

k=0

cjkûk(ξ
′)λj−kξ−j−1

n +O((1 + |ξ′|)−Nξ−(µ0−µ)−1
n ).

where ckj are constants, cjj = 1. [Changed (ξn + iλ)µ to (ξn − iλ)µ, as done by LH in
the next expression. Moreover, replaced λk−j by λj−k, also in the next statements, after
checking calculations.]

This means that the boundary values of

Dj
nF−1(û(ξ)(ξn − iλ)µ)

are equal to

F−1

j∑

k=0

cjkûk(ξ
′)λj−k.

Since s − Reµ > µ0 − µ − 1 + 1
2 by assumption, it follows from Theorem 2.5.2 here and

Corollary 2.5.4 in my book that

µ0−µ−1∑

j=0

‖F−1(

j∑

k=0

cjkûk(ξ
′)λj−k)‖(s−Reµ−j− 1

2
) ≤ C‖u‖µ(s).

By induction for increasing j we find that this is equivalent to

(2.6.3)

µ0−µ−1∑

j=0

‖uj‖(s−Reµ−j− 1
2
) ≤ C‖u‖µ(s).



SEMINAR NOTES 25

Conversely, given uj , j = 0, . . . , µ0 − µ − 1, we can determine a function u ∈ Hµ(s) so

that Dµ+j
n u = uj and the opposite inequality holds [Dµ+j

n replaced by Dµ+j
n u]. In fact, we

can construct (Dn − i
√

|D′|2 + 1 )µu with normal derivatives
∑j

k=0 cjk
√

|D′|2 + 1 j−kuk
according to Theorem 2.5.7 in my book. [k − j replaced by j − k.]

Thus we have proved

Theorem 2.6.1. If s > Reµ0 − 1
2
, then the topology induced in Eµ/Eµ0

by that in Hµ(s)

is defined by

‖|γµu‖|s =
µ0−µ−1∑

j=0

‖Dj+µ
n u‖(s−Reµ−j− 1

2
).

The solution of the nonhomogeneous Dirichlet problem now takes the form

Theorem 2.6.2. Let P satisfy the hypotheses of Theorem 2.4.1. [It must be assumed also
that P is of type µ0.] For every µ ≤ µ0 which is congruent to µ0 (mod 1) and every
s > Reµ0 − 1

2 the mapping

Hµ(s)(Ω) ∋ u→ {Pu, γµu} ∈ H(s−Rem0)(Ω)×
µ0−µ−1∏

0

H(s−Reµ−j− 1
2
)(∂Ω)

is a Fredholm operator.

In order to be able to pass from the Dirichlet problem to more general boundary prob-
lems we must consider the dependence of the solutions on the boundary data more closely.

Theorem 2.6.3. Let µ0 − µ be a nonnegative integer, and let P satisfy the hypotheses of
Theorem 2.4.1. There exists a linear mapping

Q: Eµ/Eµ0
→ Eµ

such that γµQ differs from the identity by a pseudo-differential operator with symbol 0 and

PQ can be extended to a continuous mapping from E ′(∂Ω)µ0−µ to C
∞
(Ω). If B is any

pseudo-differential operator of type µ, then BQ|∂Ω is a pseudo-differential operator. In a
local coordinate system where ∂Ω is defined by the inequality xn > 0, the principal symbol
is

{µ0−µ−1∑

k=0

∮
b0(x, ξ)/p

−
0 ξ

k
n dξnπµ0−µ−1−k−j

}µ0−µ−1

j=0

or else of lower order. (Here the integral is the Lebesgue integral when the integrand is
integrable and will otherwise be defined later.) We consider aj [?] to have order −j in
the sense of Douglis-Nirenberg. The notation πν , ν integer, shall mean 0 when ν < 0, an
elliptic symbol of order 0 when ν = 0 and a symbol of order ν when ν > 0, all depending
only on P and not at all on B.) Q has the pseudo-local properties

(1) when the support of u lies in a compact part K of ∂Ω then the mapping u → Qu
is continuous with the E ′-topology on u and the Eµ topology on Qu near ∂Ω \K.

(2) if B is a pseudo-differential operator with symbol vanishing of infinite order on ∂Ω

then BQ is continuous from E ′µ0−µ
to C

∞
.
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To complete the statement it remains to clarify the notation
∮
f(τ) dτ where f is a

function defined on the real axis. If f ∈ L1(−∞,∞) it is the Lebesgue integral. If f is
the boundary value of a function analytic in the upper half plane and O(e|z|

α

) for some

α < 1, then we set
∮
f(τ) dτ = 0. These two definitions are compatible. For suppose that

f ∈ L1 and f has an analytic extension with this property. Take β with α < β < 1.

Then f(z)e−(εz/i)β tends to 0 fast at infinity, so Cauchy’s integral formula applied to half

circles yields that
∫
f(x)e−(εx/i)β dx = 0. Since f ∈ L1 we obtain

∫∞

−∞
f(x) dx = 0 by

letting ε → 0 and using Lebesgue’s theorem on dominated convergence. Having proved

the compatibility we can extend the definition of
∮

by linearity to the linear hull of the

two spaces where it is defined. Whenever
∮
f dτ is defined we have for α < 1 sufficiently

close to 1 ∮
f dτ = lim

ε→0

∫
f(τ)e−(ετ/i)α dτ.

Many other ways of summation can of course be used.
In view of the pseudo-local property (1) it suffices to construct Q locally and then form

a global Q as a sum of the form
∑
ψiQiϕi where {ϕi} is a partition of unity on the

boundary, Qi a solution in a neighborhood of the support of ϕi which also contains the
support of ψi although ψi = 1 in some neighborhood of the support of ϕi.

The local situation will be obtained by a more detailed study of the factorization of P
first used in section 2.4. We keep the notations of Theorem 2.4.3. We start by modifying P
slightly so that (2.2.1) will be fulfilled not only when xn = 0. To do so we shall construct
p′k homogeneous of the same order as pk so that p′k − pk vanishes of infinite order when
xn = 0 and satisfies (2.2.1) in Ω′. Such a function can be obtained by setting

p′k =
∞∑

0

∂jpk(x
′, 0, ξ)/∂xjn x

j
nχ(ajxn)/j!

where χ ∈ C∞
0 (R) is equal to 1 near 0 and aj is so rapidly decreasing that

|Dα
x′D

β
ξD

j
npk(x

′, 0, ξ)| ≤ Cα,βaj, |ξ| = 1.

[Dx replaced by Dx′ ] [Cα,β?] Then p′k is a C∞ function of x and ξ when ξ 6= 0, which is
homogeneous in ξ, and it is obvious that p′k satisfies the condition (2.2.1) everywhere. Let
P ′ be a pseudo-differential operator, compactly supported and with symbol

∑
p′k. If we

can find Q having the desired properties relative to P ′ we will be through for (P ′ − P )Q

maps E ′µ0−µ
into C

∞
by the last pseudo-local property stated in the theorem.

In order to make notations less heavy we drop the prime, thus assume that P already
satisfies condition (2.2.1) for all x ∈ Ω.

Lemma 2.6.4. Let p0(x, ξ) be homogeneous and elliptic in ξ, of degree m0 and C∞ when
ξ 6= 0. Assume that a number µ0 independent of x is defined by (2.4.3), and that (2.2.1) is
valid for all x (in the domains considered). Then

p0(x, ξ) = p+0 (x, ξ)p
−
0 (x, ξ)

where p−0 and p+0 are homogeneous of degree µ0 and m0 − µ0 respectively, analytic when
ξ 6= 0 and Im ξn ≤ 0 resp. Im ξn ≥ 0. Furthermore, the functions belong to C∞ when
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ξ′ = (ξ1, . . . , ξn−1) 6= 0. Instead of differentiability when ξ′ = 0 we can only claim that for
example p−0 has an asymptotic expansion

p−0 ∼
∞∑

j=0

(ξn − i)µ0−jrj(x, ξ
′), ξn → ∞, |ξ′| = 1,

which remains valid after differentiations. Here r0 ≡ 1 is independent of ξ′. If rj is
extended as a homogeneous function of degree j we have of course for all ξ′,

p−0 ∼
∞∑

j=0

(ξn − i|ξ′|)µ0−jrj(x, ξ
′), ξn → ∞.

[x inserted.] (Obviously we could express the asymptotic behavior with other factors than
powers of ξn − i|ξ′|, but these are convenient and were used by Vishik-Eskin.)

Proof. Suppressing the variable x in the notations we write

ψ(ξ) = log p0(ξ)− µ0 log(ξn − i|ξ′|)− (m0 − µ0) log(ξn + i|ξ′|)− a+.

The logarithms in the later terms are defined so that their imaginary parts → 0 when
ξn → +∞. Then

ψ(ξ) = log p0(ξ
′/|ξn|,±1)− µ0 log(ξn − i|ξ′|)− (m0 − µ0) log(ξn + i|ξ′|)− a+ −m0 log |ξn|.

Now we have

p0(ξ
′/|ξn|,±1) = ea±(1− exp(−a±)

∑

α=α′ 6=0

ξ′
α|ξn|−|α|p

(α)
0 (0,±1)),

[coefficients?] where the sum is an asymptotic expansion uniformly for ξ′ in a compact set
not containing 0. This follows from Taylor’s formula. As in section 2.4 we conclude from
(2.2.1) that ψ(ξ′, ξn) has an asymptotic expansion in powers of 1/ξn when ξn → ∞; the
asymptotic expansions hold in the C∞ topology with respect to x and ξ′ 6= 0. We can now
write for any k

ψ(x, ξ′, ξn) =
k∑

j=1

aj(x, ξ
′)(ξn − i|ξ′|)−j + ψk(x, ξ

′, ξn)

where ψk = O(ξ−k−1
n ) and ψ′

k = O(ξ−k−2
n ). The sum is already analytic in the half plane

Im ξn < 0. To see the effect of splitting the remainder term by means of a Cauchy integral
as in section 2.4 we choose χ ∈ C∞

0 (−1
2
, 1
2
) equal to 1 in (−1

4
, 1
4
) and consider separately

the two integrals

∫
ψk(x, ξ

′, τ)(τ − ξn)
−1χ(τ/|ξn|) dτ,

∫
ψk(x, ξ

′, τ)(τ − ξn)
−1(1− χ(τ/|ξn|)) dτ.
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In the former integral we have |τ |/|ξn| < 1
2 so we can use the Taylor expansion

(τ − ξn)
−1 = −1/|ξn| − τ/|ξn|2 − τ2/|ξn|3 − . . .

In view of the fact that
∫
ψk(x, ξ

′, τ)τ j(1− χ(τ/|ξn|)) dτ = O(|ξn|j+1−k)

we conclude that the first integral has an expansion in powers of 1/ξn with error O(ξ−k
n ).

Using Lemma 2.4.2 it is easy to show that the second integrand is O(ξ−k
n ) too. The

existence of an asymptotic expansion for the two parts of the Cauchy integral of ψ has
thus been proved, both of them starting with 1/ξn. If we set p−(ξ) = (ξn − i|ξ′|)µ0 expψ−

[changed ψ−
− to ψ−, cf. p.11] and define p+ similarly, the lemma is now proved.

We shall next continue the factorization of the symbol to a formal factorization of the
operator P in the sense of the formulas given in section 1.1 [not available] — whose validity
for symbols that are not smooth is of course by no means clear a priori.

Lemma 2.6.5. There exist formal sums
∑
p+k and

∑
p−k whose terms are homogeneous,

C∞ when ξ′ 6= 0, analytic respectively when Im ξn ≥ 0 and Im ξn ≤ 0, such that

(2.6.4)
∑

pl(x, ξ) =
∑

j,k,α

p+k
(α)

(x, ξ)Dα
xp

−
j (x, ξ)/α! .

Moreover, p−k (x, ξ) has an asymptotic expansion when ξn → ∞, ξ′ 6= 0,

p−k (x, ξ) ∼
∞∑

0

(ξn − i|ξ′|)µ0−jrkj(ξ
′), where r0,k = 0, k 6= 0.

[probably means rk,0] and rjk is homogeneous of degree j − k. Also p+k has asymptotic
expansions in powers of (ξn + i|ξ′|) but which powers occur we can not specify.

Proof. We have already discussed the construction of the leading terms. The other terms
can then be determined successively by choosing solutions of problems like

p+0 p
−
k + p+k p

−
0 = function given by terms in

∑
pl and earlier terms p±j .

We divide out by p+0 p
−
0 = p. Noting that for the previous p−j the quotient of any of their

derivatives by p−j has an asymptotic expansion in integral powers of ξn, and using (2.2.1),
we conclude that in the problem to solve

p−k /p
−
0 + p+k /p

+
0 = F

the homogeneous function F has an asymptotic expansion in powers of (ξn + i|ξ′|). (It is
convenient to take |ξ′| = 1 during the discussion.) As in the proof of the previous lemma
we conclude that the problem has a solution (unique!) such that p−k /p

−
0 has an asymptotic

expansion in integral powers of 1/ξn and p+k /p
+
0 has an asymptotic expansion in powers
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of (ξn + i|ξ′|). This completes the proof, for it is clear that the real part of the orders will
tend to −∞ so that the formal sums make sense.

It is now standard to find an inverse
∑
qj(x, ξ) of

∑
p−j (x, ξ), that is, find these functions

homogeneous satisfying conditions analogous to those for p−k except that µ0 is replaced by
−µ0, so that

(2.6.5)
∑

p−j
(α)

(x, ξ)Dα
xqk(x, ξ)/α! = 1.

Now the associative law for composition of operators leads to the associative law for the
composition formula for symbols — which can also be verified by direct computation.
[Inserted handwritten half-page describing the associative law for symbols, not typed here.]
Hence we obtain from (2.6.4) and (2.6.5) that [indexation?]

(2.6.6)
∑

j,k,α

p−j
(α)

(x, ξ)Dα
xqk(x, ξ)/α! =

∑

l

p+l .

If sk is the order of qk we have Re sk → −∞, and

|Dα
xD

β
ξ qk(x, ξ)| ≤ C|ξ|−Reµ0−βn |ξ′|Re(µ0+sk)−|β′|.

Let ϕ ∈ C∞(Rn) be equal to 0 when |ξ| < 1/2 and equal to 1 when |ξ| > 1. As in the proof
of Theorem 1.1.5 [seems covered by Theorem 2.7 of [1]] we can select a sequence tk → +∞
so rapidly increasing that

q(x, ξ) =
∑

ϕ(ξ′/tk)qk(x, ξ)

converges everywhere, also after differentiation, and that the remainder terms have the
natural estimates,

|Dα
x ξ

β
∑

k≥N

ϕ(ξ′/tk)qk(x, ξ)| ≤ CN,α,β(1 + |ξ|)−Reµ0−βn(1 + |ξ′|)Re(µ0+sk)−|β′|.

Let K be a compact subset of ω = {x; xn = 0, |x′| ≤ 1}, and let ψ ∈ C∞
0 (Ω̃) be equal

to 1 in K.With vj ∈ C∞
0 (K), j = 0, . . . , µ0 − µ− 1, we set

Q1v(x) = (2π)−n

∫
q(x, ξ)v̂j(ξ

′)ξjne
i〈x,ξ〉 dξ.

The Fourier transform shall here be understood in the sense of Schwartz. We shall later
on cut off Q1 by multiplication with ψ, but first we have to study the properties of Q1.

a) Q1 maps C∞
0 (K) into Eµ. This is perfectly obvious if we introduce the asymptotic

expansion of q with respect to ξn; in view of Theorem 2.5.2 the terms in the asymptotic ex-
pansion give rise to elements in Eµ and the remainder gives a highly differentiable function

with support in R
n

+.

b) Q1 is continuous from the topology of Hσ+j(R
n−1) on vj to Hµ(σ−Reµ0+1/2). [µ was

inserted.] This follows by the same argument as in a).
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c) (−ixn)NQ1 is obtained by replacing q(x, ξ)ξjn by its Nth derivative with respect to
ξn. Thus we get continuity from the same topologies on v to Hµ+N(σ+N−Re µ0). This
implies the localization property (2) in the theorem. To prove the other one we note
that

∫
q(x, ξ)ξjne

i〈x,ξ〉 dξ is in C∞ with respect to x′ when x′ 6= 0. (Multiply by x′
α
and

integrate.) For suitable σ and all τ we then have a continuous mapping E ′(K)µ0−µ →
H(σ,τ)(∁K). The localization property (1) therefore follows from Theorem 2.5.7 — if we
discuss what σ can be used — in view of [text missing]

d) PQ1 is a continuous map from E ′µ0−µ
into C

∞
. Indeed, the proof of Theorem 1.1.6

[seems related to Theorem 2.10 of [1]] does not require the symbol of p to be a smooth
function of |ξ|. Hence we obtain that PQ1 is given by

PQ1v =

µ0−µ−1∑

0

(2π)−n

∫
r(x, ξ)v̂j(ξ

′)ξjne
i〈x,ξ〉 dξ

where r(x, ξ) ∼
∑
p+k (x, ξ). Since the terms are analytic in the upper half plane they do

not contribute anything to PQ1v when xn > 0, which gives the statement.
In the same way we can form BQ1, which is defined by means of a kernel [symbol?]∑
bj

(α)(x, ξ)Dα
xqk(x, ξ)/α!. This has an asymptotic expansion in integral powers of ξn,

hence in powers of (ξn + i|ξ′|), which proves that it maps C∞
0 (K)µ0−µ into C

∞
(Ω). The

boundary values are obtained by subtracting a term analytic in the upper half plane until
the remainder can be integrated. Thus we obtain the symbol

∑
(2π)−1

∮
bj

(α)(x, ξ)Dα
xqk(x, ξ)ξ

j
n/α! , j = 0, . . . , µ0 − µ− 1.

It remains to consider γµQ1. To do so we first note that in each term of the expansion

q(x, ξ) =
∑

xjn∂
jq(x′, 0, ξ)/∂xn /j!

we can replace xn by −i∂/∂ξn, and obtain instead

q1(x
′, ξ) ∼

∑
(−i∂2/∂xn∂ξn)jq(x′, 0, ξ)/j!.

This sum has an asymptotic expansion in ξn,

ξ−µ0

n s0(x
′, ξ′) + ξ−µ0−1

n s1(x
′, ξ′) + . . .

where s0(x
′, ξ′) = ϕ(ξ′/t0). Hence

q1(x
′, ξ)

∑
v̂j(ξ

′)ξjn ∼
∑

Vj(ξ
′)ξ−µ−j−1

n

where
Vj(ξ

′) = s0vµ0−µ−1−j + s1vµ0−µ−j + . . .

Thus

(2.6.7) Dj
nγµQ1v = s0(x

′, D′)vµ0−µ−1−j + s1(x
′, D′)vµ0−µ−j + . . .
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Given uj ∈ C∞
0 (K), j = 0, . . . , µ0 − µ− 1, we wish to choose v so that γµQ1v is approxi-

mately equal to uj . Noting that 1− s0 is a pseudo-differential operator with symbol 0, we
get successively for increasing j

(2.6.8) vµ0−µ−1−j = uj − S1(x
′, D′)vµ0−µ−j − . . .

where Sj are compactly supported with the symbol sj . Solving this system of equations
for vj we conclude that

Dj
nγµQ1v − uj

is a pseudo-differential operator with symbol 0 acting on the uk’s. Putting

Qu = ψQ1v

with v given by (2.6.8) we have constructed an operator with all the required properties.

[The rest is copied from handwritten text:]

2.7. General boundary problems.

Let {
Pu = f ∈ C∞ u ∈ Hµ(s)

Bju = ϕj ∈ C∞ j = 1, . . . , µ0 − µ,

where Bj is of type µ. Ellipticity! Well defined? We take s > Reµ0 − 1
2 , and, if the order

µj of Bj has the am[?] [analogous?] form s > Reµj +
1
2
.

(It would be sufficient to have such a condition rel. to the “transmission order”.)
Then we claim that u ∈ C∞. [Probably means Eµ.] In fact, for such s,

‖u‖µ(s) ≤ C(‖f‖•

s−Reµ0
+
∑

‖ϕj‖∂Ωs−Reµj−
1
2

+ ‖u‖µ(s−1)).

Proof as follows: Form
v = u−Qγµu.

Then {
Pv = Pu− PQγµu = f + rem. in C∞ (cont.)

γµv ≃ 0,

: v ∈ C∞ or at least[?] in Hµ(s) under appropriate hypotheses on f . Now Bju =
Bjv +BjQγµu; hence BjQγµu = ϕj− smooth.

If BjQ elliptic system we are through.

Existence thm. Try u = L1f + QL2ψ where ψ ∈ Eµ/Eµ0
and L1 sol. of int.[?] hom.

Dirichlet problem, L2 sol. of ps. diff. eq. BjQϕ = ψ. Gives[?] Fredholm eq.[?]

{
g −K1{g, ψ} = f

ψ −K2{g, ψ} = ϕ

So existence with finite codimension.
More sophisticated reduction: See my paper in Annals.
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2.8. Jump in boundary conditions.

Cbln[?] in boun[?] prb[?] like

{
P1u = f1 ω1

P2u = f2 ω2

[drawing:] ω = ω1 ∪ ω2. P1, P2 elliptic ps.d.op. Set P1u = v; where

{
v = f1 in ω1

P2P
−1
1 v = f2 in ω2

Can substitute w = v − f1

{
w = 0 in ω1

P2P
−1
1 w = f2 − P2P

−1
1 f1 in ω2

Boundary problem for ps.d.op. P2P
−1
1 !
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