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Abstract

Consider a classical elliptic pseudodifferential operator P on Rn of order 2a (0 < a < 1) with even 
symbol. For example, P = A(x, D)a where A(x, D) is a second-order strongly elliptic differential oper-
ator; the fractional Laplacian (−�)a is a particular case. For solutions u of the Dirichlet problem on a 
bounded smooth subset � ⊂ R

n, we show an integration-by-parts formula with a boundary integral involv-
ing (d−au)|∂�, where d(x) = dist (x, ∂�). This extends recent results of Ros-Oton, Serra and Valdinoci, to 
operators that are x-dependent, nonsymmetric, and have lower-order parts. We also generalize their formula 
of Pohozaev-type, that can be used to prove unique continuation properties, and nonexistence of nontrivial 
solutions of semilinear problems. An illustration is given with P = (−� +m2)a . The basic step in our anal-
ysis is a factorization of P , P ∼ P−P+, where we set up a calculus for the generalized pseudodifferential 
operators P± that come out of the construction.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

A prominent example of a fractional-order pseudodifferential operator (ψdo) is the fractional 
Laplacian (−�)a on Rn, 0 < a < 1;
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(−�)au = Op (|ξ |2a)u =F−1(|ξ |2aû(ξ)), û(ξ) =Fu =
∫
Rn

e−ix·ξ u(x) dx. (1.1)

It is currently of great interest in probability, finance, mathematical physics and differential ge-
ometry. It can also be described as a singular integral operator

(−�)au(x) = cn,aPV

∫
Rn

u(x) − u(y)

|x − y|n+2a
dy = cn,aPV

∫
Rn

u(x) − u(x + y)

|y|n+2a
dy, (1.2)

with convolution kernel cn,a|y|−n−2a =F−1|ξ |2a .
Both descriptions allow generalizations. In (1.1), one can replace the symbol |ξ |2a by a more 

general nonvanishing function p0(x, ξ) ∈ C∞(Rn × (Rn \ {0})) that is homogeneous in ξ of 
degree 2a, and add terms of lower order, to get a classical ψdo symbol p(x, ξ); the operator is 
then no longer translation-invariant nor symmetric. Such operators are standard examples in the 
pseudodifferential calculus, and their boundary value problems on suitably smooth subsets � of 
R

n have been treated in works of Vishik and Eskin, cf. e.g. [10], Duduchava et al. [9,6], and 
Shargorodsky [39], with results on solvability in limited ranges of Sobolev spaces. Recently, a 
new boundary value theory has been presented in Grubb [16,17], obtaining regularity estimates 
of solutions divided by da (d(x) = dist (x, ∂�)) in full scales of function spaces with orders 
s → ∞, for example in Hölder spaces of arbitrarily high order.

The pseudodifferential theory is useful in allowing a direct treatment of x-dependent op-
erators, providing solution operators (or parametrices) that can give more efficient regularity 
estimates than the technique of perturbation of constant–coefficient cases.

In (1.2), one can replace the function cn,a|y|−n−2a by other positive functions K(y) that are 
homogeneous in y of degree −n −2a and possibly less smooth. (In the smooth case this coincides 
with ψdo’s with homogeneous x-independent symbol.) Such cases and further generalizations 
have recently been studied in probability and nonlinear analysis, see e.g. Caffarelli and Silvestre 
[8], Ros-Oton and Serra [29,33], and their references. For problems on bounded domains �, 
the integral operator methods allow limited smoothness of the integrand and boundary. To our 
knowledge, they have with few exceptions been applied to x-independent (translation-invariant) 
positive selfadjoint operators.

In the generalizations of (1.1) and (1.2), the fact that |ξ |2a is even (takes the same value at ξ
and −ξ ) is kept as a hypothesis, that p0 is even in ξ , resp. that K is even in y.

The methods used in the pseudodifferential theory are complex, and differ radically from the 
real methods currently used for the singular integral formulations.

There is a large number of preceding studies of boundary problems for (−�)a and its gener-
alizations; let us mention e.g. [2,26,19,25,7,24,40,27,38,1,12,11,4].

A useful tool in solvability studies for linear and nonlinear partial differential equations on 
subsets � ⊂ R

n is integration-by-parts formulas, Green’s formulas. It is by no means obvious 
how one can establish such formulas for the present nonlocal operators. Interesting general-
izations have recently been obtained for translation-invariant operators by Ros-Oton and Serra, 
partly with Valdinoci, in [30,34], and applied to nonlinear equations Pu = f (u) there as well as 
in [31,32]; they have also been applied to nonlinear time-dependent Schrödinger equations by 
Boulenger, Himmelsbach and Lenzmann in [3].

In the present paper we show an extension of the formulas to x-dependent pseudodifferential 
operators, by completely different methods. The key ingredient is a factorization of P , P ∼
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P −P + modulo certain smoothing operators, where P − and P + preserve support in �� resp. �. 
The operators P ± are not standard ψdo’s; their symbol structure is analyzed in detail, using 
symbol classes originally introduced for Poisson and trace operators in the Boutet de Monvel 
calculus [5], as developed in [13,14].

Our main results are: When P is a classical x-dependent ψdo of order 2a on Rn with even 
symbol, elliptic avoiding a ray, and � is a smooth bounded subset of Rn, then the solutions u of 
the Dirichlet problem

r+Pu = f on �, suppu ⊂ �, (1.3)

satisfy ∫
�

(Pu∂j ū
′ + ∂juP ∗u′) dx = �(a + 1)2

∫
∂�

νj s0γ0(d
−au)γ0(d

−aū′) dσ

+
∫
�

[P,∂j ]u ū′ dx, j = 1, . . . , n. (1.4)

Here ν = (ν1, . . . , νn) is the interior normal vector field to ∂�, and s0(x) is the principal symbol 
of P at (x, ν(x)). As a corollary, we find∫

�

(Pu (x · ∇ū′) + (x · ∇u)P ∗u′) dx = �(a + 1)2
∫
∂�

(x · ν)s0γ0(d
−au)γ0(d

−aū′) dσ

− n

∫
�

Pu ū′ dx +
∫
�

[P,x · ∇]u ū′ dx; (1.5)

where in detail,

[P,x · ∇] = P1 − P2, P1 = Op (ξ · ∇ξp(x, ξ)), P2 = Op (x · ∇xp(x, ξ)). (1.6)

For P one can for example take A(x, D)a , where A(x, D) is a strongly elliptic second-order 
differential operator, in particular e.g. (−� + A1(x, D))a , where A1 is of order 1.

The formulas hold when u and u′ are solutions of problems (1.3) with f ∈ H
1−a

(�), or f ∈
C1−a+ε(�) for some ε > 0. They extend to f ∈ H

1
2 −a+ε

(�), when the integrals are understood 
as Sobolev space dualities.

The formulas shown in [30,34] that (1.4)–(1.5) extend, are concerned with real solutions of 
(1.3) with f ∈ C0,1(�); here � is a bounded C1,1-domain, and P is translation-invariant with 
even nonnegative homogeneous kernel, with possibly less smoothness than in our C∞-case. In 
comparison, our method allows nonselfadjointness, nonpositivity, x-dependence, and nonhomo-
geneity (lower-order terms).

To our knowledge, this is the first time that the integration-by-parts question with P and ∂j (or 
x ·∇) has been solved for operators that are not translation-invariant. Note that the x-dependence 
results in a new interior term with [P, ∂j ] in (1.4) (and with P2 in (1.5)–(1.6)).

The version of (1.5) shown in [30,34] is important in the study of existence questions for 
nonlinear problems where f is replaced by f (u) in (1.3), since it leads to a Pohozaev-type 
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identity for the possible solutions. Here we find the following extended Pohozaev identity, for 
selfadjoint x-dependent nonhomogeneous operators P :

−2n

∫
�

F(u)dx + n

∫
�

f (u)udx = �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ

+
∫
�

[P,x · ∇]uudx,

(1.7)

for real solutions u; here F(t) = ∫ t

0 f (s) ds. As a simple example, we apply the formula to 
P = (−� +m2)a , m > 0, showing a unique continuation principle, and nonexistence of bounded 
nontrivial solutions to (1.3) with f taken as f (u) = signu |u|r , r ≥ n+2a

n−2a
.

Plan of the paper: The Appendix contains the notation for function spaces, and collects some 
facts on pseudodifferential operators that are known from the general theory and from preceding 
works such as [17,16]. Section 2 shows the factorization of symbols having the a-transmission 
property, and describes the symbol spaces and mapping properties of the generalized ψdo’s that 
arise from the construction. In Section 3 we establish the formula (1.4) in the case where �
is replaced by Rn+, for j = n. Finally in Section 4, we treat the problem for arbitrary smooth 
domains �, showing the formulas (1.4)–(1.7) in general and drawing some consequences.

2. Factorization of homogeneous symbols

2.1. Some notation

The function 〈ξ〉 stands for (1 +|ξ |2) 1
2 , and we denote by [ξ ] a positive C∞-function equal to 

|ξ | for |ξ | ≥ 1 and ≥ 1
2 for all ξ . Multi-index notation is used for differentiation (and polynomi-

als): ∂ = (∂1, . . . , ∂n), and ∂α = ∂
α1
1 . . . ∂

αn
n for α ∈N

n
0 , with |α| = α1 +· · ·+αn, α! = α1! . . . αn!. 

D = (D1, . . . , Dn) with Dj = −i∂j .
Operators are considered acting on functions or distributions on Rn, and on subsets Rn± =

{x ∈ R
n | xn ≷ 0} (where (x1, . . . , xn−1) = x′), and bounded C∞-subsets � with boundary ∂�, 

and their complements.
Restriction from Rn to Rn± (or from Rn to � resp. ��) is denoted r±, extension by zero from 

R
n± to Rn (or from � resp. �� to Rn) is denoted e±. Restriction from R

n

+ or � to ∂Rn+ resp. ∂�

is denoted γ0.
The reader is encouraged to consult the Appendix for further notation, as it becomes relevant.

2.2. The factorization question

Let there be given a function p(ξ) ∈ C∞(Rn \ {0}), homogeneous of degree 2a with 
0 < a < 1, even and elliptic, i.e.,

p(−ξ) = p(ξ) and p(ξ) = 0 for all ξ ∈ R
n \ {0}. (2.1)

Consider the points in Rn as ξ = (ξ ′, ξn), where ξ ′ ∈ R
n−1, ξn ∈ R. According to Vishik 

and Eskin, see Eskin [10] Ch. 6, p can be written as a product of two factors p+(ξ ′, ξn) and 
p−(ξ ′, ξn) that extend analytically in ξn to C− resp. C+; here C± = {ξn ∈ C | Im ξn ≷ 0}.
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Since the sign convention for the Fourier transform in [10] is the opposite of the standard 
choice in Western literature, with consequences for other ±-conventions, it is hard to avoid 
confusion when quoting the book directly. Therefore we shall show a detailed version of the 
factorization, where we moreover relate it to the symbol estimates and points of view that play a 
role in [21,5] and later works such as [14,15,17].

By division by the number p(0, 1), we can assume that p(0, 1) = 1.
We define (for ξ = 0)

q(ξ) = p(ξ)|ξ |−2a, ψ(ξ) = logq(ξ), (2.2)

they are both homogeneous of degree 0 and even. Actually, it suffices for the following con-
siderations that q is “even in the ξn-direction”, more precisely, has the 0-transmission property 
([5,14,15,17]) with respect to the surfaces {xn = c}:

∂α
ξ q(0,−ξn) = (−1)|α|∂α

ξ q(0, ξn), all α ∈N
n
0, (2.3)

which clearly holds for even symbols of order 0. In order to have the logarithm defined bijec-
tively, we assume that the values of q avoid some ray {z = reiθ | r ≥ 0} in C. ([10] includes some 
more general symbols.)

When ξ ′ = 0,

lim
ξn→±∞q(ξ ′, ξn) = lim

ξn→±∞q(ξ ′/ξn,1) = 1, lim
ξn→±∞ψ(ξ ′, ξn) = 0. (2.4)

To factorize q we shall decompose ψ into a sum of two terms that extend holomorphically 
into C±, respectively. This can be formulated in terms of Cauchy integral formulas.

Let us recall some facts about Cauchy integral decompositions. When f (t) is O(〈t〉−1) on R
with a continuous derivative f ′(t) that is O(〈t〉−2) on R, one can define

f+(t) = i

2π

∫
R

f (σ )

σ − t
dσ for Im t < 0,

f−(t) = −i

2π

∫
R

f (σ )

σ − t
dσ for Im t > 0;

(2.5)

they are holomorphic for t ∈ C− resp. C+, and extend by continuity to C− resp. C+ The values 
on R (the limits for Im t → 0 from C− resp. C+) satisfy

f+(t) + f−(t) = f (t). (2.6)

Moreover, for the functions on R, the inverse Fourier transforms satisfy

F−1f+ = e+r+F−1f, F−1f− = e−r−F−1f (2.7)

(they are in L2(R)); here r± denotes restriction from functions on R to functions on R±, and e±
denotes extension of functions on R± to functions on R by zero on R∓. These facts are well-
known; proofs can be found e.g. in [10] Lemma 6.1, Th. 5.1. ([21] refers for the decomposition 
to Beurling’s contribution to the Helsingfors congress 1938.)
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As in [5,14,15] we shall denote the mappings by h± : f → f±; note that they are comple-
menting projections, satisfying h+ + h− = I . (The mappings h± correspond to the mappings 
�± in [10], except that the holomorphy regions are exchanged because of a different convention 
for the Fourier transform.) The mappings are applied to special spaces of C∞-functions in the 
calculus of [5]; there are detailed accounts e.g. in [14] Sect. 2.2 or [15] Ch. 10, which serve our 
purposes here (and will be taken up below in Section 2.3). The projection properties are summed 
up e.g. in [15] Th. 10.15.

Recall some ingredients: With d ∈ Z, Hd denotes the space of C∞-functions f (t) on R such 
that k(τ ) = τdf (τ−1) coincides with a C∞-function for −1 < τ < 1 (this means that the deriva-
tives of f match in a good way for t → ±∞). Here one can show that

H−1 =F(e−S− ⊕ e+S+), Hd =H−1 ⊕Cd [t] for d ≥ 0, (2.8)

where S± = r±S(R) = S(R±) (defined from the Schwartz space S(R)), and Cd[t] stands for 
the space of polynomials of degree ≤ d in t . Setting (with a slight asymmetry)

H+ =F(e+S+), H−
d =F(e−S−) ⊕Cd [t], (2.9)

one defines the mappings h± on Hd , consistently with their definition given above for d ≤ −1, 
such that they are projections with ranges

h+Hd =H+, h−Hd =H−
d , for d ≥ −1. (2.10)

The symbol h−1 denotes the projection from Hd to H−1 that removes the polynomial part. The 
space H−

−1 equals the space of conjugates of functions in H+ ([15] (10.55)). H+ can also be 

denoted H+
−1 when convenient. Note that when f ∈H−1, h−f = h+(f ).

In the case we shall work on, we are looking for a factorization, not a sum decomposition.
This was not treated in [5,15]. It involves taking the logarithm of q , decomposing logq into 

a sum by Cauchy integrals, and then deriving a factorization of q itself by exponentiating. The 
method is described in [10] with a few estimates, but it has not been worked out what happens 
in terms of H± spaces, so a new analysis is needed for our purposes. Here we moreover find 
a special structure of the factors, that in our application later will allow an integration by parts 
formula.

We first introduce some generalized symbol spaces and ψdo’s.

2.3. Symbol spaces for generalized ψdo’s

Homogeneous functions of ξ are usually singular at ξ = 0. We use in general the convention 
that a symbol p(x, ξ) is assumed to be C∞ for all ξ , then in the homogeneous case, homogene-
ity is assumed only for |ξ | ≥ 1, or |ξ | ≥ δ for a suitable δ > 0 (if needed, the associated fully 
homogeneous function is then called the strictly homogeneous symbol).

Classical (also called polyhomogeneous) ψdo symbols of order m are C∞-functions having 
asymptotic series expansions p(x, ξ) ∼ ∑

j∈N0
pj (x, ξ), where the pj are homogeneous of de-

gree m −j in ξ for |ξ | ≥ 1 and ∂β
x ∂α

ξ (p(x, ξ) −∑
j<J pj (x, ξ)) is O(〈ξ〉m−J−|α|) for all α, β, J . 

The replacement of a strictly homogeneous function by a function that is smooth near ξ = 0 is 
often achieved by multiplication by an excision function η(ξ) satisfying:
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η(ξ) = η(|ξ |) ∈ C∞(Rn, [0,1]) with η(ξ) = 0 for |ξ | ≤ 1
2 , η(ξ) = 1 for |ξ | ≥ 1. (2.11)

It is a basic fact in the Boutet de Monvel calculus (cf. e.g. [15] Th. 10.21) that when q(x, ξ) is 
a ψdo symbol of order d ∈ Z having the 0-transmission property with respect to the hyperplane 
{xn = c}, then the symbol q(x ′, c, ξ ′, ξn) is in Hd as a function of ξn, and

h+q(x′, c, ξ ′, ξn) ∈ Sd
1,0(R

n−1,Rn−1,H+), (2.12)

where h+ : f �→ f+ is the projection defined in (2.5)ff. (the space Sd
1,0(R

n−1, Rn−1, H+) will 
be recalled in a moment). The function h+q is not quite a ψdo symbol in ξ (although it is so in 
ξ ′ for each ξn), but we can still use the Op -definition (as in (A.1)), and we call such symbols 
generalized ψdo symbols.

The symbol spaces are explained e.g. in [15], Section 10.3. With m denoting a positive integer, 
Sd

1,0(R
m, Rn−1, H+) consists of the following C∞-functions:

f (X, ξ ′, ξn) ∈ Sd
1,0(R

m,Rn−1,H+), when f (X, ξ ′, ξn) is in H+ w.r.t. ξn, and

‖Dβ
XDα

ξ ′Dk
ξn

h−1(ξ
k′
n f (X, ξ ′, ξn))‖L2(R) ≤ Cα,β,k,k′ 〈ξ ′〉d+ 1

2 −k+k′−|α|,
(2.13)

for all indices α ∈N
n−1
0 , β ∈N

m
0 , k, k′ ∈N0, with constants Cα,β,k,k′ . m is usually taken equal to 

n or n − 1. (The definition in [15] has h+ instead of h−1; the projections h+ and h−1 have the 
same effect of removing the polynomial terms arising from the multiplication of an H+-function 
by ξk′

n .)
The L2-norms are useful when Fourier transforms are involved. In fact, the system of semi-

norms (2.13) is equivalent with the following system, applied to the inverse Fourier transforms 
f̃ =F−1

ξn→xn
f restricted to {xn > 0}:

‖Dβ
XDα

ξ ′xk
nDk′

xn
r+f̃ (X,xn, ξ

′)‖L2(R+) ≤ Cα,β,k,k′ 〈ξ ′〉d+ 1
2 −k+k′−|α|, (2.14)

the space of such functions r+f̃ is denoted Sd
1,0(R

m, Rn−1, S+). Here f̃ is in e+S+ as a function 
of xn. The effect of h−1 is here replaced by that of r+, which removes possible linear combina-
tions of Dj

xn
δxn (supported at {xn = 0}) that arise from differentiating f̃ ∈ e+S+.

It will be useful to observe that one can replace L2(R+)-norms by L∞(R+)-norms or 
L1(R+)-norms (as remarked for L∞-norms around (10.17) in [15], and used sporadically in 
the literature):

Lemma 2.1. The family of estimates (2.14) is equivalent with the family of estimates:

‖Dβ
XDα

ξ ′xk
nDk′

xn
r+f̃ (X,xn, ξ

′)))‖L∞(R+) ≤ Cα,β,k,k′ 〈ξ ′〉d+1−k+k′−|α|, (2.15)

as well as with the family of estimates

‖Dβ
XDα

ξ ′xk
nDk′

xn
r+f̃ (X,xn, ξ

′)‖L1(R+) ≤ Cα,β,k,k′ 〈ξ ′〉d−k+k′−|α|. (2.16)
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Proof. We have the elementary inequalities for functions u(t) ∈ S+, σ > 0:

sup
t≥0

|u(t)|2 ≤ sup
t≥0

∞∫
t

|∂s(u(s)ū(s))|ds ≤ 2‖u‖L2(R+)‖∂tu‖L2(R+),

sup
t≥0

|u(t)| ≤ sup
t≥0

∞∫
t

|∂su(s)|ds ≤ ‖∂tu‖L1(R+),

‖u‖L2 ≤ ∥∥1 + σ t

1 + σ t
u
∥∥

L2
≤ cσ− 1

2 ‖(1 + σ t)u‖L∞,

‖u‖L1 =
∞∫

0

1 + σ t

1 + σ t
|u(t)|dt ≤ cσ− 1

2 ‖(1 + σ t)u‖L2,

(2.17)

where ‖(1 + σ t)−1‖L2 = cσ− 1
2 .

Thus when u satisfies

‖tkDk′
t u(t)‖L2(R+) ≤ Ck,k′σd+ 1

2 −k+k′
, all k, k′ ∈N0,

then we have from the first line:

‖u(t)‖L∞(R+) ≤ (2C0,0 σd+ 1
2 C1,0 σd+ 3

2 )
1
2 = c′σd+1,

with a similar treatment of derived functions tkDk′
t u. The variables X, ξ ′ are easily included, to 

see with σ = 〈ξ ′〉 that the system of estimates (2.14) implies (2.15). For the opposite direction, 
the basic step is that when inequalities

‖tkDk′
t u(t)‖L∞(R+) ≤ Ck,k′σd+1+k−k′

hold, then we have from the third line in (2.17) that

‖u(t)‖L2(R+) ≤ cσ− 1
2 (C0,0 σd+1 + σ C0,1 σd) = c′′σd+ 1

2 ,

with a similar treatment of derived functions.
For L1-norms, we moreover use the other lines in (2.17). �
Instead of the above estimates that are global in X, we can work with the constants Cα,...

replaced by continuous, hence locally bounded, coefficients Cα,...(X); they can be applied in 
localized situations, and are more general than the above. Global estimates were considered in 
[14,15], and are useful when one considers operators defined over unbounded domains such as 
Rn, Rn+ (more generally: “admissible manifolds”, as defined in [14]).

We also need a notation for the spaces where the functions are in H−
−1 or in H−1 as functions 

of ξn:
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f (X, ξ ′, ξn) ∈ Sd
1,0(R

m,Rn−1,H−
−1), when f ∈H−

−1 w.r.t. ξn and

‖Dβ
XDα

ξ ′Dk
ξn

h−1(ξ
k′
n f (X, ξ ′, ξn))‖L2(R) ≤ Cα,β,k,k′ 〈ξ ′〉d+ 1

2 −k+k′−|α|,

f (X, ξ ′, ξn) ∈ Sd
1,0(R

m,Rn−1,H−1), when f ∈H−1 w.r.t. ξn and

‖Dβ
XDα

ξ ′Dk
ξn

h−1(ξ
k′
n f (X, ξ ′, ξn))‖L2(R) ≤ Cα,β,k,k′ 〈ξ ′〉d+ 1

2 −k+k′−|α|,

(2.18)

for all indices. Again, the estimates are equivalent with families of estimates of the inverse 
Fourier transforms in ξn as described above for H+. Note here that the inverse Fourier trans-
form of H−1 = H−

−1 ⊕ H+ is e−S− ⊕ e+S+, so that in fact, the second system of estimates is 
equivalent with the system

‖Dβ
XDα

ξ ′xk
nDk′

xn
f̃ (X,xn, ξ

′)|R−∪R+‖L2(R−)⊕L2(R+) ≤ Cα,β,k,k′ 〈ξ ′〉d+ 1
2 −k+k′−|α|. (2.19)

There are also versions of these spaces with local estimates in X (i.e., with the constants Cα,...

replaced by continuous functions of X).
The symbols in Sd

1,0(R
m, Rn−1, H+) were used in [14,15] to define Poisson and trace opera-

tors (maps between the boundary and the interior of Rn+). We shall here use them to define ψdo’s 
on Rn. Since they do not satisfy all the estimates usually required of ψdo symbols, we view 
them as generalized ψdo symbols, and the operators resulting from applying the Op-definition 
in (A.1) as generalized ψdo’s. To find their mapping properties, it is important to derive relevant 
sup-norm estimates from (2.13) (and here it is a point to avoid having to involve the projec-
tion h−1).

Lemma 2.2. Let f ∈ Sd
1,0(R

m, Rn−1, H−1).

1◦ Then also ξk
nDk

ξn
f is in the space for all k ∈ N0, and

|Dβ
XDα

ξ ′ξk
nDk

ξn
f (X, ξ ′, ξn)| ≤ Cα,β,k〈ξ ′〉d−|α|, (2.20)

for all α, β, k.
2◦ Moreover, (〈ξ ′〉 ± iξn)Dξnf belongs to Sd

1,0(R
m, Rn−1, H−1).

Proof. When ϕ(ξn) ∈ H−1, then so are Dξnϕ and ξnDξnϕ; without going deeply into the defini-
tion of H−1 and h−1 we can see this by observing that the inverse Fourier transforms −xnϕ̃(xn)

and −Dxnxnϕ̃(xn) are in e−S− ⊕ e+S+ without distribution terms supported at xn = 0.
For 1◦ we iterate these considerations, seeing that also ξk

nDk
ξn

ϕ and Dξnξ
k
nDk

ξn
ϕ are in H+. 

The estimates in (2.18) then show that when f ∈ Sd
1,0(R

m, Rn−1, H−1), then

‖Dβ
XDα

ξ ′ξk
nDk

ξn
f (X, ξ ′, ξn))‖L2(R) ≤ Cα,β,k〈ξ ′〉d+ 1

2 −|α|,

‖Dβ
XDα

ξ ′Dξnξ
k
nDk

ξn
f (X, ξ ′, ξn))‖L2(R) ≤ C′

α,β,k〈ξ ′〉d− 1
2 −|α|.

This implies (2.20) by the first line in (2.17), extended to functions on R.
The other estimates needed for the space Sd

1,0(R
m, Rn−1, H−1) follow easily by carrying 

the inspection a little further. This shows 1◦, and 2◦ follows by adding a similar inspection of 
〈ξ ′〉Dξnf . �
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We now investigate the mapping properties of the generalized ψdo’s defined from these sym-
bols. Here it will be convenient to refer to not only the Hs

p-spaces recalled in the Appendix, but 
also spaces with a different differentiability degree in the xn-direction (used e.g. in [20,14,15]
for p = 2):

Hs,t
p (Rn) = {u ∈ S ′(Rn | F−1(〈ξ〉s〈ξ ′〉t û) ∈ Lp(Rn} = �−s�′−t

Lp(Rn),

where �t = Op (〈ξ〉t ), �′t = Op (〈ξ ′〉t ).
To simplify the notation, we in the following abbreviate Sd

1,0(R
n, Rn−1, H+) to Sd(H+), and 

similarly with H−
−1 and H−1.

Proposition 2.3. Let f (x, ξ ′, ξn) ∈ Sd(H−1) for some d ∈R. Then F = Op (f ) is continuous

F : Hs,t
p (Rn) → Hs,t−d

p (Rn) for all s, t ∈ R. (2.21)

Proof. Consider first the case d = 0. By Lemma 2.2, we have that

〈ξ ′〉|α|Dα
ξ ′ξk

nDk
ξn

Dβ
x f is bounded for all α ∈ N

n−1
0 , β ∈ N

n
0, k ∈N0.

Then Lizorkin’s criterion assures that F : Lp(Rn) → Lp(Rn) is bounded; this shows (2.21) for 
s = t = 0. The use of Lizorkin’s criterion is explained e.g. in [18] around Th. 1.6, with references.

Next, observe that

‖Fu‖H 1
p

≤ c(

n∑
j=1

‖DjFu‖Lp + ‖Fu‖Lp),

where DjFu = Op (ξjf + Dxj
f )u = FDju + Op (Dxj

f )u. Here

‖FDju‖Lp ≤ c‖Dju‖Lp ≤ c′‖u‖H 1
p

by the preceding result, and since Dxj
f is also in Sd(H−1),

‖Op (Dxj
f )u‖Lp ≤ c‖u‖Lp ≤ c′‖u‖H 1

p
,

implying altogether that

F : H 1
p → H 1

p

is bounded. The argument extends easily to higher derivatives, implying boundedness of

F : Hs
p → Hs

p (2.22)

for all s ∈ N0. By interpolation, the result extends to s ∈ R+.
Since the Lizorkin criterion also holds when the operator is in y-form (cf. [18]), we likewise 

find that the adjoint operator F ∗ satisfies (2.22) for s ≥ 0. Her we can replace p by p′, and hence 
conclude by duality that (2.22) holds for F , all s ∈ R.
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To extend the result to Hs,t
p -spaces, a first step is to observe that

‖Fu‖
H

s,1
p

≤ c(

n−1∑
j=1

‖DjFu‖Hs
p

+ ‖Fu‖Hs
p
) ≤ c′(

n−1∑
j=1

‖Dju‖Hs
p

+ ‖u‖Hs
p
) ≤ c′′‖u‖

H
s,1
p

.

Generalizing this to higher derivatives, we find (2.21) for s ∈R, t ∈N0, d = 0, and interpolation 
and a similar treatment of the adjoint leads to (2.21) for all s, t ∈ R when d = 0.

For general d ∈R, we observe that F�′−d = Op (f 〈ξ ′〉−d), where f 〈ξ ′〉−d ∈ S0(H−1), hence 
satisfies (2.21) with d = 0. Then since obviously �′d : H

s,t
p (Rn) 

∼→ H
s,t−d
p (Rn); (2.21) follows 

for F = F�′−d
�′d . �

Theorem 2.4. Let f (x, ξ) ∈ Sd(H−1) for some d ∈ Z. Then F = Op (f ) is continuous for all 
s, t :

F : Hs,t
p (Rn) → Hs−d,t

p (Rn) if d ≥ −1. (2.23)

The mapping property extends to d = −k − 1, k ∈ N, if f (x, ξ)([ξ ′] + iξn)
k ∈ S−1(H−1) (or 

f (x, ξ)([ξ ′] − iξn)
k ∈ S−1(H−1)).

Proof. For d ≥ 0, the result follows immediately from Proposition 2.3 since Hs,t−d
p (Rn) ⊂

H
s−d,t
p (Rn).
Now let d = −1. Observe that

F = F �1+ �−1+ , where F �1+ = Op (f (x, ξ)([ξ ′] + iξn)).

This symbol is in H0 as a function of ξn, and can be decomposed as

f (x, ξ)([ξ ′] + iξn) = f (x, ξ)[ξ ′] + h−1(if ξn) + (1 − h−1)(if ξn).

The first two terms are in S0(H−1), hence the corresponding operators act as in (2.23) for d = 0. 
The third term is of the form s(x, ξ ′), constant in ξn and with estimates Dβ

x Dα
ξ s = O(〈ξ ′〉−|α|)

(it is the zero’th term in the expansion of if ξn in powers ξ−j
n , j ∈ N0, cf. e.g. [15], Def. 10.12). 

It likewise defines a bounded operator in Hs,t
p (Rn). Since �−1+ : H

s,t
p (Rn) 

∼→ H
s+1,t
p (Rn), we 

conclude (2.23) for d = −1. Note that we could just as well have used compositions to the right 
with �±1− = Op (([ξ ′] − iξn)

±1).
For the lower values of d we apply the case d = −1 to the symbol f (x, ξ)([ξ ′] + iξn)

k (resp. 
f (x, ξ)([ξ ′] − iξn)

k). �
The most general symbols in S−k−1(H−1), k ∈ N, only have the mapping property

F : Hs,t
p (Rn) → Hs+1,t+k

p (Rn),

(since they may only be O(ξ−1
n ) for ξn → ±∞); this is shown by combining (2.23) for d =

−1 with Proposition 2.3. Fortunately, our applications in this paper will mainly be in the cases 
d = 0 and d = −1. Therefore we shall not burden the exposition with additional terminology for 
symbol classes.
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2.4. The basic factorization theorem

With these preparations, we shall etablish the factorization theorem for homogeneous sym-
bols.

Definition 2.5. When P is a pseudodifferential operator on Rn with a classical symbol p(x, ξ)

of order m, we say that P (and p) is elliptic avoiding a ray reiθ when, for some θ ∈ [0, 2π ], the 
principal symbol p0(x, ξ) takes values in C \ {z = reiθ | r ≥ 0} for all ξ ∈ Rn with |ξ | ≥ 1.

The ray condition is usually assumed in resolvent constructions, and is sometimes called 
“Agmon’s condition”, or “the condition for having a ray of minimal growth”. It is satisfied in 
particular when P is strongly elliptic, i.e., Rep0(x, ξ) > 0 for |ξ | ≥ 1.

When the ray condition holds, p0(x, ξ) can be extended smoothly into |ξ | < 1 such that 
p0(x, ξ) ∈ C \{z = reiθ | r ≥ 0} for all x, ξ . Then when we define the logarithm to be continuous 
on C \ {z = reiθ | r ≥ 0}, p0 can be retrieved from its logarithm, p0(x, ξ) = exp logp0(x, ξ).

The condition will allow us to use the projections h+, h− and the symbol spaces introduced 
above in a simple way.

Theorem 2.6. Let q(x, ξ ′, ξn) be a pseudodifferential symbol of order 0, homogeneous in ξ of 
degree 0 for |ξ | ≥ 1 and having the 0-transmission property at all hyperplanes {xn = c},

∂β
x ∂α

ξ q(x,0,−ξn) = (−1)|α|∂β
x ∂α

ξ q(x,0, ξn), all α,β ∈ N
n
0, |ξ | ≥ 1, (2.24)

and elliptic avoiding a ray reiθ . Assume that q(x, ξ) avoids the ray also for |ξ | < 1. Denote 
q(x, 0, 1) = s0(x).

Then q has a factorization

q(x, ξ) = s0(x)q−(x, ξ)q+(x, ξ), (2.25)

where q±(x, ξ ′, ξn) are invertible, and extend holomorphically into respectively C∓ as functions 
of ξn. Moreover,

q+(x, ξ) = 1 + f (x, ξ) with f (x, ξ) ∈ S0
1,0(R

n,Rn−1,H+), (2.26)

homogeneous of degree 0 in ξ for |ξ ′| ≥ 1, and q− has these properties too.

Proof. By division by s0(x) we can obtain that q(x, 0, 1) = 1, which will be assumed from now 
on. Fix x = (x′, c). We shall suppress the explicit mention of x, since the estimates of derivatives 
in x follow in a standard way when the claims have been shown with respect to ξ at each x.

Define ψ(ξ) = logq(ξ) (to take real values when q(ξ) is positive). The function ψ is like-
wise homogeneous of degree 0 for |ξ | ≥ 1, hence is a ψdo symbol; moreover, it again has the 
0-transmission property. Since q(0, 1) = 1, we have (2.4) for all ξ ′. In view of the 0-transmission 
property, ψ is in H−1 as a function of ξn for each ξ ′, and by [15] Th. 10.21,

ψ+ = h+ψ ∈ S0 (Rn−1,Rn−1,H+), (2.27)
1,0
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and is homogeneous in ξ of degree 0 when |ξ ′| ≥ 1; it extends holomorphically into C− as a 
function of ξn. Moreover, we can define

ψ− = h−ψ; then ψ = ψ+ + ψ−, (2.28)

and ψ− is similar to ψ+ (since it equals h+ψ ).
We now form

q+(ξ) = exp(ψ+(ξ)) = 1 + ψ+(ξ) + 1
2ψ+(ξ)2 + . . . , (2.29)

and q− = exp(ψ−), then q = q−q+. We have to show the estimates claimed in (2.26). Let

f = q+ − 1 =
∞∑

k=1

1

k!ψ
k+. (2.30)

Instead of considering f directly, consider the inverse Fourier transform from ξn to zn (restricted 
to zn ∈ R+),

f̃ =
∞∑

k=1

1

k! ψ̃
∗k+ , ψ̃∗k+ = ψ̃+ ∗ · · · ∗ ψ̃+, (k factors). (2.31)

Observe that

‖ψ̃+ ∗ ψ̃+‖L∞ ≤ ‖ψ̃+‖L1‖ψ̃+‖L∞ , . . . ,‖ψ̃∗k+ ‖L∞ ≤ ‖ψ̃+‖k−1
L1

‖ψ̃+‖L∞, (2.32)

so that 
∑∞

k=1
1
k! ‖ψ̃+‖k−1

L1
‖ψ̃+‖L∞ is a majorizing series for the series in (2.31). Hence it con-

verges in L∞-norm, and the limit satisfies the estimate

‖f̃ ‖L∞ ≤
∞∑

k=1

1

k! ‖ψ̃+‖k−1
L1

‖ψ̃+‖L∞ = ‖ψ̃+‖−1
L1

‖(exp(‖ψ̃+‖L1 − 1)‖ψ̃+‖L∞ . (2.33)

Since ψ̃+ satisfies the estimates in (2.14), (2.15) and (2.16) with d = 0 (in particular, ‖ψ̃+‖L1 is 
bounded in ξ ′), this shows that f̃ satisfies the first estimate in (2.15), with d = 0.

The estimates of zn-derivatives follow in the same way, when we note that Dzn just hits one 
factor; the one on which we impose the L∞-norm. Multiplication by a power zl

n of zn corre-
sponds for the Fourier transform f to a derivative Dl

ξn
, for which there is a Leibniz formula. We 

carry this over to the terms in f̃ , seeing that it produces an expression where it hits at most l
factors in the product ψ̃∗k+ . When k → ∞, the estimates give k − l factors ‖ψ̃+‖L1 besides at 
most l factors where specific estimates of functions derived from ψ̃+ are needed. This allows a 
majorizing sequence, leading to the desired estimate for f̃ . Derivatives with respect to ξ ′ and x
are straightforward to include.

There is a similar analysis of q−. �
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Note that the theorem shows that the considered symbols have factorization index 0 (the ho-
mogeneity degree of q+). Symbols of order 0 without the ray condition can have other integer 
factorization indices, see [10], Ch. 6.

It is important in Theorem 2.6 that q (after division by s0) is not just factored into q+ and q−
with the mentioned estimates, but that the first term in each of the two factors is 1, besides a term 
with a decrease in ξn. This will be very useful in the applications.

2.5. Factorization of full symbols

For a general polyhomogeneous symbol that is elliptic and of type 0, the above can be ex-
tended to a factorization (in the sense of operator composition or Leibniz products) respecting 
also lower-order terms. Recall the composition rule for ψdo’s:

Op (a)Op (b) ∼ Op (a#b), where a#b =
∑
α∈Nn

0

∂α
ξ a(x, ξ)Da

xb(x, ξ)/α!. (2.34)

The last expression is often called the Leibniz product of a and b.
We now show that it is possible to refine the factorization from Theorem 2.6, taking lower-

order terms into account.

Theorem 2.7. Let Q be a classical ψdo on Rn of order 0, with symbol q ∼ ∑
j∈N0

qj (where 
qj (x, ξ) is homogeneous of degree −j in ξ for |ξ | ≥ 1), elliptic avoiding a ray, and having the 
0-transmission property with respect to all hyperplanes {xn = c}, i.e.,

∂β
x ∂α

ξ qj (x,0,−ξn) = (−1)j−|α|∂β
x ∂α

ξ qj (x,0, ξn) for j ∈N0, α,β ∈N
n
0, |ξ | ≥ 1. (2.35)

Denote q0(x, 0, 1) = s0(x).
There exist two generalized pseudodifferential symbols q±(x, ξ) ∼ ∑

j∈N0
q±
j (x, ξ), with 

q±
j (x, ξ) homogeneous of degree −j in ξ for |ξ ′| ≥ 1, such that

q+
0 (x, ξ) = 1 + f (x, ξ) with f (x, ξ) ∈ S0(H+); q+

j ∈ S−j (H+), for j > 0, (2.36)

q−(x, ξ) has a similar form, and

q ∼ s0 q−#q+, (2.37)

in the sense that for all K , the difference between s−1
0 q and the expression formed of the terms 

in q+ and q− down to order −K , composed by the Leibniz formula applied for |α| ≤ K , is in 
S−K−1(H−1).

From the symbols q± we can define generalized ψdo’s Q±, respectively; then Q − s0Q
−Q+

has symbol in S−∞(H−1) = ⋂
d Sd(H−1).

The operator Q −s0Q
−Q+ is smoothing in the sense that it maps Hs,t (Rn) to Hs+1,∞(Rn) =⋂

t H
s+1,t (Rn), for all s.
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Proof. By multiplication by s−1
0 we can assume that q0(x, 0, 1) = 1. The principal parts q±

0 of 
q± are defined by application of Theorem 2.6 to q0. Now we have to construct the lower-order 
symbols. This goes inductively as follows:

Collecting the terms of order −1 in (2.37) (cf. (2.34)), we find that q±
1 should satisfy:

q1 = q−
0 q+

1 + q−
1 q+

0 +
∑
k≤n

∂ξk
q−

0 Dxk
q+

0 .

Dividing by q0 and using that q0 = q−
0 q+

0 , we can rewrite this as

q+
1

q+
0

+ q−
1

q−
0

= q1

q0
− 1

q0

∑
k≤n

∂ξk
q−

0 Dxk
q+

0 , (2.38)

where the right-hand side is already known. By Theorem 2.6, the function q+
0 is 1 plus a function 

in H+ at each (x, ξ ′), and since it is nonvanishing, the inverse is likewise of the form in (2.26). 
The same holds for q−

0 . Moreover, q1 being of order −1 and having the 0-transmission property 
implies that it is in H−1 as a function of ξn. Thus the right-hand side of (2.38) is in H−1, and 
the left-hand side expresses a decomposition in its H+-part and H−

−1-part, for each (x, ξ ′). The 
decomposition is unique, and one checks that the two terms satisfy the appropriate estimates.

This shows the first step, and in the general step, one similarly determines the two terms 
q+
k /q+

0 and q−
k /q−

0 as the components in H+ and H−
−1 of an expression formed of the preceding 

symbol terms of the relevant homogeneity:

q+
k

q+
0

+ q−
k

q−
0

= qk

q0
− 1

q0

∑
j+|β|=k,j<k

1

β!∂
β
ξ q−

j Dβ
x q+

j . (2.39)

There is a standard way to associate an exact symbol q±(x, ξ) with the series 
∑

j∈N0
q±
j (x, ξ), 

namely, a convergent sum q±(x, ξ) = ∑
j∈N0

η(ξ/tj )q
±
j (x, ξ), where tj → ∞ sufficiently 

rapidly (for η(ξ), see (2.11)). Any other choice of a symbol with the given asymptotic expansion 
differs from this by a symbol in S−∞

1,0 (Rn, Rn−1, H±
−1).

Then one finds by use of the Leibniz formula and regrouping of homogeneous terms of the 
same order, that Q − s0Q

−Q+ is a generalized ψdo with symbol in S−∞(H−1). The last state-
ment follows from Theorem 2.4 ff. �

When q is even in ξ , that is,

qj (x,−ξ) = (−1)j qj (x, ξ) for |ξ | ≥ 1, all x, (2.40)

the property (2.35) holds in any coordinate system.
We furthermore observe the following property.

Theorem 2.8. For the symbol q+ constructed in Theorem 2.7, there is a parametrix symbol q̃+
with similar symbol properties, such that

q+#q̃+ ∼ 1 ∼ q̃+#q+, (2.41)
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in the space consisting of symbols in S0
1,0(R

n, Rn−1, H−1) plus functions of x (constant in ξ ).
There is a similar result for q−.

Proof. We apply the standard parametrix construction: With q̃+
0 = 1/q+

0 , we have that

q+#q̃+
0 = 1 +

∑
β =0

1
β!∂

β
ξ q+

0 Dβ
x q̃+

0 + (q+ − q+
0 )#q̃+

0 ∼ 1 + r, (2.42)

where r ∈ S−1
1,0(R

n, Rn−1, H+) is defined from a regrouping of the terms according to homo-
geneity. Then, defining

r̃ ∼
∞∑

k=1

(−1)kr#k,

where r#k ∼ r#r# . . .#r with k factors, we find that q̃+
0 #(1 + r̃) is a right parametrix symbol 

for q+. Similarly, there is a left parametrix symbol, and they are seen to be equivalent. Thus we 
can take q̃+ = q̃+

0 #(1 + r̃), and it has the asserted properties. �
Remark 2.9. The constructions in Theorems 2.6 and 2.7 have been developed from [21], The-
orem 2.6.3 ff. in combination with our use of function spaces based on H± as in [14,15]. The 
purpose in [21] was to construct an operator that solves, in the parametrix sense, certain bound-
ary problems for operators such as e.g. P = �a−Q�a+ with nonzero boundary data and 0 data in 
the interior, generalizing (2.45) below. For Q itself, with Q̃+ = Op (q̃+), it can be shown that 
the operator KQ̃+ : ϕ(x′) → Q̃+(ϕ(x′) ⊗ δ(xn)), which is a Poisson operator in the Boutet de 
Monvel calculus, satisfies:

r+QKQ̃+ : E ′(Rn−1) → C∞(R
n

+), γ−1,0KQ̃+ − I : E ′(Rn−1) → C∞(Rn−1) (2.43)

(i.e. r+QKQ̃+ and γ−1,0KQ̃+ − I are smoothing operators); hence KQ̃+ defines a parametrix 
solution operator to the problem

r+Qw = 0, γ−1,0w = ϕ. (2.44)

Here γ−1,0 is a generalization of γμ,0 to low values of μ, defined but not studied in detail in [17]. 
Then for P one finds, setting w = �a+u, that �−a+ KQ̃+ defines a parametrix solution operator to 
the problem

r+Pu = 0, γa−1,0u = ϕ; (2.45)

here �−a+ KQ̃+ can be regarded as a (generalized) Poisson operator of noninteger order. The prob-
lem was also discussed in [17], Th. 6.5; the present construction gives a more direct information. 
We shall possibly take up the details in another publication.

Remark 2.10. The factorization idea P = P −P + with factors having opposite support preser-
vation properties could also be used in the proof of [34] for one-dimensional operators on rays, 
instead of their factorization of selfadjoint positive operators as P = P

1
2 P

1
2 .
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3. Integration by parts for operators on the half-space

The reader is encouraged to consult the Appendix for notation.
Let P be a classical ψdo on Rn of order 2a (0 < a < 1), having the a-transmission property 

at the boundary of Rn+. Recall from [17] Th. 4.2 that r+P maps the space Ha(s)(R
n

+) (cf. (A.9)) 

continuously into H
s−2a

(Rn+) when s > a − 1
2 .

We wish to reduce the expression∫
R

n+

Pu∂nū
′ dx +

∫
R

n+

∂nuP ∗u′ dx (3.1)

for functions u, u′ ∈ Ha(s)(R
n

+) for suitable s, to an integral over the boundary of suitable bound-
ary values, supplied in the xn-dependent case with an extra integral over Rn+. The fact that we 
integrate over Rn+ implies a restriction r+ on the integrands, that we therefore need not mention 
explicitly in the formula.

The central argument will first be presented in a simple constant–coefficient case.

Theorem 3.1. 1◦ Let u, u′ ∈ Ea(R
n

+) with compact support in R
n

+. Let w = r+�a+u, w′ =
r+�a+u′. Then ∫

R
n+

�a−e+w ∂nū
′ dx = (γ0w,γ0w

′)L2(R
n−1) + (w, ∂nw

′)L2(R
n+). (3.2)

2◦ The formula extends to u, u′ ∈ Ha(s)(R
n

+) for s > a + 1
2 , with dualities:

〈r+�a−e+w,∂nu
′〉

H
1
2 −a+ε

(Rn+),Ḣ
a− 1

2 −ε
(R

n

+)

= (γ0w,γ0w
′)L2(R

n−1) + 〈w,∂nw
′〉

H
1
2 −ε

(Rn+),Ḣ
− 1

2 +ε
(R

n

+)
, (3.3)

for any 0 < ε ≤ s − a − 1
2 with ε < 1.

3◦ Here, when s ≥ a + 1, then (3.3) can be written in the form (3.2), all ingredients being 
locally integrable functions.

Proof. 1◦. First let u, u′ ∈ Ea(R
n

+) with compact support. Since u ∈ Ha(s)(R
n

+) for any large s, 
w = r+�a+u ∈ C∞(R

n

+) ∩ H
s
(Rn+) for any s, with u = �−a+ e+w (cf. [17], Propositions 1.7 and 

4.1). Moreover, r+�a−e+w ∈ C∞(R
n

+) ∩ H
s
(Rn+) for any s. There is similar information for 

u′, w′.
Since u ∈ Ea(R

n

+) with compact support, ∂nu ∈ Ea−1(R
n

+) with compact support. Here xa−1
n

is integrable over compact sets. Altogether, r+�a−e+w ∂nū is on R
n

+ the product of xa−1
n with a 

compactly supported smooth function, so the integral is well-defined.
We can also observe that by the identification of e+H

t
(Rn+) and Ḣ t (R

n

+) for |t | < 1
2 , e+w′ ∈

Ḣ
1
2 −ε(Rn+) for any ε ∈ ]0, 1[, so
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∂nu
′ = ∂n�

−a+ e+w′ ∈ ∂nḢ
a+ 1

2 −ε(R
n

+) ⊂ Ḣ a− 1
2 −ε(R

n

+). (3.4)

Then since r+�a−e+�a+u ∈ H
1
2 −a+ε

(Rn+), the integral may be written as the duality

I = 〈r+�a−e+w,∂nu
′〉

H
1
2 −a+ε

(Rn+),Ḣ
a− 1

2 −ε
(R

n

+)
.

Now note that by (A.7), r+�a−e+ : H
1
2 +ε

(Rn+) → H
1
2 −a+ε

(Rn+) has the adjoint

�a+ : Ḣ a− 1
2 −ε(R

n

+) → Ḣ− 1
2 −ε(R

n

+). We can then continue the calculation of I as follows:

I = 〈w,�a+∂nu
′〉

H
1
2 +ε

,Ḣ
− 1

2 −ε
= 〈w,∂n�

a+u′〉
H

1
2 +ε

,Ḣ
− 1

2 −ε
= 〈w,∂ne

+w′〉
H

1
2 +ε

,Ḣ
− 1

2 −ε
.

Here w′ itself is a nice function on R
n

+, but the extension e+w′ to Rn has the jump γ0w
′ at 

xn = 0, and there holds the formula

∂ne
+w′ = γ0w

′ ⊗ δ(xn) + e+∂nw
′, (3.5)

where ⊗ indicates a product of distributions with respect to different variables (x ′ resp. xn). It is 
a distribution version of Green’s formula (cf. e.g. [14] (2.2.38)–(2.2.39)). Recall moreover from 
distribution theory (cf. e.g. [15] p. 307) that the “two-sided” trace operator γ̃0 : v(x) �→ γ̃0v =
v(x′, 0) has the mapping γ̃ ∗

0 : ϕ(x′) �→ ϕ(x′) ⊗ δ(xn) as adjoint, with continuity properties

γ̃0 : H
1
2 +ε(Rn) → Hε(Rn−1), γ̃ ∗

0 : H−ε(Rn−1) → H− 1
2 −ε(Rn), for ε > 0. (3.6)

Here γ̃ ∗
0 ϕ is supported in {xn = 0}, hence lies in Ḣ− 1

2 −ε(R
n

+). We can then write

∂ne
+w′ = γ̃ ∗

0 (γ0w
′) + e+∂nw

′. (3.7)

Since w ∈ H
1
2 +ε

(Rn+), it has an extension W ∈ H
1
2 +ε(Rn) with w = r+W , and γ0w = γ̃0W . 

Then

〈w, γ̃ ∗
0 (γ0w

′)〉
H

1
2 +ε

(Rn+),Ḣ
− 1

2 −ε
(R

n

+)
= 〈W, γ̃ ∗

0 (γ0w
′)〉

H
1
2 +ε

(Rn),H
− 1

2 −ε
(Rn)

;

this is verified e.g. by approximating γ̃ ∗
0 (γ0w

′) in Ḣ− 1
2 −ε-norm by a sequence of functions in 

C∞
0 (Rn+). Here we can use (3.6) to write

〈W, γ̃ ∗
0 (γ0w

′)〉
H

1
2 +ε

(Rn),H
− 1

2 −ε
(Rn)

= 〈γ̃0W,γ0w
′〉Hε(Rn−1),H−ε(Rn−1)

= 〈γ0w,γ0w
′〉Hε(Rn−1),H−ε(Rn−1) = (γ0w,γ0w

′)L2(R
n−1).

In the last step we used that since both γ0w and γ0w
′ are in Hε(Rn−1) ⊂ L2(R

n−1), the duality 
over the boundary is in fact an L2(R

n−1)-scalar product.
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Then finally

I = 〈w,∂ne
+w′〉

H
1
2 +ε

,Ḣ
− 1

2 −ε
= 〈w, γ̃ ∗

0 (γ0w
′) + e+∂nw

′〉
H

1
2 +ε

,Ḣ
− 1

2 −ε

= (γ0w,γ0w
′)L2(R

n−1) + 〈w,e+∂nw
′〉

H
1
2 +ε

,Ḣ
− 1

2 −ε

= (γ0w,γ0w
′)L2(R

n−1) + (w, e+∂nw
′)L2(R

n+),

where we used that w′ ∈ ⋂
s H

s
(Rn+). This shows (3.2).

2◦. If u, u′ ∈ Ha(s)(R
n

+) with s > a + 1
2 , they are in ∈ Ha(a+ 1

2 +ε)(R
n

+) for an ε ∈ ]0, 1[, 
ε ≤ s − a − 1

2 , and then w, w′ ∈ H
1
2 +ε

(Rn+) by definition. Moreover, by (A.11),

u ∈ e+xa
nH

1
2 +ε

(Rn+) + Ḣ a+ 1
2 +ε(R

n

+), hence

∂nu ∈ e+xa−1
n H

1
2 +ε

(Rn+) + e+xa
nH

− 1
2 +ε

(Rn+) + Ḣ a− 1
2 +ε(R

n

+).

(3.8)

(Since γ0u = 0, there is no distribution term supported at {xn = 0}.) On the other hand, since 

e+w = �a+u ∈ e+H
1
2 +ε

(Rn+) ⊂ Ḣ
1
2 −ε′

(R
n

+), u = �−a+ e+w satisfies

u ∈ Ḣ a+ 1
2 −ε′

(R
n

+), any ε′ > 0, hence

∂nu ∈ Ḣ a− 1
2 −ε′

(R
n

+).

(3.9)

There is similar information for u′.
Here we can approximate u, u′ in the norm of Ha(a+ 1

2 +ε)(R
n

+) by compactly supported 
elements uk, u′

k of Ea(R
n

+) (cf. [17] Prop. 4.1). Then wk = r+�a+uk and w′
k = r+�a+u′

k con-

verge in H
1
2 +ε

(Rn+), and in particular, ∂nu
′
k converges in Ḣ a− 1

2 −ε(R
n

+) and ∂nw
′
k converges in 

H
− 1

2 +ε
(Rn+) = Ḣ− 1

2 +ε(R
n

+). This implies (3.3) by passage to the limit, proving 2◦.

3◦. If s ≥ a + 1, then w, w′ ∈ H
1
(Rn+), so ∂nw

′ ∈ L2(R
n+), and r+�a−e+w ∈ H

1−a
(Rn+) ⊂

L2(R
n+). Moreover, by (A.11),

u ∈ e+xa
nH

1
(Rn+) + Ḣ a+1(R

n

+), hence since γ0u = 0,

∂nu ∈ e+xa−1
n H

1
(Rn+) + e+xa

nL2(R
n+) + Ḣ a(R

n

+);
(3.10)

so ∂nu, ∂nu
′ are functions. �

Remark 3.2. The distributional formulation (3.5) of Green’s formula has been an important in-
gredient in systematic studies of boundary value problems for many years, for example in the 
construction of the Calderón projector by Seeley [35], Hörmander [22], see also [15], Ch. 11. 
In the case a = 1, Theorem 3.1 is quite elementary and can be shown by reference to the usual 
formulation of Green’s formula
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∫
R

n+

∂nv v̄′ dx +
∫
R

n+

v ∂nv̄
′ dx = −

∫
Rn−1

γ0vγ0v̄
′ dx′. (3.11)

Let a = 1. Note that �1± = �′ ± ∂n, where �′ = Op (〈ξ ′〉), it acts in the x′-variable only, and 

is selfadjoint. Let s = 2 for definiteness; here H 1(2)(R
n

+) = e+H
2
(Rn+) ∩ Ḣ 1(R

n

+) (one may 
consult Example 1.6 in [17]).

Consider u, u′ ∈ e+H
2
(Rn+) ∩ Ḣ 1(R

n

+), and let w = r+(�′ + ∂n)u, w′ = r+(�′ + ∂n)u
′; they 

lie in H
1
(Rn+). Denote moreover v′ = r+∂nu

′ = w′ − r+�′u′. Then

I ≡ (r+(�′ − ∂n)w, r+∂nu
′)Rn+ = (�′w,v′)Rn+ − (r+∂nw,v′)Rn+

= (�′w,v′)Rn+ + (w, r+∂nv
′)Rn+ + (γ0w,γ0v

′)Rn−1 ,

using (3.11). Here we note that since γ0u
′ = 0, γ0v

′ = γ0w
′. Now

I = (w,�′v′)Rn+ + (w, r+∂nv
′)Rn+ + (γ0w,γ0w

′)Rn−1

= (w, r+(�′ + ∂n)v
′)Rn+ + (γ0w,γ0w

′)Rn−1 = (w, r+(�′ + ∂n)∂nu
′)Rn+ + (γ0w,γ0w

′)Rn−1

= (w, r+∂nw
′)Rn+ + (γ0w,γ0w

′)Rn−1 ,

showing (3.2) in this case.

An immediate consequence of Theorem 3.1 is the following integration-by-parts result for 
fractional Helmholtz operators:

Theorem 3.3. Let u and u′ be as in Theorem 3.1 1◦ or 3◦. Then one has for m > 0:∫
R

n+

(−� + m2)au ∂nū
′ dx +

∫
R

n+

∂nu (−� + m2)aū′ dx (3.12)

= �(a + 1)2
∫

Rn−1

γ0(x
−a
n u)γ0(x

−a
n ū′) dx′.

If u and u′ are as in Theorem 3.1 2◦, the formula holds with dualities, for small ε > 0,

〈r+(−� + m2)au, ∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu, r+(−� + m2)au′〉

Ḣ
a− 1

2 −ε
,H

1
2 −a+ε

(3.13)

= �(a + 1)2
∫

Rn−1

γ0(x
−a
n u)γ0(x

−a
n ū′) dx′.

Proof. We have that

(−� + m2)a = Op ((|ξ |2 + m2)a) = �a �a , �a = Op (((|ξ ′|2 + m2)
1
2 ± iξn)

a);
m,− m,+ m,±
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where �a
m,± have exactly the same mapping properties as �a±, which is the case m = 1. In 

particular, Theorem 3.1 holds with �a± replaced by �a
m,±. It is seen as in [17], Th. 4.2 and 4.4 

that

r+(−� + m2)u = r+�a
m,−e+r+�a

m,+u,

when u satisfies one of the mentioned hypotheses. Set w = r+�a
m,+u, w′ = r+�a

m,+u′.
We can then apply Theorem 3.1 to the integrals in the left-hand side of (3.12), resp. the duali-

ties in the left-hand side of (3.13), when u, u′ satisfy the respective hypotheses there. This gives 
e.g. under the weakest hypotheses (in 2◦):

〈r+(−� + m2)au, ∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu, r+(−� + m2)au′〉

Ḣ
a− 1

2 −ε
,H

1
2 −a+ε

= 〈r+�a−e+w,∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu, r+�a−e+w′〉

Ḣ
a− 1

2 −ε
,H

1
2 −a+ε

= 2(γ0w,γ0w
′)L2(R

n−1) + 〈w,∂nw
′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε
+ 〈∂nw,w′〉

Ḣ
− 1

2 +ε
,H

1
2 −ε

.

(3.14)

Let wk and w′
k be sequences in C∞

(0)(R
n

+) = r+C∞
0 (Rn) converging to w resp. w′ in H

1
2 +ε

(Rn+)

for k → ∞; then γ0wk → γ0w in Hε(Rn−1) and ∂nwk → ∂nw in H
− 1

2 +ε
(Rn+), with similar 

statements for w′. Now∫
R

n+

(wk∂nw̄
′
k + ∂nwk w̄′

k) dx =
∫
R

n+

∂n(wkw̄
′
k) dx

= −
∫

Rn−1

γ0(wkw̄
′) dx′ →= −

∫
Rn−1

γ0wγ0w̄
′ dx′.

Thus the last two terms in (3.14) contribute with −(γ0w, γ0w
′)L2(R

n−1), and we find that

〈r+�a−e+w,∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu, r+�a−e+w′〉

Ḣ
a− 1

2 −ε
,H

1
2 −a+ε

= (γ0w,γ0w
′)L2(R

n−1).

Finally, we recall from [17] Th. 5.1 that

γ0w = γ0(�
a
m,+u) = γa,0u = �(a + 1)γ0(x

−a
n u). (3.15)

Hence

(γ0w,γ0w
′)L2(R

n−1) = �(a + 1)2
∫

Rn−1

γ0(x
−a
n u)γ0(x

−a
n ū′) dx′,

and (3.13) follows. Under the hypotheses for 1◦ and 3◦ it can be written in the form (3.12). �
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The theorem also holds for (−�)a itself (the case m = 0), see Corollary 3.5 below.
We now turn to a general ψdo P of order 2a, elliptic avoiding a ray. The symbol is assumed 

to have the a-transmission property at the hyperplanes {xn = c}, c ∈ R (as in (A.4) with m = 2a, 
μ = a):

∂β
x ∂α

ξ pj (x,0,−ξn) = eπi(−j−|α|)∂β
x ∂α

ξ pj (x,0, ξn) for j ∈ N0, α,β ∈N
n
0, |ξ | ≥ 1;

this holds in particular when the symbol is even (cf. (2.40)).

Theorem 3.4. Let P be a classical ψdo on Rn of order 2a for some 0 < a < 1, that is elliptic 
avoiding a ray, with symbol having the a-transmission property at the hyperplanes {xn = c}, 
c ∈ R. Then the factorization index is a.

Let s0(x) = p0(x, 0, 1), where p0 is the principal symbol, and let P (n) denote the commutator 
[P, ∂n];

P (n) = P∂n − ∂nP ; it has symbol p(n) = −∂xnp, (3.16)

likewise of order 2a and having the a-transmission property at the hyperplanes {xn = c}.
For u, u′ ∈ Ha(s)(R

n

+), s ≥ a + 1, there holds∫
R

n+

Pu∂nū
′ dx +

∫
R

n+

∂nuP ∗u′ dx (3.17)

= �(a + 1)2
∫

Rn−1

s0γ0(x
−a
n u)γ0(x

−a
n ū′) dx′ +

∫
R

n+

P (n)u ū′ dx.

For s ≥ a + 1
2 + ε (for some small ε), the formula holds with the integrals interpreted as 

dualities:

〈r+Pu, ∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu,P ∗u′〉

Ḣ
a− 1

2 +ε
,H

1
2 −a−ε

(3.18)

= �(a + 1)2
∫

Rn−1

s0γ0(x
−a
n u)γ0(x

−a
n ū′) dx′ + 〈r+P (n)u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
;

the last term is a scalar product (P (n)u, u′)L2(R
n+) when a ≤ 1

2 .

In particular, when the symbol is independent of xn, the term with P (n) drops out.

Proof. First let us account for the definition of the terms in (3.17)–(3.18). We already have the 
information (3.8)–(3.9) on u, u′, ∂nu and ∂nu

′. If u, u′ ∈ Ha(a+1)(R
n

+), we have the information 
(3.10).

By [17] Th. 4.2, r+P maps Ha(s)(R
n

+) continuously into H
s−2a

(Rn+). When s ≥ a + 1, this 

is contained in H
1−a

(Rn+) ⊂ L2(R
n+), so r+Pu is an L2-function. When s ≥ a + 1

2 + ε, r+Pu ∈
H

1
2 −a+ε

(Rn+); in L2(R
n+) when a ≤ 1

2 . The operator P (n), being of the same type as P , also has 
these mapping properties.
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We see that for s ≥ a + 1, the first and last integrands in (3.17) are functions. For s > a + 1
2 , 

the duality

〈r+Pu, ∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε

makes sense for small ε; here r+Pu is a function when a ≤ 1
2 , and ∂nu

′ is a function when a > 1
2 . 

In the duality

〈r+P (n)u,u′〉
H

1
2 −a+ε

,Ḣ
a− 1

2 −ε
,

it is only P (n)u that may not be a function; it will be one when a ≤ 1
2 . (Observe also that since 

a − 1
2 ∈ ]− 1

2 , 12 [, H 1
2 −a+ε � Ḣ

1
2 −a+ε and Ḣ a− 1

2 −ε � H
a− 1

2 −ε
for small ε > 0.)

The integral with P ∗ is understood in a similar way (after conjugation).
In the right-hand sides of (3.17)–(3.18), the boundary values γ0(x

−a
n u), γ0(x

−a
n u′) are defined 

as functions in Ha+ 1
2 +ε−a− 1

2 (Rn−1) = Hε(Rn−1) ⊂ L2(R
n−1), by [17], Th. 5.1.

Now we turn to the proof of the formulas. The detailed arguments will be given under the 
weakest regularity hypothesis, namely u, u′ ∈ Ha(a+ 1

2 +ε)(R
n

+).
In the reduction of the operators we shall use �a± (cf. (A.5)ff.) rather than �a±, in order to 

have true ψdo’s. Then we write

P = �a−Q�a+, P ∗ = �a−Q∗�a+, (3.19)

where Q = �−a− P�−a+ is of order 0. It has the 0-transmission property at {xn = 0}, since P is 
of type a, �−a− is of type 0 and �−a+ is of type −a. Q is again elliptic avoiding a ray, since 
the symbols λa± of �a± are complex conjugates. An application of Theorem 2.6 gives the factor-
ization q0(x, ξ) = s0(x)q−

0 (x, ξ)q+
0 (x, ξ) with factors of order 0; then p0 = λa−s0q

−
0 q+

0 λa+ with 
the plus-factor q+

0 λa+, and hence P has factorization index a. (We can normalize λa± such that 
λa±(0, 1) = 1; then s0(x) = q0(x, 0, 1) = p0(x, 0, 1).)

Now construct ψdo’s Q+
0 and Q−

0 from the symbols q+
0 and q−

0 , and denote

Q − s0Q
−
0 Q+

0 = R1, R = �a−R1�
a+. (3.20)

Here R1 has order −1, as a generalized ψdo, with symbol in S−1
1,0(R

n, Rn−1, H−1). Indeed, R1

has the symbol q − q0 + q0 − (s0q
−
0 )#q+

0 , where q − q0 is a ψdo symbol of order −1 of type 0, 
and

q0 − (s0q
−
0 )#q+

0 ∼ s0

∑
|α|≥1

∂α
ξ q−

0 Dα
x q+

0 /α!,

where differentiation with respect to ξ removes the term 1 in q−
0 and lowers the order, so that the 

resulting symbol is in S−1
1,0(R

n, Rn−1, H−1).
For the main part of the operator P1 = P − R we use the factorization

P1 = �a s0Q
−Q+�a = P −P +, P − = �a s0Q

−, P + = Q+�a ; (3.21)
− 0 0 + − 0 0 +
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here P − is a minus-operator, preserving support in R
n

−, and P + is a plus-operator, preserving 
support in R

n

+. Then we have the decompositions

P = P −P + + R, P ∗ = P +∗
P −∗ + R∗.

Let us first treat P1 = P −P +. We define

w = r+P +u, w′ = r+P −∗
u′, then

r+P1u = r+P −e+r+P +u = r+P −e+w, r+P ∗u = r+P +∗
e+r+P −∗

u′ = r+P +∗
e+w′,

as in [17] Th. 4.2. Here r+P1u, r+P ∗
1 u′ ∈ H

1
2 −a+ε

(Rn+), and, as noted further above, u, u′ ∈
Ḣ a+ 1

2 −ε(R
n

+) with ∂nu, ∂nu
′ ∈ Ḣ a− 1

2 −ε(R
n

+).

Define v = r+�a+u, v1 = r+�a+u, and recall that by the definition of Ha(a+ 1
2 +ε)(R

n

+) in [17],

v, v1 ∈ H
1
2 +ε

(Rn+), with u = �−a+ e+v = �−a+ e+v1. (3.22)

For w we have that w = r+Q+
0 �a+u = r+Q+

0 e+v1. Here e+v1 ∈ e+H
1
2 +ε

(Rn+) ⊂ Ḣ
1
2 −ε′

(R
n

+)

(any ε′ > 0), which allows the conclusion that w ∈ H
1
2 −ε′

(Rn+), but we need to show that w ∈
H

1
2 +ε

(Rn+) (and similarly for w′). To do this, we shall use a (rough) parametrix Q̃−
0 = Op (1/q−

0 )

of Q−
0 , cf. Theorem 2.8. It is a minus-operator that satisfies

Q̃−
0 Q−

0 = I + R2, (3.23)

where R2 is a minus-operator with symbol in S−1
1,0(R

n, Rn−1, H−
−1). Denote r+P1u = f , and 

recall that f = r+�a−s0Q
−
0 e+w. Let

w1 = r+(Q̃−
0 s−1

0 �−a− )e+f ;

then since r+(Q̃−
0 s−1

0 �−a− )e+ : H
s
(Rn+) → H

s+a
(Rn+) for all s, w1 ∈ H

1
2 +ε

(Rn+). Now

w1 − w = r+(Q̃−
0 s−1

0 �−a− )e+r+(�a−s0Q
−
0 )e+w − w = r+(Q̃−

0 Q−
0 )e+w − w = r+R2e

+w;
where we used that e+r+ in the middle can be left out since the operators are minus-operators, 

that �−a− �a− = I , and that (3.23) holds. Here r+R2e
+ maps w into H

3
2 −ε′

(Rn+), by Theorem 2.4. 

It follows that w ∈ H
1
2 +ε

(Rn+). A similar proof shows this for w′.
Now we can write

I1 ≡ 〈r+P1u, ∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
= 〈r+P −e+w,∂nu

′〉
H

1
2 −a+ε

,Ḣ
a− 1

2 −ε
.

Since r+P −e+ : H
1
2 +ε

(Rn+) → H
1
2 −a+ε

(Rn+) and P −∗ : Ḣ a− 1
2 −ε(R

n

+) → Ḣ− 1
2 −ε(R

n

+) are ad-
joints,
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I1 = 〈w,P −∗
∂nu

′〉
H

1
2 +ε

,Ḣ
− 1

2 −ε
.

We use here that u′ is zero at xn = 0, so that ∂nu
′ = e+r+∂nu

′ (one may identify ∂nu
′ with 

r+∂nu
′).

The distribution P −∗
∂nu

′ ∈ Ḣ− 1
2 −ε(R

n

+) is rewritten as follows:

P −∗
∂nu

′ = ∂nP
−∗

u′ + [P −∗
, ∂n]u′ = ∂ne

+w′ + P −∗(n)
u′,

with the notation [P −∗
, ∂n] = P −∗(n)

as in (3.16). Here, as in Theorem 3.1,

∂ne
+w′ = γ0(w

′) ⊗ δ(xn) + e+∂nw
′,

where we moreover note that since w′ ∈ H
1
2 +ε

(R
n

+), e+∂nw
′ is not just in Ḣ− 1

2 −ε(R
n

+), but is 

in Ḣ− 1
2 +ε(R

n

+) � H
− 1

2 +ε
(Rn+), and γ0w

′ ∈ Hε(Rn−1). Insertion of the expressions in I1 and 
integration by parts as in Theorem 3.1 gives:

I1 = 〈w,γ0(w
′) ⊗ δ(xn) + e+∂nw

′ + P −∗(n)
u′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε

= (γ0w,γ0w
′)L2(R

n−1) + 〈w,∂nw
′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε
+ 〈w,P −∗(n)

u′〉
H

1
2 −ε

,Ḣ
− 1

2 +ε
.

(3.24)

It is shown in the same way (in fact it can be concluded from the above by interchanging P1
and P ∗

1 , u and u′, and conjugating), that

I2 ≡ 〈∂nu, r+P ∗
1 u′〉

Ḣ
a− 1

2 +ε
,H

1
2 −a−ε

,

satisfies

I2 = (γ0w,γ0w
′)L2(R

n−1) + 〈∂nw,w′〉
Ḣ

− 1
2 +ε

,H
1
2 −ε

+ 〈P +(n)
u,w′〉

Ḣ
− 1

2 +ε
,H

1
2 −ε

, (3.25)

where P +(n) stands for [P +, ∂n] as in (3.16).
Taking the two contributions together, we find that

I1 + I2 = 2(γ0w,γ0w
′)L2(R

n−1) + 〈w,∂nw
′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε
+ 〈∂nw,w′〉

Ḣ
− 1

2 +ε
,H

1
2 −ε

+ 〈w,P −∗(n)
u′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε
+ 〈P +(n)

u,w′〉
Ḣ

− 1
2 +ε

,H
1
2 −ε

= (γ0w,γ0w
′)L2(R

n−1) + I3, where

I3 = 〈P +u,P −∗(n)
u′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε
+ 〈P +(n)

u,P −∗
u′〉

Ḣ
− 1

2 +ε
,H

1
2 −ε

;

(3.26)

here we used the calculation after (3.14) to reduce the first line to a single boundary integral, and 
collected the last two terms in I3. This will now be further reduced.
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Observe that P +(n) has symbol equal to −∂xn of the symbol of P + = �a+Q+
0 , so it is a 

plus-operator, continuous from Ḣ s(R
n

+) to Ḣ s−a(R
n

+) for all s, with an adjoint r+(P +(n)
)∗e+

going from H
a−s

(Rn+) to H
−s

(Rn+) for all s. P −∗(n)
has similar properties. In particular, 

P +(n)
u = P +(n)

�−a+ e+v is in Ḣ
1
2 −ε′

(R
n

+), cf. (3.22), and so is P −∗(n)
u′, so the dualities in 

I3 identify with L2(R
n+)-scalar products:

I3 = (P +u,P −∗(n)
u′)L2(R

n+) + (P +(n)
u,P −∗

u′)L2(R
n+).

The adjoint of P −∗(n)
is r+P −(n)

e+, since [P −∗
, ∂n]∗ = [P −, ∂n]. Then in view of the mapping 

properties,

I3 = 〈r+P −(n)
e+r+P +u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈r+P −e+r+P +(n)

u,u′〉
H

1
2 −a+ε

,Ḣ
a− 1

2 −ε

= 〈r+(P −(n)
e+r+P + + r+P −e+r+P +(n)

)u,u′〉
H

1
2 −a+ε

,Ḣ
a− 1

2 −ε
.

(3.27)

We now use moreover, that

r+P −e+r+P +(n)
u = r+P −P +(n)

u, r+P −(n)
e+r+P +u = r+P −(n)

P +u

(because of the support-preserving properties, as in [17] Th. 4.2), so that

I3 = 〈r+(P −P +(n) + P −(n)
P +)u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
.

Here we can perform a little calculation on the ψdo’s on Rn:

P −P +(n) + P −(n)
P + = P −P +∂n − P −∂nP

+ + P −∂nP
+ − ∂nP

−P +

= P −P +∂n − ∂nP
+P − = P

(n)
1 ,

(3.28)

showing that in fact

I3 = 〈r+P
(n)
1 u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
.

Inserting this in (3.26), we reach the conclusion that

I1 + I2 = (γ0(P
+u), γ0(P

−∗
u′))L2(R

n−1) + 〈r+P
(n)
1 u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
. (3.29)

The boundary term can be further clarified as follows: Let v = r+�a+u as in (3.22). We know 
from [17] (cf. e.g. Cor. 5.3) that γ0v = �(a + 1)γ0((x

−a
n )u). In view of Theorem 2.6, we have 

that

q+(x, ξ ′, ξn) = 1 + f (x, ξ ′, ξn),
0
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where f is in H+ as a function of ξn; f ∈ S0
1,0(R

n, Rn−1, H+). Hence

Q+
0 = I + F, F = Op (f ).

Moreover, �a+ = (1 +�)�a+, where � has symbol ψ(ξ) in H+ with respect to ξn, cf. [17] (1.16) 
and Lemma 6.6; ψ ∈ S0

1,0(R
n, Rn−1, H+). It follows that

Q+
0 �a+ = (I + F)(I + �)�a+ = (I + F1)�

a+,

where F1 has symbol f1 ∈ S0
1,0(R

n, Rn−1, H+). (One could also deal with the factors I + F and 
I + � in two successive steps, to avoid using Leibniz products.) By the rules of the Boutet de 
Monvel calculus,

γ0(F1v) = (2π)−n

∫
Rn−1

eix′·ξ ′
∫
R

f1(x, ξ ′, ξn)F(e+v(x′, xn)) dξndξ ′ = 0. (3.30)

(Briefly recalled, the reason is that both f1 and F(e+v(x′, xn)) are in H+ as functions 
of ξn — the latter because e+v is supported in R

n

+; then their product is O(〈ξn〉−2) and holomor-
phic in C−, so the integral over R can be transformed to a closed contour in C− and therefore 
vanishes.) It follows that

γ0(P
+u) = γ0(Q

+
0 �a+u) = γ0(v + F1v) = γ0v = γ0(�

a+u) = �(a + 1)γ0(x
−a
n u). (3.31)

As a slight variant, we also have, with v′ = �a+u′:

γ0(P
−∗

u′) = γ0(Q
−
0

∗
s̄0�

a+u′) = γ0(Q
−
0

∗
s̄0(I + �)v′) = γ0(s̄0v

′ + F2v
′)

= γ0(s̄0v
′) = s̄0�(a + 1)γ0(x

−a
n u′),

(3.32)

where Q−
0

∗
s̄0(I + �) = s̄0I + F2, and also F2 has symbol in H+ w.r.t. ξn, hence does not 

contribute. (Recall that s0 is a function of x, namely s0(x) = q0(x, 0, 1) = p0(x, 0, 1); in the 
final formula it is just its value on {xn = 0} that enters.)

We conclude that

(γ0(P
+u), γ0(P

−∗
u′))L2(R

n−1) = �(a + 1)2
∫

Rn−1

γ0(x
−a
n u) s0γ0(x

−a
n ū′) dx′, (3.33)

whereby

I1 + I2 = �(a + 1)2
∫

Rn−1

s0 γ0(x
−a
n u)γ0(x

−a
n ū′) dx′ + 〈r+P

(n)
1 u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
. (3.34)

Finally, we must also treat the contribution from R = �a−R1�
a+. As already noted, the sym-

bol r1(x, ξ) of R1 is in H−1 as a function of ξn, so we can apply the projections h+ and h−, 
decomposing
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r1(x, ξ) = r+
1 (x, ξ) + r−

1 (x, ξ), r±
1 ∈ S−1

1,0(R
n,Rn−1,H±

−1). (3.35)

Denote the hereby defined operators R±
1 ; R1 = R+

1 +R−
1 . Then when we set S− = �a−R−

1 , S+ =
R+

1 �a+, R is decomposed as

R = �a−R−
1 �a+ + �a−R+

1 �a+ = S−�a+ + �a−S+; (3.36)

a sum of two operators that are products of a minus-operator and a plus-operator. To each of these 
products, we can apply the same method as we did to P−P +. This reduces the corresponding 
integrals to scalar products over the boundary plus commutator contributions:

I4 ≡ 〈r+Ru,∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu, r+R∗u′〉

Ḣ
a− 1

2 +ε
,H

1
2 −a−ε

= (γ0(�
a+u), γ0(S

−∗
u′))L2(R

n−1) + 〈�a+u,S−∗(n)
u′〉

H
1
2 −ε

,Ḣ
− 1

2 +ε

+ (γ0(S
+u), γ0(�

a+u′))L2(R
n−1) + 〈S+(n)

u,�a+u′〉
Ḣ

− 1
2 +ε

,H
1
2 −ε

.

(3.37)

(The dualities in the second and third line reduce to L2-scalar products since S− and S+ are of 
negative order.) Since R−

1
∗

and R+
1 have symbols in H+ as functions of ξn, the boundary values 

of S−∗
u′ and S+u are zero, so only the commutator terms survive. These are reduced in a similar 

way as in the treatment of P1, to give

I4 = (r+R(n)u,u′)L2(R
n+).

Collecting all the terms, we find (3.18). As accounted for in the beginning of the proof, it can 
be written in the form (3.17) when u, u′ ∈ Ha(a+1)(R

n

+). �
One can in particular conclude:

Corollary 3.5. For u, u′ ∈ Ha(s)(R
n

+) with s > a + 1
2 ,

〈r+(−�)au, ∂nu
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂nu, r+(−�)au′〉

Ḣ
a− 1

2 −ε
,H

1
2 −a+ε

(3.38)

= �(a + 1)2
∫

Rn−1

γ0(x
−a
n u)γ0(x

−a
n ū′) dx′

for small ε > 0. When s ≥ a + 1, this can be written as∫
R

n+

(−�)au∂nū
′ dx +

∫
R

n+

∂nu (−�)aū′ dx = �(a + 1)2
∫

Rn−1

γ0(x
−a
n u)γ0(x

−a
n ū′) dx′. (3.39)

Proof. Write

(−�)a = P + S, where P = Op (η(ξ)|ξ |2a), S = Op ((1 − η(ξ))|ξ |2a); (3.40)
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η(ξ) denoting an excision function as in (2.11). Then P satisfies the hypotheses of Theorem 3.4, 
so (3.38) holds for this operator.

Now consider S . Its symbol s(ξ) = (1 − η(ξ))|ξ |2a is bounded and supported in B1 =
{|ξ | ≤ 1}. The same holds for all the symbols sα = ξα(1 − η(ξ))|ξ |2a , α ∈ N

n
0 , so they all de-

fine bounded operators in Ht(Rn), for all t ∈ R. Since Op (sα) = DαS = SDα , we see that S
and its compositions with Dα are smoothing operators, going from H∞(Rn) = ⋃

t H
t (Rn) to 

H−∞(Rn) = ⋂
t H

t (Rn).

Recall from (3.9) that u ∈ Ḣ a+ 1
2 −ε′

(R
n

+), ∂nu ∈ Ḣ a− 1
2 −ε′

(R
n

+) for any ε′ > 0; here we can 
choose ε′ so that σ = a − 1

2 − ε′ ∈ ]− 1
2 , 12 [. Then Su ∈ H−∞(Rn); and

〈r+Su, ∂nu
′〉

H
−σ

,Ḣ σ = 〈Su, ∂nu
′〉H−σ (Rn),Hσ (Rn), (3.41)

since Su = e+r+Su + e−r−Su, where the terms are in Ḣ |σ | = H
|σ |

over R
n

+ resp. R
n

−, and 
e−r−Su vanishes on ∂nu

′. In the last expression in (3.41), ∂n can be moved to the left-hand side 
with a minus, and S can be moved to the right-hand side replaced by S∗ (of the same type), with 
suitable adaptation of the duality indications. Then we find that

〈r+Su, ∂nu
′〉

H
−σ

,Ḣ σ + 〈∂nu, r+S∗u′〉
Ḣ σ ,H

−σ = 0,

and when this is added to the integration by parts formula for P , we find (3.38).
When s ≥ a + 1, then u and ∂nu are functions, and so are r+Pu and Su, with similar state-

ments for u′. Then the formula can be written as in (3.39). �
4. Integration by parts over bounded smooth domains

In this part, we consider a classical ψdo P of order 2a on Rn and its restriction to a bounded 
smooth subset �. Assuming that the symbol is even (cf. (2.40)), we have that it satisfies the 
a-transmission condition in any direction at all points, hence at the boundary of any choice of �. 
The indications r± and e± now pertain to the embedding � ⊂R

n.
We begin with a simple integration-by-parts formula, that can be shown by reduction to oper-

ators of order 0.

Theorem 4.1. Let P be a classical ψdo on Rn of order 2a for some a > 0, with even symbol. 
Then for u, u′ ∈ Ha(s)(�), s ≥ a,

〈r+Pu,u′〉
H

−a
(�),Ḣ a(�)

− 〈u, r+P ∗u′〉
Ḣ a(�),H

−a
(�)

= 0. (4.1)

When s ≥ 2a, this can also be written∫
�

Pu ū′ dx −
∫
�

uP ∗u′ dx = 0. (4.2)

Proof. We shall apply the families of order-reducing operators �(t)
+ and �(t)

−,+, t ∈ R, intro-

duced in [17] and recalled in the Appendix, chosen such that �(t)
−,+ : H

s

p(�) → H
s−a

p (�) and 
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�
(t)
+ : Ḣ a−s

p′ (�) → Ḣ−s
p′ (�) are adjoints for all s ∈R. Recall that Ha(s)

p (�) = �
(−a)
+ e+H

s−a

p (�). 
We restrict the attention to the case p = 2.

Since P is even, it has the a-transmission property at any boundary; then the operator

Q = �
(−a)
− P�

(−a)
+ , (4.3)

is a ψdo of order 0 having the 0-transmission property at the boundary of �. Recall that r+P

maps Ha(s)(�) continuously into H
s−2a

(�) for all s > a − 1
2 , cf. [17] Th. 4.2.

Let

w = r+�
(a)
+ u, w′ = r+�

(a)
+ u′;

they are in H
s−a

(�), which identifies with a subset of L2(�) since s ≥ a. Then

u = �
(−a)
+ e+w, u′ = �

(−a)
+ e+w′ ∈ Ḣ a(�)

(using that �(−a)
+ lifts e+L2(�) to Ḣ a(�)), and r+Pu, r+P ∗u′ ∈ H

s−2a
(�) ⊂ H

−a
(�). (Since 

u is an L2-function supported in �, we identify it with r+u.) Moreover (cf. [17]),

r+Pu = r+�
(a)
− e+r+Q�

(a)
+ u = r+�

(a)
− e+r+Qe+w,

r+P ∗u′ = r+�
(a)
− e+r+Q∗�(a)

+ u′ = r+�
(a)
− e+r+Q∗e+w′.

(4.4)

Now since r+�
(a)
− e+ and �(a)

+ are adjoints,

〈r+Pu,u′〉
H

−a
,Ḣ a = 〈r+�

(a)
− e+r+Qe+w,�

(−a)
+ w′〉

H
−a

,Ḣ a = (r+Qe+w,w′)L2(�).

There is a similar formula for P ∗, so we find

〈r+Pu,u′〉
H

−a
,Ḣ a − 〈u, r+P ∗u′〉

Ḣ a,H
−a

= (r+Qe+w,w′)L2(�) − (w, r+Q∗e+w′)L2(�). (4.5)

Since Q is of order 0, the adjoint of r+Qe+ in L2(�) is r+Q∗e+, and

(r+Qe+w,w′)L2(�) − (w, r+Q∗e+w′)L2(�) = 0. (4.6)

This shows (4.1).
When s ≥ 2a, r+Pu and r+P ∗u′ ∈ L2(�), so the formula can be written as in (4.2). �
The formula can be extended to suitable Lp, Lp′ -dualities.
Our main aim is to show extensions of the integration-by-parts formula in Theorem 3.4 to the 

curved situation.
First there is a result in the spirit of Theorem 3.1.
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Theorem 4.2. Let P − be an operator of order a (i.e., continuous from Hs(Rn) to Hs−a(Rn)

for all s ∈ R) such that r+P −e+ maps H
s
(�) continuously to H

s−a
(�) with adjoint 

P −∗ : Ḣ a−s(�) → Ḣ−a(�) for all s ∈ R. Assume that the commutator

P −(j) = P −∂j − ∂jP
−

has similar mapping properties. Let w, w′ ∈ H
s
(�) with s ≥ 1

2 + ε for some small ε > 0, and 
assume that w′ = r+P −∗

u′ for some u′ ∈ Ha(s+a)(�) with P −∗
u′ = e+w′. Then

〈r+P −e+w,∂ju
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
=

∫
∂�

νj γ0w γ0w̄
′ dσ + 〈w,∂jw

′〉
H

1
2 −ε

,Ḣ
− 1

2 +ε
(4.7)

+ (w,P −∗(j)
u′)L2(�),

where νj (x) is the j ’th component of the interior normal vector ν(x) at x ∈ ∂�.

Proof. Recall the standard Gauss–Green formula

−
∫
�

∂jϕ dx =
∫
∂�

νjγ0ϕ dσ, (4.8)

where γ0ϕ is the restriction of ϕ to ∂� and dσ is the induced measure on ∂�; it holds for 
sufficiently regular functions ϕ. We can write it as a distribution formula on Rn (with sesquilinear 
duality):

〈∂j 1�,ϕ〉Rn = −〈1�, ∂jϕ〉Rn = 〈1, νj γ̃0ϕ〉∂� for ϕ ∈ C∞
0 (Rn), (4.9)

where the last brackets is a duality over ∂� consistent with the scalar product in L2(∂�, dσ). For 
accuracy, we denote by γ̃0 the restriction operator going from functions on Rn to functions on 
∂� (sometimes called the two-sided trace operator); it is this one that has nice adjoint properties. 
In fact,

γ̃0 : Hs(Rn) → Hs− 1
2 (∂�) has an adjoint γ̃ ∗

0 : H
1
2 −s(∂�) → H−s(Rn) for s > 1

2 , (4.10)

and (4.9) shows that ∂j 1� = γ̃ ∗
0 νj .

There is also a version with two functions W and ϕ: When W ∈ C∞
0 (Rn), ∂j (1�W) =

(∂j 1�)W + 1�∂jW , so

〈∂j (1�W) − 1�∂jW,ϕ〉Rn = 〈(∂j 1�)W,ϕ〉Rn = 〈∂j 1�,Wϕ〉Rn

= 〈1, νj γ̃0(Wϕ)〉∂� = 〈1, νj γ̃0(W) γ̃0(ϕ)〉∂�

= 〈νj γ̃0(W), γ̃0ϕ〉∂� = 〈γ̃ ∗
0 (νj γ̃0(W)),ϕ〉Rn ,

showing that

∂j (1�W) = 1�∂jW + γ̃ ∗(νj γ̃0(W)).
0
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Setting r+W = w, we find the formula

∂j e
+w = e+∂jw + γ̃ ∗

0 (νj γ0w). (4.11)

It extends by continuity to more general functions, namely w ∈ H
1
2 +ε

(�) with γ0w ∈ Hε(∂�).
For the left-hand side in (4.7) we then find:

〈r+P −e+w,∂ju
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
= 〈w,P −∗

∂ju
′〉

H
1
2 +ε

,Ḣ
− 1

2 −ε

= 〈w,∂jP
−∗

u′ + P −∗(j)
u′〉

H
1
2 +ε

,Ḣ
− 1

2 −ε
= 〈w,∂j e

+w′ + P −∗(j)
u′〉

H
1
2 +ε

,Ḣ
− 1

2 −ε

= 〈w,e+∂jw
′ + γ̃ ∗

0 (νj γ0w
′) + P −∗(j)

u′〉
H

1
2 +ε

,Ḣ
− 1

2 −ε

=
∫
∂�

νjγ0wγ0w̄
′ dσ + 〈w,e+∂jw

′〉
H

1
2 −ε

,Ḣ
− 1

2 +ε
+ (w,P −∗(j)

u′)L2(�).

Here we used the information on adjoints and inserted (4.11) applied to w′; the duality indications 
could be changed since e+∂jw

′ and P −∗(j)
u′ lie in better spaces Ḣ− 1

2 +ε , resp. Ḣ
1
2 +ε . �

To treat the full problem, we shall use local coordinates.
Let � be a smooth bounded subset of Rn. Then � has a finite cover by bounded open sets 

U0, . . . , UI0 with diffeomorphisms κi : Ui → Vi , Vi bounded open in Rn, such that Ui ∩ � is 
mapped to Vi ∩R

n+ and Ui ∩ ∂� is mapped to Vi ∩ ∂R
n

+; as usual we write ∂R
n

+ =R
n−1. When 

P is a ψdo on Rn, its application to functions supported in Ui carries over to functions on Vi as 
a ψdo P̃ (i) defined by

P̃ (i)v = P(v ◦ κi) ◦ κ−1
i , v ∈ C∞

0 (Vi). (4.12)

Remark 4.3. A useful choice near ∂� is where we provide the (n −1)-dimensional manifold ∂�

with coordinate charts κ ′
i : U ′

i → V ′
i ⊂R

n−1, i = 1, . . . , I0, and consider a tubular neighborhood 
�r = {x′ + tν(x′) | x′ ∈ ∂�, |t | < r}, where ν(x ′) = (ν1(x

′), . . . , νn(x
′)) is the interior normal to 

∂� at x′ ∈ ∂�, and r is taken so small that the mapping x′ + tν(x′) �→ (x′, t) is a diffeomorphism 
from �r to ∂� × ]−r, r[. Then for each coordinate patch κ ′

i , we can use the mapping κi : x′ +
tn(x′) �→ (κ ′

i (x
′), t) as the diffeomorphism in dimension n; κi goes from Ui to Vi , where

Ui = {x′ + tn(x′) | x′ ∈ U ′
i , |t | < r}, Vi = V ′

i × ]−r, r[. (4.13)

The advantage is that the normal ν(x′) at x′ ∈ ∂� is carried over to the normal (0, 1) at 
(κ ′

i (x
′), 0). Moreover, for points x ∈ �r,+ = �r ∩ �, t is a good approximation to the distance 

function d(x) = dist (x, ∂�); their difference goes to 0 for t → 0.
We can supply these charts with a chart consisting of the identity mapping on an open set U0

containing � \ �r,+, with U0 ⊂ �, to get a full cover of �.

Together with the cover by local coordinate charts there exists an associated partition of unity 
ϕ0, . . . , ϕI such that each ϕi is in C∞(Ui) taking values in [0, 1], and 

∑
ϕi(x) = 1 for 
0 0 0≤i≤i0
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x ∈ �. It will be convenient in the following to have the more refined concept of a partition of 
unity subordinate to a system of local coordinates, where any two functions are supported in one 
of the Ui ’s. This fact was originally used in Seeley [37], proofs are given (in more complicated 
cases) in [14], Appendix, and [15], Ch. 8. For the convenience of the reader we provide a proof 
here.

Lemma 4.4. There exists a system of coordinate charts κi : Ui → Vi , i = 0, . . . , I1, and a subor-
dinate partition of unity �j , j = 1, . . . , J0 (with values in [0, 1] and sum 1 on �), such that for 
each pair k, l ≤ J0 there is an i = i(k, l) ≤ I1 such that supp�k ∪ supp�l ⊂ Ui .

Proof. We start out with an arbitrary cover by coordinate charts κi : Ui → Vi , i = 0, . . . , I0. By 
the compactness of �, there is a δ > 0 such that any subset of � with diameter ≤ δ is contained in 
one of the Ui ’s. Cover � with a finite system of open balls Bj with radius ≤ δ/4, j = 1, . . . , J0. 
When Bj1 and Bj2 are two such balls, we have two possibilities:

1) If Bj1 ∩ Bj2 = ∅, it has diameter ≤ δ, hence lies in a set Ui , take the first such i. We shall 
adjoin the set U ′ = Bj1 ∪Bj2 to our system, using the mapping κi to define a coordinate mapping 
κ ′ from U ′ to V ′ = κi(Bj1 ∪ Bj2).

2) If Bj1 ∩Bj2 = ∅, the balls lie in two possibly different sets Ui1 and Ui2 (take the first i1 and 
first i2 that occur); then we shall adjoin the coordinate neighborhood U ′ = Bj1 ∪Bj2 to the given 
system using as coordinate transformation the mapping κi1 on Bj2 and κi2 on Bj2 . Here we may 
have to make a translation τ of the image κi2(Bj2) to make it disjoint from κii (Bj1). In this way 
we get a coordinate chart κ ′ from U ′ to V ′ = κi1(Bj1) ∪ τκi2(Bj2).

We do this for all pairs j1, j2 and enumerate the resulting coordinate charts κ ′ : U ′ → V ′
by numbers i = I0 + 1, . . . , I1; then we get an extended cover of � by coordinate charts 
κi : Ui → Vi , i = 0, . . . , I1.

Finally, let �j , j = 1, . . . , J0, be a partition of unity associated with the cover Bj , j =
1, . . . , J0 (i.e. with �j ∈ C∞

0 (Bj ) for each j ), then any two functions �k, �l have their support in 
one of the open sets in the extended cover. �

We now consider a classical ψdo P on Rn of order 2a with even symbol, elliptic avoiding a 
ray. It has the a-transmission property with respect to �, and an application of Theorem 3.4 in 
local coordinates shows that the factorization index is a. Then by the general theory of [17], the 
Dirichlet problem (A.10) satisfies: When u ∈ Ḣ σ (�) (with σ > a − 1

2 ) solves (A.10) for some 

f ∈ H
s−2a

(�) with s > a − 1
2 , then u ∈ Ha(s)(�); moreover, r+P is Fredholm from Ha(s)(�)

to H
s−2a

(�). Our principal integration-by-parts theorem is:

Theorem 4.5. Let P be a classical ψdo on Rn of order 2a (0 < a < 1), elliptic avoiding a ray, 
and with even symbol. For u, u′ ∈ Ha(s)(�) with s ≥ a + 1 there holds, for j = 1, . . . , n:

∫
�

Pu∂j ū
′ dx +

∫
�

∂juP ∗u′ dx

= �(a + 1)2
∫
∂�

s0νjγ0(d
−au)γ0(d

−aū′) dσ +
∫
�

P (j)u ū′ dx,

(4.14)



1868 G. Grubb / J. Differential Equations 261 (2016) 1835–1879
where s0(x) is the value of the principal symbol of P at (x, ν(x)) for x ∈ ∂�, and P (j) =
P∂j − ∂jP .

The term with P (j) vanishes if P is independent of xj (in particular, when P is translation-
invariant).

The formula extends to the case s > a + 1
2 , with the integrals over � replaced by dualities:

〈r+Pu, ∂ju
′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈∂ju,P ∗u′〉

Ḣ
a− 1

2 +ε
,H

1
2 −a−ε

= �(a + 1)2
∫
∂�

νj s0γ0(x
−a
n u)γ0(x

−a
n ū′) dσ + 〈r+P (j)u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
; (4.15)

the last term is a scalar product (P (j)u, u′)L2(�) when a ≤ 1
2 .

Proof. For a transparent notation, we formulate the proof in the case s ≥ a + 1; the extensions 
to dualities for lower s follow easily (as in Theorem 3.4).

Starting with a choice of coordinate charts as in Remark 4.3, we use Lemma 4.4 to extend it to 
a covering of � with a system of coordinate patches κi : Ui → Vi ⊂ R

n, i = 0, . . . , I1, such that 
there is a subordinate partition of unity �j , j = 1, . . . , J0, where for any pair of indices k, l ≤ J0
there is a Ui , i = i(k, l), such that �k and �l have support in Ui . We can moreover choose real 
functions ψk, ψl ∈ C∞

0 (Ui) such that ψk�k = �k , ψl�l = �l (i.e., they are 1 on the respective 
supports). Then

∫
�

(Pu∂j ū
′ + ∂juP ∗u′) dx =

∑
k,l≤J0

∫
�

(P�ku∂j �̄lu
′ + ∂j�kuP ∗�lu′) dx

=
∑

k,l≤J0

∫
�

(Pψk�ku∂jψl�lū
′ + ∂jψk�kuP ∗ψl�lu′) dx

=
∑

k,l≤J0

∫
�

(Pkluk ∂j ū
′
l + ∂juk P ∗

klu
′
l) dx,

(4.16)

where

Pkl = ψlPψk, P ∗
kl = ψkP

∗ψl, uk = �ku, u′
l = �lu

′. (4.17)

For each pair (k, l) we treat the term by use of the coordinate map for Ui , i = i(k, l). Denote by 
P̃kl the operator on Vi ⊂R

n that Pkl carries over to; it has compact kernel support in Vi × Vi . In 
detail, P̃kl = ψ̃

(i)
l P̃ (i)ψ̃

(i)
k , cf. (4.12). The parity property of the symbol, hence the a-transmission 

property, is preserved under the coordinate transformation. By Theorem 2.8 applied to P̃ (i), P̃kl

has a decomposition into a product of ±-factors and a lower-order term:

P̃kl = P̃ −
kl P̃

+
kl + S̃kl, in detail P̃ −

kl = ψ̃
(i)
l P̃ (i)−, P̃ +

kl = P̃ (i)+ψ̃
(i)
k , (4.18)

where P̃ ±
kl preserve support in R

n

±, respectively, and ̃Skl is of order 2a − 1 with a structure like S
in Theorem 3.4, with compact kernel support in Vi × Vi . We can moreover assume that P̃ ± have 
kl
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compact kernel supports in Vi × Vi since multiplication by a smooth cutoff function that is 1 on 
the supports of ψ̃(i)

k , ψ̃(i)
l , changes the operator by a smoothing term.

Now all this is carried back to Ui by the coordinate transformation; P̃ ±
kl are carried over to 

operators P ±
kl , and S̃kl is carried over to Skl . The property that P̃ ±

kl preserve supports in R
n

±, 
respectively, carries over to the property that P ±

kl preserve support in � resp. ��. Then we have 
the adjoint mapping properties (where r+ and e+ are defined relative to � ⊂R

n):

r+P −
kl e

+ : H
s

p(�) → H
s−a

p (�) and P −
kl

∗ : Ḣ a−s
p′ (�) → Ḣ−s

p′ (�) are adjoints,

r+P +
kl

∗
e+ : H

s

p(�) → H
s−a

p (�) and P +
kl : Ḣ a−s

p′ (�) → Ḣ−s
p′ (�) are adjoints.

(4.19)

With this preparation, we can calculate as follows: Denote r+P +
kl uk = w, r+P −

kl

∗
u′

l = w′. 
Then

I =
∫

�∩Ui

(P −
kl P

+
kl uk ∂ju

′
l + ∂juk P +

kl

∗
P −

kl

∗
u′

l ) dx =
∫

�∩Ui

(P −
kl e

+w ∂ju
′
l + ∂juk P +

kl

∗
e+w′) dx.

We apply Theorem 4.2 to the first term, and a conjugated variant to the second term, obtaining

I = 2
∫

∂�∩Ui

νj γ0w γ0w̄
′ dσ +

∫
�∩Ui

(w ∂j w̄
′ + ∂jw w̄′ + w [P −

kl

∗
, ∂j ]u′

l + [P +
kl , ∂j ]uk w̄′) dx

=
∫

∂�∩Ui

νj γ0w γ0w̄
′ dσ +

∫
�∩Ui

[P −
kl e

+r+P +
kl , ∂j ]uk ū′

l dx.

For the second line it was used that 
∫
�∩Ui

(w ∂j w̄
′ + ∂jw w̄′) dx′ gives another copy of ∫

∂�∩Ui
νj γ0w γ0w̄

′ dσ with a minus sign, and the two terms with commutators were reduced 
to a single term as in the proof of Theorem 3.4.

For the term with Skl we proceed as in Theorem 3.4, concluding that it gives no boundary 
contribution, only a commutator term that can be added to the one with P −

kl e
+r+P +

kl .
This leads to the formula∫

�

(Pkluk ∂j ū
′
l + ∂juk P ∗

klu
′
l ) dx =

∫
∂�∩Ui

νj γ0w γ0w̄
′ dσ +

∫
�∩Ui

[Pkl, ∂j ]uk ū′
l dx. (4.20)

The boundary contributions from P ±
kl are found from the values of the functions in the local-

ized situation. Here γ0(P
+
kl uk) comes from

P̃ (i)+ψ̃
(i)
k �̃ku

(i)|xn=0 = P̃ (i)+�̃ku
(i)|xn=0 = lim

xn→0+�(a + 1)x−a
n �̃ku

(i),

by calculations as in (3.31); recall that ψk�k = �k . This carries over to ∂� as �(a +
1) limd→0(d

−a�ku), since d̃(i)/xn → 1 for xn → 0. Similarly, cf. (3.32), γ0(P
−
kl

∗
u′

l ) = �(a +
1)s0γ0(d

−a�lu
′). We conclude that
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∫
∂�∩Ui

νj γ0(P
+
kl uk)γ0(P

−
kl

∗
u′

l ) dσ = �(a + 1)2
∫

∂�∩Ui

νj s0γ0(d
−a�ku)γ0(d

−a�lū
′) dσ.

We have then obtained:∫
�∩Ui

(Pkluk ∂j ū
′
l + ∂juk P ∗

klu
′
l ) dx

= �(a + 1)2
∫

∂�∩Ui

νj s0γ0(d
−a�ku)γ0(d

−a�lū
′) dσ +

∫
�∩Ui

[Pkl, ∂j ]uk ū′
l dx,

for each pair (k, l), and when we sum over k and l, using that 
∑

k �k = ∑
l �l = 1 on �, we find 

(4.14).
The extension to dualities in (4.15), when s > a+ 1

2 , follows when one formulates the detailed 
study of Pkl in terms of dualities as in Theorem 3.4. �

The validity extends to suitable Hölder spaces. To get a very efficient statement, we can apply 
the general result of [16] Th. 4.2, Ex. 4.3, for Hölder–Zygmund spaces, showing that r+P defines 
a Fredholm operator for s > a − 1:

r+P : Ca(s)∗ (�) → C
s−2a

∗ (�). (4.21)

There is also a regularity result stating that when u ∈ Ċt∗(�) for some t > a − 1 (in par-

ticular when u ∈ e+L∞(�)), then r+Pu ∈ C
s−2a

∗ (�) implies u ∈ C
a(s)∗ (�). We recall that 

C
s

∗(�) equals the Hölder space Cs(�) when s > 0, s /∈ N; cf. also (A.3). Here C
a(s)∗ =

�
(−a)
+ e+C

s−a

∗ (�), where �(t)
+ is an order-reducing operator on Rn preserving support in �, as 

recalled in (A.7) and used in the proof of Theorem 4.1. These operators apply also to Cs∗-spaces 
by [16].

To assure that r+Pu is bounded and ∂ju is integrable on �, we take s = 1 +a + ε with ε > 0. 

Then r+Pu ∈ C
1−a+ε

(�), and (when 1 + a + ε /∈ N)

u ∈ Ca(1+a+ε)∗ (�) ⊂ e+daC
1+ε

(�), (4.22)

with ∂ju ∈ e+da−1C
1+ε

(�) + e+daC
ε
(�) ⊂ L1(�). Since the various spaces are invariant un-

der C∞-coordinate changes, the proof of Theorem 4.5 carries through for such functions.
We have hereby obtained:

Corollary 4.6. Formula (4.14) holds also when u, u′ ∈ C
a(1+a+ε)∗ (�), some ε > 0.

This is assured when u, u′ ∈ e+L∞(�) and r+Pu, r+P ∗u′ ∈ C
1−a+ε′

(�) (ε′ = ε when 1 +
a + ε /∈ N, ε′ > ε when 1 + a + ε ∈N).

The assumption on r+Pu in the corollary is a little more general than the assumption in 
[30,34] which take r+Pu ∈ C0,1(�). On the other hand, these authors work under a weaker 
smoothness hypothesis on � (namely that it is C1,1).
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The assumptions in Theorem 4.5 are a considerable generalization.
The advantage of referring to Ha(s)(�) and Ca(s)∗ (�) is that these scales of spaces do not 

depend on a choice of P , but are the appropriate solution spaces for the Dirichlet problem for all
classical elliptic ψdo’s P of order 2a and type a with factorization index a.

The results apply for example to (−�)a and to a’th powers Aa of second-order strongly ellip-
tic differential operators A with C∞-coefficients. Seeley [36] showed that Aa is a classical ψdo 
of order 2a, with a symbol constructed via the resolvent; it is even. Aa is again strongly elliptic, 
since the principal symbol is (a0(x, ξ))a , taking values in {Re z > 0} for |ξ | ≥ 1. For (−�)a one 
can more directly remark that the symbol may be written |ξ |2a = |ξ |2aη(ξ) + |ξ |2a(1 − η(ξ))

with an excision function η (cf. (2.11)), and proceed in a similar way as in Corollary 3.5.
As a consequence of the above results, we can moreover show an integration-by-parts formula 

where ∂j is replaced by a radial derivative x · ∇ = ∑n
j=1 xj ∂j .

Theorem 4.7. Let P be a classical elliptic ψdo on Rn of order 2a (0 < a < 1) with even symbol. 
Then for u, u′ as in Theorem 4.5 or Corollary 4.6 there holds:∫

�

(Pu (x · ∇ū′) + (x · ∇u)P ∗u′) dx = �(a + 1)2
∫
∂�

(x · ν)s0γ0(d
−au)γ0(d

−aū′) dσ

− n

∫
�

Pu ū′ dx +
∫
�

[P,x · ∇]u ū′ dx; (4.23)

here

[P,x · ∇] = P1 − P2, P1 = Op (ξ · ∇ξp(x, ξ)), P2 = Op (x · ∇xp(x, ξ)). (4.24)

When u ∈ Ha(s)(�) with a + 1
2 < s < a + 1, some integrals are replaced by dualities:

〈r+Pu,x · ∇u′〉
H

1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈x · ∇u,P ∗u′〉

Ḣ
a− 1

2 +ε
,H

1
2 −a−ε

(4.25)

= �(a + 1)2((x · ν)s0γ0(d
−au), γ0(d

−au′))L2(R
n)

−n〈r+Pu,u′〉
H

1
2 −a+ε

,Ḣ
a− 1

2 −ε
+ 〈r+[P,x · ∇]u,u′〉

H
1
2 −a+ε

,Ḣ
a− 1

2 −ε
.

Proof. The calculation goes as follows:∫
�

Pu(x · ∇ū′) dx +
∫
�

(x · ∇u)P ∗u′ dx

=
n∑

j=1

∫
�

(xjPu∂j ū
′ + ∂j (xju)P ∗u′ − uP ∗u′) dx

=
n∑

j=1

∫
(P (xju) ∂j ū

′ + [xj ,P ]u∂j ū
′ + ∂j (xju)P ∗u′ − Pu ū′) dx (4.26)
�
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= �(a + 1)2
∫
∂�

(x · ν) s0 γ0(d
−au)γ0(d

−aū′) dσ − n

∫
�

Pu ū′) dx

+
∫
�

∑
j

[P,∂j ]xju ū′ +
∫
�

∑
j

[xj ,P ]u∂j ū
′ dx

For the second equality we have applied Theorem 4.1 to u P ∗u′, and for the third equality we 
have applied Theorem 4.5 to the terms P(xju) ∂j ū

′ and ∂j (xju) P ∗u′.
For the last term, we observe that [xj , P ] equals Op (i∂ξj

p(ξ)), which is a classical ψdo 
of order 2a − 1, again with even symbol (having the a-transmission property at ∂�), so 
[xj , P ]u ∈ H

3
2 −a+ε(�) resp. C2−a+ε(�), and ∂j [xj , P ]u ∈ H

1
2 −a+ε(�) resp. C1−a+ε(�), un-

der the hypotheses in Theorem 4.5 resp. Corollary 4.6 (by [17], Th. 4.2, resp. [16], Th. 3.2(1)). 
Then ∫

�

[xj ,P ]u∂j ū
′ dx +

∫
�

∂j [xj ,P ]u ū′ dx =
∫
∂�

νjγ0([xj ,P ]u)γ0ū
′ dx = 0, (4.27)

since γ0u
′ = 0, so 

∫
�
[xj , P ]u ∂j ū

′ dx = − 
∫
�

∂j [xj , P ]u ū′ dx.
Moreover,

[P,∂j ]xju − ∂j [xj ,P ]u = P∂jxju − ∂j xjPu = [P,xj ∂j ]u,

so the two commutator integrals with ∂j and xj together give 
∫
�
[P, x · ∇]u ū′ dx. This shows 

(4.23).
Considering the symbols, since [P, ∂j ] has symbol −∂xj

p and [xj , P ] has symbol i∂ξj
p (by 

the formula for the Leibniz product, cf. (2.34)),

symbol ([P,∂j ]xj − ∂j [xj ,P ])
= −∂xj

p #xj − iξj # i∂ξj
p

= −xj ∂xj
p − (−i)∂ξj

∂xj
p + ξj ∂ξj

p + (−i)∂xj
∂ξj

p = −xj ∂xj
p + ξj ∂ξj

p,

so [P, x · ∇] has symbol ξ · ∇ξp(x, ξ) − x · ∇xp(x, ξ); this shows (4.24).
The result extends to spaces with lower s as in Theorem 4.5, in the form (4.25). �
Observe some special cases:

Corollary 4.8. In the situation of Theorem 4.7, if P is x-independent then P2 vanishes. If, in 
addition, the symbol p of P is homogeneous of degree 2a (i.e., equals it principal part), then 
P1 = 2aP , and formula (4.23) takes the form∫

�

(Pu (x · ∇ū′) + (x · ∇u)P ∗u′) dx = �(a + 1)2
∫
∂�

(x · ν)s0γ0(d
−au)γ0(d

−aū′) dσ

+ (2a − n)

∫
�

Pu ū′ dx. (4.28)
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Proof. The first statement is obvious. For the second statement, Euler’s formula gives that ξ ·
∇ξp = 2ap, hence P1 = 2aP , and the formula follows by insertion. �

Formula (4.28) for P = (−�)a (and real u = u′) was a principal result of [30], and was 
extended to selfadjoint positive homogeneous x-independent operators P in [34], under lower 
smoothness assumptions that ours. It leads to a Pohozaev-type formula (generalizing a formula 
of Pohozaev [28] for �) that can be used to obtain uniqueness and (non)existence results. We 
similarly find from (4.23):

Corollary 4.9. Let P be as in Theorem 4.7 and selfadjoint, and let u be a bounded real solution 
of the problem

r+Pu = f (u) in �, suppu ⊂ �, (4.29)

where f is a real C0,1-function. Let F(t) = ∫ t

0 f (s) ds. Then

−2n

∫
�

F(u)dx + n

∫
�

f (u)udx

= �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ +

∫
�

[P,x · ∇]uudx, (4.30)

where [P, x · ∇] = P1 − P2 as in (4.24).
If P is x-independent, the formula becomes

−2n

∫
�

F(u)dx + n

∫
�

f (u)udx = �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ +

∫
�

P1uudx. (4.31)

Here if the symbol of P moreover is homogeneous, the formula reduces to

−2n

∫
�

F(u)dx + (n − 2a)

∫
�

f (u)udx = �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ. (4.32)

Proof. Since P = P ∗, the left-hand side of (4.23) reduces for real u = u′ to 2 
∫
�

Pu (x · ∇u) dx. 
Since u is bounded, so is f (u); then u ∈ Ċa(�) by the regularity theory. Then since F(0) = 0, 
F(u) ∈ Ċa(�). We have that

(x · ∇)F (u) =
n∑

j=1

xj ∂jF (u) =
n∑

j=1

xjF
′(u)∂ju = f (u)(x · ∇u),

(x · ∇)F (u) =
n∑

j=1

∂j (xjF (u)) − nF(u).

Then since the integral over � of ∂j (xjF (u)) is zero,
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∫
�

(x · ∇u)f (u)dx =
∫
�

(x · ∇)F (u)dx = −n

∫
�

F(u)dx.

Insertion of this and the formula f (u) = r+Pu in (4.23) leads to (4.30).
The last statements follow as in Corollary 4.8. �
Formula (4.32) is the formula shown in [34].
The new result will for example apply to fractional powers of magnetic Schrödinger operators. 

To draw conclusions on solvability of nonlinear equations, one will have to investigate sign 
properties of the involved integrals.

Let us just end here by illustrating the use in some very simple examples in the x-independent 
case.

Example 4.10. The fractional Helmholtz (or Schrödinger) operator P = (−� +m2)a , 0 < a < 1
and m > 0, has the symbol p(ξ) = (|ξ |2 + m2)a of order 2a. It is not homogeneous, but has the 
(classical) expansion in homogeneous terms

p(ξ) ∼ |ξ |2a + am2|ξ |2a−2 + 1
2a(a − 1)m4|ξ |2a−4 + . . . ,

and it is even. In this case

ξ · ∇p(ξ) = 2a|ξ |2(|ξ |2 + m2)a−1 > 0 for ξ = 0,

and P1 = Op (ξ · ∇p(ξ)) = 2a(−�)(−� +m2)a−1 is positive on the functions v in the Dirichlet 
domain Ha(2a)(�) of P : Here v ∈ Ḣ a(�) ⊂ Ha(Rn) and r+P1v ∈ L2(�), P1v ∈ H−a(Rn), so∫

�

r+P1v v̄ dx = 〈P1v, v〉H−a(Rn),Ha(Rn) = 2a
(2π)n

∫
Rn

|ξ |2(|ξ |2 + m2)a−1|v̂(ξ)|2 dξ > 0

unless v ≡ 0. Let us see what this gives for an eigenvalue problem

r+Pu = λu in �, suppu ⊂ �, (4.33)

for some λ ∈ R and bounded real u. With f (u) = λu, F(u) = 1
2λu2, so the first two integrals in 

(4.31) cancel out, giving

0 = �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ +

∫
�

P1uudx.

By the positivity of P1, this allows the conclusion

γ0(d
−au) = 0 =⇒

∫
�

P1uudx = 0 =⇒ u ≡ 0.

This shows a kind of unique continuation principle for solutions of the eigenvalue equation: 
When u is in the Dirichlet domain and in addition γ0(d

−au) = 0, then u ≡ 0.
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Example 4.11. For the operator in Example 4.10,

P1 = 2a(−�)(−� + m2)a−1 = 2a(−� + m2)a − 2am2(−� + m2)a−1 = 2aP − P3,

with P3 = 2am2(−� + m2)a−1,

here P3 is a positive operator. Thus for bounded real solutions of (4.29), equation (4.31) can be 
written in the form

−2n

∫
�

F(u)dx + (n − 2a)

∫
�

f (u)udx +
∫
�

P3uudx

= �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ. (4.34)

Consider the case f (u) = u|u|r−1 = signu |u|r with an r > 1. Here since F(u) = 1
r+1 |u|r+1, 

(4.34) takes the form

−2n+(n−2a)(r+1)
r+1

∫
�

|u|r+1 dx +
∫
�

P3uudx = �(1 + a)2
∫
∂�

(x · ν) s0γ0(d
−au)2 dσ. (4.35)

Consider a starshaped domain � (n ≥ 2); we can assume that 0 is a center. Then x · ν ≤ 0 on ∂�

(recall that our ν is the interior normal). Note that

[−2n + (n − 2a)(r + 1) =] (n − 2a)r − (n + 2a)� 0 ⇐⇒ r � n+2a
n−2a

.

In the critical and supercritical cases r ≥ n+2a
n−2a

we thus have that if u is a bounded solution (hence 
is in Ċa(�)), then the left-hand side of (4.35) is > 0 unless u ≡ 0, and the right-hand side is ≤ 0.

This shows nonexistence of nontrivial solutions, when r ≥ n+2a
n−2a

.
There is a treatment of existence questions in [32], which goes beyond the case of homoge-

neous integral operator kernels, by allowing nonnegative kernels with certain growth estimates 
on rays. That approach may possibly also be applicable to this example.
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Appendix A. Spaces and pseudodifferential operators

We here collect the notation and concepts from the theory of pseudodifferential operators that 
will be used, including some results from [17,16]. Since the set-up is explained in a much more 
elaborate form there, in particular in [17], we shall just give a brief summary here.

A pseudodifferential operator (ψdo) P on Rn is defined from a symbol p(x, ξ) on Rn × R
n

by

Pu = p(x,D)u = Op (p(x, ξ))u = (2π)−n

∫
eix·ξp(x, ξ)û dξ =F−1

ξ→x(p(x, ξ)û(ξ)); (A.1)
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here F is the Fourier transform (Fu)(ξ) = û(ξ) = ∫
Rn e−ix·ξ u(x) dx. We refer to textbooks such 

as Hörmander [23], Taylor [41], Grubb [15] for the rules of calculus. [15] moreover gives an 
account of the Boutet de Monvel calculus of pseudodifferential boundary problems, cf. also 
e.g. [14]. A standard choice is to take p in the symbol space Sr

1,0(R
n × R

n), consisting of 

C∞-functions p(x, ξ) such that ∂β
x ∂α

ξ p(x, ξ) is O(〈ξ〉r−|α|) for all α, β , for some r ∈ R; then p
and P have order r . Also more general symbol spaces will be used in this paper. When P is a 
ψdo on Rn, P+ = r+Pe+ denotes its truncation to Rn+, or to �, depending on the context.

Let 1 < p < ∞ (with 1/p′ = 1 − 1/p), then the Lp-Sobolev spaces (Bessel-potential spaces) 
are defined for s ∈ R by

Hs
p(Rn) = {u ∈ S ′(Rn) | F−1(〈ξ〉s û) ∈ Lp(Rn)},

Ḣ s
p(�) = {u ∈ Hs

p(Rn) | suppu ⊂ �},
H

s

p(�) = {u ∈D′(�) | u = r+U for some U ∈ Hs
p(Rn)};

(A.2)

here suppu denotes the support of u. The definition is also used with � = R
n+. In most current 

texts, H
s

p(�) is denoted Hs
p(�) without the overline (that was introduced along with the notation 

Ḣ in [21], [23] Appendix B.2), but we keep it here since it is practical in indications of dualities, 
and makes the notation more clear in formulas where both types occur. When p = 2, the mention 
of p is usually left out.

We recall that H
s

p(�) and Ḣ−s
p′ (�) are dual spaces with respect to a sesquilinear duality 

extending the L2(�)-scalar product, written e.g.

〈f,g〉
H

s
p(�),Ḣ−s

p′ (�)
, or just 〈f,g〉

H
s
p,Ḣ−s

p′ .

There is a wealth of other interesting scales of spaces, the Triebel–Lizorkin and Besov spaces 
F s

p,q and Bs
p,q , where the problems can be studied; see details in [16]. In the present work, 

we shall just use the Hölder–Zygmund spaces Bs∞,∞, also denoted Cs∗. These are interesting 
because Cs∗(Rn) equals the Hölder space Cs(Rn) when s ∈ R+ \N. There are similar statements 
for derived spaces over Rn+ and �, and again the conventions C and Ċ are used for spaces of 
restricted resp. supported functions. For integer values one has, with Ck

b(R
n) denoting the space 

of functions with bounded continuous derivatives up to order k,

Ck
b(Rn) ⊂ Ck−1,1(Rn) ⊂ Ck∗(Rn) ⊂ Ck−0(Rn) when k ∈ N,

C0
b(Rn) ⊂ L∞(Rn) ⊂ C0∗(Rn),

(A.3)

and similar statements for derived spaces.
We use the notation 

⋃
ε>0 Hs+ε

p (Rn) = Hs+0
p (Rn), 

⋂
ε>0 Hs−ε

p (Rn) = Hs−0
p (Rn), applied in 

a similar way for the other scales of spaces.
A ψdo P is called classical (or polyhomogeneous) when the symbol p has an asymptotic 

expansion p(x, ξ) ∼ ∑
j∈N0

pj (x, ξ) with pj homogeneous in ξ of degree m − j for all j , and 

p(x, ξ) − ∑
j<J pj (x, ξ) ∈ Sm−J

1,0 (Rn ×R
n) for all J . Then P has order m. One can even allow 

m to be complex (with complex homogeneities, pj(x, tξ ) = tm−jp(x, ξ) for |ξ | ≥ 1, t ≥ 1); then 
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p and its remainders are in SRe m−J
1,0 (Rn × R

n); the operator and symbol are still said to be of 
order m.

Here there is an additional definition, introduced by Hörmander in [21,23]: P satisfies the 
μ-transmission condition at ∂� (in short: is of type μ) for some μ ∈ C when, in local coordi-
nates,

∂β
x ∂α

ξ pj (x,−ν) = eπi(m−2μ−j−|α|)∂β
x ∂α

ξ pj (x, ν), (A.4)

for all x ∈ ∂�, all j, α, β , where ν denotes the interior normal to ∂� at x. The implications of 
the μ-transmission condition were a main subject of [17].

A special role in the theory is played by the order-reducing operators. There is a simple 
definition of operators �μ

± on Rn

�
μ
± = Op (([ξ ′] ± iξn)

μ) (A.5)

(or with [ξ ′] replaced by 〈ξ ′〉); they preserve support in R
n

±, respectively. Here the function 
([ξ ′] ± iξn)

μ does not satisfy all the estimates required for the class SRe μ
1,0 (Rn × R

n), but the 
operators are useful for many purposes. There is a more refined choice �μ

± [13,17], with symbols 

λ
μ
±(ξ) that do satisfy all the estimates for SRe μ

1,0 (Rn × Rn); here λμ
+ = λ

μ
−. The symbols have 

holomorphic extensions in ξn to the complex halfspaces C∓ = {z ∈ C | Im z ≶ 0}, and hence the 
operators preserve support in R

n

±, respectively; operators with that property are called plus- resp. 

minus-operators. There is also a pseudodifferential definition �(μ)
± adapted to the situation of a 

smooth domain �.
It is elementary to see by the definition of the spaces Hs

p(Rn) in terms of Fourier transforma-
tion, that the operators define homeomorphisms for all s:

�
μ
± : Hs

p(Rn)
∼→ Hs−Re μ

p (Rn), �
μ
± : Hs

p(Rn)
∼→ Hs−Reμ

p (Rn) (A.6)

(and so does of course �μ = Op (〈ξ〉μ)). The special interest is that the plus/minus operators also 
define homeomorphisms related to R

n

+ and �:

�
μ
+,�

μ
+ : Ḣ s

p(R
n

+)
∼→ Ḣ s−Re μ

p (R
n

+), �
μ
−,+,�

μ
−,+ : H

s

p(Rn+)
∼→ H

s−Re μ

p (Rn+);
�

(μ)
+ : Ḣ s

p(�)
∼→ Ḣ s−Re μ

p (�), �
(μ)
−,+ : H

s

p(�)
∼→ H

s−Re μ

p (�);
(A.7)

for all s ∈ R; here �μ
−,+, �μ

−,+ resp. �(μ)
−,+ is short for r+�

μ
−e+, r+�

μ
−e+ resp. r+�

(μ)
− e+, 

suitably extended to large negative s (cf. Rem. 1.1 and Th. 1.3 in [17]).
One has moreover, that the operators �μ

+ and r+�
μ
−e+ identify with each other’s adjoints 

over R
n

+, because of the support preserving properties; more precisely,

�
μ
+ : Ḣ

Re μ−s

p′ (R
n

+) → Ḣ−s
p′ (R

n

+)

and r+�
μ
−e+ : H

s

p(Rn ) → H
s−Re μ

p (Rn ) are adjoints, (A.8)
+ +
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for 1 < p < ∞ and 1/p + 1/p′ = 1, all s ∈ R. The same holds for the operators �μ
+, �μ

−,+, and 

there is a similar statement for �(μ)
+ and �(μ)

−,+ relative to the set �.
The following special spaces introduced by Hörmander [21] (for p = 2), cf. [17], are particu-

larly adapted to μ-transmission operators P :

Eμ(�) = e+{u(x) = d(x)μv(x) | v ∈ C∞(�)},
Hμ(s)

p (R
n

+) = �
−μ
+ e+H

s−Reμ
p (Rn+), s > Reμ − 1/p′,

Hμ(s)
p (�) = �

(−μ)
+ e+H

s−Re μ

p (�), s > Reμ − 1/p′.

(A.9)

Namely, r+P (of order m) maps them into C∞(�), H
s−Re m

p (Rn+), resp. H
s−Re m

p (�) (cf. [17],
Sections 1.3, 2, 4). In the first line of (A.9), Reμ > −1 (for other μ, cf. [17]) and d(x) is a 
C∞-function vanishing to order 1 at ∂� and positive on �, e.g. d(x) = dist (x, ∂�) near ∂�.

If in addition P is elliptic with factorization index μ0 (≡ μ mod 1), the Dirichlet problem

r+Pu = f, suppu ⊂ �, (A.10)

satisfies by [17], Th. 4.4: When u ∈ Ḣ σ
p (�) (with σ > Reμ0 − 1/p′) solves (A.10) for some 

f ∈ H
s−m

p (�) with s > Reμ0 − 1/p′, then u ∈ H
μ0(s)
p (�); moreover, r+P is Fredholm from 

H
μ0(s)
p (�) to H

s−m

p (�). This will be used in the present paper with μ = μ0 = a, m = 2a for 
some a ∈ ]0, 1[.

One has that Hμ(s)
p (�) ⊃ Ḣ s

p(�), and the distributions are locally in Hs
p on �, but at the 

boundary they in general have a singular behavior (cf. [17] Th. 5.4):

Hμ(s)
p (�)

{
= Ḣ s

p(�) if s ∈ ]Reμ − 1/p′,Reμ + 1/p[,
⊂ e+dμH

s−Re μ

p (�) + Ḣ s
p(�) if s > Reμ + 1/p.

(A.11)
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