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1. 1NT~oDucT10N 

The motivation for the present work comes from a study of initial- 
boundary value problems for the Navier-Stokes equations [G-Sl, 2, 33. 
These problems (or rather, their linearized versions) are degenerate 
parabolic, and we had found a method to get rid of the degeneracy by 
carrying the problems over to pseudo-differential non-degenerate parabolic 
problems, where the results of the book [Gr2] could be used. However, 
the solvability statements for parabolic problems formulated in [Gr2] 
could be made more interesting and useful by some extra developments, in 
particular a deeper analysis of the necessary compatibility conditions and 
an inclusion of all values of the Sobolev space exponents, also those that 
have an exceptional role in boundary value problems. 

Since this study has an interest not only for the Navier-Stokes equa- 
tions, but also more generally (e.g., whenever a reduction of a differential 
operator problem leads to a parabolic pseudo-differential boundary value 
problem), we decided to present it in a separate article. 

We consider a problem 

(i) a,u+P,u+Gu=f for (x, t)EQ=axZ, 

(ii) Tu=q for (x, t)ES=Txl, (1.1) 

(iii) u(,=~=u~ for ~~52, 
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where Sz is a smooth bounded open set in R” with boundary r, and I is 
an interval I= 10, h[, b < +co. With notation as in Boutet de Monvel 
[BM] (cf. also [Gr2]), P is a pseudo-differential operator on R” of order 
d>O having the transmission property at I-, PQ is its restriction to Q, and 
G is a singular Green operator of order and class 6 d: 

G= 2 K,y,+G’. (1.2) 
O</<d 

Here y,u = ( -id/&r)’ uI,-, the K, are Poisson operators, and G’ is a term 
that is well-defined on L*. The operators act in a C” vector bundle E over 
0. T is a normal system of trace operators T, of orders j< d. We denote 
P, + G = M. (ST could also be taken as an n-dimensional manifold with 
boundary, as described in [BM], [Gr2].) The pseudo-differential formula- 
tion contains the usual parabolic differential operator problems as a special 
case. 

The associated L*-realization A, defined by 

Au = (P, + G) u, D(A)= (eHJ(Q, E)I Tu=O), (1.3) 

is also studied. 
Our results contain a complete description of the necessary and sufficient 

compatibility conditions on the data (f, cp, u,l for solutions to exist in 
specific spaces. 

Here is an overview of the contents: 
In Section 2, we recall the properties of Sobolev-Slobodetskii spaces that 

we shall use, in particular the anisotropic spaces Hr.” of order r > 0 in the 
space variable x and of order s B 0 in the time variable t. The spaces Hr.‘ld 
over Q and S are particularly relevant for the problem ( 1.1). 

In Section 3, we briefly recall the definition of the various pseudo- 
differential boundary operators P,, G, K, T, and S entering in the theory, 
and we establish their mapping properties in relation to the anisotropic 
spaces Hr.“. 

Section 4 contains the definition of parabolicity (where, in particular, d 
is an even integer), and recalls the fundamental result of [Gr2] on the 
existence and estimates for the resolvent R, = (A -i)- I. We supply this 
with a theorem on how to modify A by a tinite rank ps.d.0. of order -E 
to get an operator with the spectrum lying in an arbitrary right half 
plane { Re % > u}. 

Section 5 gives a complete discussion of the compatibility conditions 
needed to find a function u E H’.” with given initial data 8: ~1, =0 on 
Q x (0} and boundary data 7”u on S; they have to match at the “corner” 
TX {O}. We here allow non-local (pseudo-differential, normal) trace 
operators T,, extending results of Grisvard [Gri]; and for special values of 
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r and s we give a new integral compatibility condition, equivalent in a 
certain sense to that of [Gri], but invariantly formulated. Finally, we 
extend the interpolation theorem of Grisvard to non-local trace operators, 
showing that 

[H”,(SZ, E), LZ(f2, E)],= H\! “‘“(52, E) for 0~ 10, l[, (1.4) 

where H; is the space of functions UE H” such that those of the conditions 
T,u=O that make sense are valid (with a special interpretation for 
s - t integer). 

In Section 6, we derive the main result on the solvability of (1.1 ), namely 
an existence and uniqueness theorem, fur all r 20, of a solution 
UE H' + “.‘,I+ ‘(Q, E) (with estimates), for all sets of data 

f‘~ H'.'+'(Q, E), 

q= {(P,,E ,j Hr+d- / I.:?.(r+d-/ 1:2’.:d(S,_F/), (1.5) 
OS/<d 

u. E H'+d:'2(12, E), 

satisfying the appropriate compatibility conditions. (More precisely, the 
estimates in the case I = R + depend on the lower bound of the spectrum 
of A, cf. also Purmonen [Pu].) 

Section 7 finally gives some complements to this, namely an extension of 
the solvability to initial data ug in H"(S2, E), all s 2 0, a study of the con- 
nection with holomorphic semigroup theory, and a proof of estimates for 
the solutions of (1 .l ) with f = 0, cp = 0, 

Il~(~)ll~~,~~C~.~.~,f (‘-S)‘de- u~‘Il~oil,,;,w forall t>O,r>,sbO. (1.6) 

This holds for all u,, E H.>,M when a, is less than the real lower bound of 
the spectrum of A; but we furthermore show that (1.6) can be obtained for 
any a,, globally in t, for initial values u0 in a suitable closed subspace V 
of L’(s2, E) of finite codimension (depending on (I, ). This is seen by use of 
the perturbation result from Section 4. We also get improved estimates for 
data {f, 0,O 1 with S valued in V. 

2. ANMTROPIC S~BOLEV-SLOBODETXKI! SPACES 

We denote by LI a bounded open subset of R” with smooth boundary 
X2= f; or in some cases sZ= R”, = {xER”Ix,>O}, with da=R”--‘, 
whose points are denoted x’ = (x,, . . . . x,- ,). We write 2, or ij.+ for a/ax,. 
and Dj or D, for - ia,, where i = ( - 1 )I’*, and we use the multiindex nota- 
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tion D"= 0;' . . ‘0,:” with x = (3,) . . . . SL,)EN”, etc., here 1x1 =r, + ... +r,,. 
For t E R, [t J denotes the largest integer d 1. The scalar product of x and 
y in R” is written x .y, and the norm is 1.~1 = (x .x)’ ‘. We shall use the 
notation, also for s E C, 

(x) = (1 + Ix12)’ ‘. 

The restriction to the boundary is denoted yo: u + uI,.. We denote by 
n’= (n,, . . . . n,,) the unit normal vector field defined near I-, and we write 
yoD;j‘= ;;.fi where D, = xJ’=, n,D,. (In second order problems it is 
customary to use the real definition, where D,. is replaced by 
c, = I,“_, n$,, but the above definition. also used in [Gr2], gives more 
convenient Green’s formulas in higher order cases.) 

Let us first recall the classical Sobolev-Slobodetskii spaces, cf. 
[So, SI, L-M]. Among several possibilities we have chosen to use the nota- 
tion of Lions and Magenes [L-M] in the present paper (with some small 
modifications), since we also refer to their presentation of the interpolation 
theory. H’(R”) (also called W;(R”)) is the space of distributions I; E .Y’(R”) 
for which Ilt:ll,= II(<)‘ti(<)l/,,zoi~, is finite; and H’(Q) is the space of 
restrictions u = r,c to 52, with norm 

Ilull Hr,U, E liu(I,= inf( lloll,l CE H’(R”), u = r,c}. (2.1) 

We denote by H:(o) the closed subspace of H’(R”) consisting of the 
elements supported in 0. Here H;,(Q) coincides with H;(Q) as defined in 
[L-M], except when r = m + l/2, m E N, where H:;.+ ““(0) equals the space 
called H;;b’ Ii2 (I?) in [L-M]; also H “- l’*(Q) deviates from that of 
[L-M], when m E N. For every r E R, H;(a) and H-‘(Q) can be identified 
with one another’s duals; and C,“(f2) is dense in H;(Q) and C=(Q)n 
H’(Q) is dense in H’(Q) (cf., e.g., [Hl, Section 2.53). The present spaces 
have the interpolation property for all s, t (real interpolation): 

[H’(Q) H’(~)ln=H”.-“‘5+” (Q), 

[H#2),‘H$2)]” = H(y t”‘+“‘(i2), for s>,f,sandrER,0E]O, I[. 

(2.2) 

(This is shown in [L-M] for s 2 r 2 0 in the first line and for 0 2 s 2 t in 
the second line (and for general indices avoiding the half-integers); and it 
then follows in full generality, e.g., by use of the homeomorphism 
A, = 0P(( (5’) + it,)‘) from H’(R”) to H” ‘(R”) that sends Hg(R”+ ) onto 
Hi-‘(R: ).) We recall the general interpolation inequality 

for ri E X, (2.3) 
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where X and Y are Hilbert spaces with XC Y (continuous injection), X 
dense in Y. 

For r 2 0, r not integer, the norm in H’(R”) can also be described by 

where the H”, seminorm is defined for s E R + \N by 

1141 $(R”) = 

following Aronszajn [Ar] and Slobodetskii [Sl]. (For integer r, 

IMIT = z,,, <I J(D1ullt2.) For r2 0, the elements of H:(a) are identified 
with the functions they define on B (extended by zero on R”\a). Then 
when r - i is not integer, H;(D) identifies with the closed subspace of 
H’(Q) of functions u such that 7,~ =0 for 0 <j< r - 5. For r =m + 4, 
m E N, H;(a) is a non-closed subspace of H’(a) with a strictly stronger 
norm, satisfying 

dX2,r- [rl,’ dist(x, f) (2.6) 

This formula is valid generally for r E R + . 
The definitions are extended to r by use of local coordinates, and they 

generalize easily to vector valued functions and distributions. 
We now consider the spaces in the case with an extra variable 1. Let 

6 E 10, cc], and denote ]0,6[ = I, or Ib for precision, Q x I= Q or Q,,, and 
TX I= S or Sh. When E is a vector bundle over C?, we denote by E its 
lifting to Q (or to 52 x I’ for other intervals I’), and use a similar notation 
for liftings from I- to S, etc. The basic type of space to be used is the 
anisotropic Sobolev space of order r in the x-variable and of order s in the 
t-variable, where r and s 3 0: 

H’.‘(Q, E) = L2(I; H’(C2, E)) n H’(I; L*(Q, E)), with norm 

Ilull,,, = (ll~lI:2(1:H’)+ II4l~~(l;,.z)r*: 
e.g., for r, s E 10, 1 [, Q = R” x R, (2.7) 

+I 
Id& 1) - Nx, TN2 

pt2 Jt-4’+2.s dx dt dr + Ilull &,). 
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(Similar notation for spaces over r). When E is a trivial bundle, eg., 
E = Sz x CN, we usually just write H’*“(Q, IZ) as H’,“(Q)“, etc. (with N 
omitted in case N = 1). By use of local coordinates, of the inequality, valid 
for 0 6 r’ < r, s’ = s( r - r’)/r, 

(0” (t)‘,= (L:)“((?).“‘)‘--r’<C,~),,m)‘+ (T).‘), (2.8) 

and of restriction and extension operators between spaces over R” and 52, 
one can show that 

II4 H’(,: I,‘(Q)) G c:..v. Ilull //‘~‘(Q)3 for 0 < r’ < r, s’ = s( r - r’)/r. (2.9) 

As shown in [L-M, Proposition 4.2.11, the spaces have the interpolation 

property 

[f,,‘.‘(Q), HP.O(Q)]o=H(I-O)‘+f’p.(l- (‘IS tfl”(Q) 

for r>y>O,s>a>O,(IE JO, l[. (2.10) 

The cases H’.r’d(Q, E), where d is an even integer, are of special interest 
for parabolic problems. In each of the spaces, the set of C r‘ sections is 
dense. 

For precision, we sometimes use the notation for the restriction of a 
function u(x, 1) to f = 1,) (most often for lo = 0) 

rr,,U=4,=,03 (2.1 I ) 

and we sometimes denote f2 x {lo} =52(,“, and f x {to} = I-,,“, instead of 
just l2 or f. 

We denote by H;b;(Q) the closed subspace of H’.“(n x ]-cc, h[) 
consisting of the functions supported in (t > 0). It can be identitied with a 
subspace of He’(Q), closed ifs- i$ N (then it is the subspace of functions 
u with r,dfu=O forj<s- i), but not closed ifs- f~ N; and the norm is 
equivalent to 

(2.12) 

These spaces coincide with the spaces called H’,$Q) in [L-M J, when 
s - k# N. With the present definition, the spaces have unrestrictedly the 
interpolation property 

[H’.;,(Q), fQ’Gf(Q)]e=H;;, c’)r+flP.(l o)\+ o”(Q) 

for r~p~O,.~~ca0,6)E]O, I[, (2.13) 

proved by a variant of the proof of [L-M, Proposition 4.2.11. 
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The space H;b;Y,(S) is defined analogously, and the concepts extend of 
course to spaces of.sections in vector bundles. 

One can also define spaces with negative exponents r and s, but since 
this is quite complicated, we refrain from a systematic treatment (referring 
to [L Ml). 

The following statements are well-known (see, e.g., [L-M, Theorem 4.2.1 
and Proposition 4.2.3 ] ): 

LEMMA 2.1. Let r und s E fi + , and ler a(.~, t) E C * (Q). The mappings 
4x, 11, D::, D:, i’o, und ro, going from C”(Q) 10 C7(Q), C’(S), and 
C x (n,,,), respectively, extend to continuous mappings: 

a(.~, I): H’.“(Q) -+ H’..‘(Q); 

II:,: II”“(Q) + H’ “l.“- 12” “‘(Q) ,for r > 0, 1x1 < r; 

Df: H’-‘(Q)+ H’” ““‘.‘-l(Q) for s>O,j<s; (2.14) 

70:H’..S(Q) ~ H’ 1:2.1’- 1.2) S:‘(S) ,for r > l/2; 

ro:H”‘(Q) -+ H” “2)“s(Q,o,) for s> l/2. 

The mappings y. and r. described here are surjective. 
In particular, when s = r/q for some q > 0, one has the continuity properties 

a(.~, 1): H”+(Q) + H’-(Q); 

0:: H”““(Q) + H’ I”.(’ -1”1”Y(Q) for r >O, Irl Q r; 

0;: H’.‘:‘(Q) + H’-I%‘.‘4 l(Q) for r>O,jQr/q; (2.15) 

yo: H’.‘;‘(Q) ~ H’ 1!2.t’- 1;2):4(s) for r> l/2; 

ro: H’.“Y(Q) -+ H’-Y!2(l?,o,) for r> q/2, 

with y. and r0 surjective. 
On the spaces H’.‘(S), the dlflkrential operutors and r,, act in a similar 

way. 

When b = +a~, the mappings are of course just extended from mappings 
defined on CiL(&,,) n H’.‘( Q,). A similar convention is used in the 
following. 

One has moreover the continuity and surjectiveness of the system of 
trace operators (see, e.g., [L-M, Theorem 4.2.3 and its proof]): 

m 
(i) { 70, . . . . 

y,>: H’.“,,(Q), n H’ -,- I:2.(‘--/ ‘/2’%(s) 

,=O 

for r > m + l/2, (2. 16) 
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{r,, . . . . r,,c!:"): H'-(Q) 4 fi H'-'4 @(Q,o,) 

(ii) , - 0 

for r:q > m + l/2. 

These operators have continuous right inverses. Also, T,U is defined for 
r>O when UE Hr.“’ (Q) with r/q> i; in fact, T,U (also called u(l)) depends 
continuously on 1, 

H’.‘Y(Q) c C”(I; H’ “‘(f2)), (2.17) 

as a special case of the general trace theorem (valid for Xc Y densely and 
continuously) 

L’(I; X)n H’(I; Y)c C”(/; [A’, Y], z). (2.18) 

3. PSEUDO-DIFFTRENTIAL BOUNDARY OPERATORS 

Let us very briefly recall the structure of the operators entering in the 
Boutet de Monvel calculus. (Cf. Boutet de Monvel [BM], Grubb 
[Grl, 21, or, e.g., Rempel and Schulze [R S] for more details.) 

First there are the pseudo-differential operators (ps.d.o.‘s). Here one 
looks at operators P of order n defined on R” (or on a neighborhood a’ 
of 0) by the usual formula 

Pu(x) = OP(p) u(x) = (2n)-” j-R. P” :/7(x, s’) ti(5) r/l!, (3.1) 

where ti is the Fourier transform of u, and where the symbol p(x, <) is a 
C” function, developed in a series of terms p’(.u, 0 (Jo N) homogeneous 
of degree d-j in r for I<1 > I, of which p is an asymptotic sum, in the 
sense that 

with C(X) continuous in x and dependent on the indices. The truncated 
operator P, on 52 is defined by 

P,=r,Pe,, (3.2) 

where eR denotes extension by zero on R”\S2 and r, denotes restriction 
from R” to a. To assure that P, has good continuity properties in the 
Sobolev spaces over 0 (and in particular maps Cm(O) into C=(a)), P is 
assumed to have the so-called transmission property at r, this is in 
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particular satisfied by operators composed of differential operators and 
inverses of elliptic differential operators. We take the order d of P to be 
integer. 

The operators P, of order --3o are precisely the integral operators with 
C” kernel on 0, sometimes called smoothing operators or negligible 
operators. 

Sometimes P is given, with the help of local trivializations, as a mapping 
between vector bundles. P: C5(Q,, E) -+ <J”(sZ,, E’), where ,!? and E’ are 
C”’ vector bundles over 52,~ a, with Elfi = E, E’l a = E’. Then we likewise 
define PO : C “(0, E) + C “(8, E’) by (3.2), where e, now denotes 
extension by 0 on Q,\Q. 

Pseudo-differential operators S over the (n - I)-dimensional manifold f 
are defined from ps.d.o.‘s on R” - ’ with the help of local coordinates. 

Poisson operators of order dc R (going from R”- ! to R”, ) look basically 
as follows: 

Ku(x) = OPK(l) u(x) = (2n)‘-” JR.-, erx’ <’ i?(x’, x,, 5’) fi(<‘) dt’. (3.3) 

Here E (called the symbol-kernel in [Gr2], it is the inverse Fourier trans- 
form in <,, of the symbol k(x’, 5) introduced in [BM]) satisfies estimates 

I(DB,.xyyq.R(x’, x,, S’)IILi~R+)~C(X’)(~‘)d- ‘!2-- ‘=I -m+m’ (3.4) 

for all indices a, /?, m, and m’, and is an asymptotic series of quasi- 
homogeneous terms 

K’(xr, p -‘xn, /.$) = /.I~-‘EJ(X’, x,, 5’) for x’>, 1, ~2 1, 

with ~-XoCIcN EJ satisfying (3.4) with d replaced by d-N. The corre- 
sponding terms in k are homogeneous in (r’, {,,) of degree d- I - j for 
15’1 >, 1. Poisson operators going from f to Q are defined from the ones 
above with the help of local coordinates. 

A trace operator of order de R, going from Q to f, is an operator of the 
form 

Tu= 1 Sk~ku+T’u, (3.5) 

where the yk are the usual trace operators and the St are pseudo-differen- 
tial operators on r of order d - k, respectively, and T’ is a special kind of 
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trace operator that in local coordinates (where Q and f are replaced by 
RI and R” ‘) has the form 

T’u(x’) = OPT(7’) U(X’) 

= (2n)‘-n in-, e”‘.” lox 7(x’, x,, 5’) ti((‘, x,) dx, dt’; (3.6) 

here &( <‘, x,) stands for TX, _ t‘ u(x’, x,,), and 7 is a symbol-kernel with the 
same properties as those of l described above, only with d- i replaced by 
d+ f. 

The number I in (3.5) is called the class of T, and T’ is then said to be 
of class 0; T’ is well-defined on L*(Q), whereas the sum xoCk .=, , Skyku . . 
is only well-defined on If’(Q) for r > I - i. One assigns the symbol 
1 ,,<kC,-, sJx‘, r’) ti to this sum. Trace operators going from Q to r are 
defined from the ones above with the help of local coordinates. 

A scalar trace operator T (3.5) is said to be normal when I = d+ 1 and 
the coefficient Sd is an invertible function. More generally, when T maps 
sections in a vector bundle E over D to sections in a vector bundle F over 
f (in particular, if T is matrix formed), normality means that I = d + 1 and 
the coefficient Sd in the representation (3.5) is a surjective morphism (resp. 
matrix) from El,- onto F. We shall also consider systems of trace operators 
{ Tc,, > . . . . Td,} going from E to F, $ ... OF,,, of orders {d,, . . . . d,,,}; such a 
system is said to be normal when all the orders are different, and each Td, 
is normal (in particular, the class of Td, is d, + 1). 

Finally, a singular Green operator G (s.g.0.) of order dc R and class 
IE N on f2 is an operator 

Gu= c Kkjlku + G’u, (3.7) 
OSk</-1 

where the Kk are Poisson operators of order d - k and G’ has the form, in 
local coordinates where Q is replaced by R: , 

G’u(x) = OPG( d’) u(x) 

= (2n)l -n 5,.-, p’.C’ joE d’(x’, x,, yn. 5’) 45’, y,) dy, dt’. (3.8) 

Here the symbol-kernel g’(x’, x,, y,, r’) (the inverse Fourier transform in 
5, and inverse co-Fourier transform in tf, of the symbol g’(x’, t’, &,, q,,)) 
satisfies estimates 

(3.9) 
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for all indices, and has an asymptotic expansion in a series of quasi- 
homogeneous terms 

$‘(-y’, p ‘.yn, /J ‘J’,, p4’) 

= P *-- ’ + I$‘(,~‘, x,,, y,,, 5’) for I<‘1 B 1, p 3 1, 

such that $-CoG,<Y$’ satisfies (3.9) with d replaced by d-N. The 
corresponding terms in g’ are homogeneous in (t’, r,,, q,,) of degree 
d- 1 -j for l<‘l >, I. 

Again, the class I of G indicates how many of the classical traces it 
contains. The term G’ is of class 0 and is defined on all of L’(Q). One 
assigns the symbol &<kc,-, k,(x’, 5) qt to the sum x,O<kc,. , K,yk. 

Singular Green opera<ors arise typically when Pokson and trace 
operators are composed (as in G = KT); another source is the composition 
of truncated ps.d.o.‘s (cf. (3.2)), where 

(3.10) 

is a singular Green operator. 
The five types of operators P,, S, K, T, and G introduced above have 

the property that compositions among them again lead to operators 
belonging to these types. They are usually considered together in systems, 
generally of the form 

C=@, E’) 

.d = x + X 

P,(I-, F’)’ 
(3.11) 

where E and E’ are C” vector bundles over 0, F and F’ are C’” vector 
bundles over f. When such a system satisfies a certain ellipticity condition, 
then it has a parametrix (or inverse) belonging to the calculus. 

The operators have the continuity properties with respect to Sobolev 
spaces expressed briefly in the formula 

P,+G K 

( 1: 

H’(Q, El H” -“(Q, E’) 

d= X 4 X 

T S H” ‘:‘(I-, F) H” d-- 1;2(r, F’)’ 
(3.12) 

where each entry is of order d, s >, 0 for P, G and T; s - d > 0 for G, T and 
K; and G and T are of class < d. (More refined information is given in 
[BM], [Gr2], and later in this paper.) G and T do not have a meaning 
on the full space L2(s2, E) unless their class is zero. 
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In the treatment of parabolic problems, we use the above pseudo- 
differential operators considered not only on 0 but also on 0 x I. For C 7 
functions, the operators are just defined as above with respect to x and 
considered as constant in 1, and this definition extends by continuity to 
more general spaces. The operators can then be seen as special cases of 
r-dependent pseudo-differential boundary operators (or more general 
operators “acting in t” as well). We shall not study such a calculus 
systematically here. Let-us just mention one point, which is amply dis- 
cussed in [Gr2] (cf., e.g., Definition 1.5.14 and Proposition 2.3.14 there), 
namely that when the symbols of the aboce operators are considered as 
r-dependent (where 7 is the variable in the Fourier transform with respect 
to t) then one has to take the so-called regularity number v into account. 
This is essentially the Hiilder continuity (generalized to include negative 
values) of the strictly homogeneous principal symbols at r’ = 0 (in suitable 
symbol norms, as in (3.4) and (3.9)); and really good estimates are only 
obtained when the regularity is 30. 

For example, when G is of the form G= filO, where K is a Poisson 
(operator of order d with principal symbol-kernel Lo, then since the 
L2(R + ) norm of Lo is Cc( ]5’1”-. I’*), G is of regularity d - i. In this example, 
G is of class I (as defined above). Generally, when G if of order d and class 
I, the regularity v is B 0 if and only if d> max{ I- j, 0); more presicely, 

G has regularity v = min{d, d-f + i). (3.13) 

We do not explicitly use the regularity concept in the present paper, only 
refer to it when it comes up naturally. The systems {P, + G, T} studied in 
the sequel have regularity v > f. 

We shall now see how the various operators act in anisotropic Sobolev 
spaces. To begin with something that is really different from differential 
operators, consider Poisson operators. 

PRoP~sJTJ~N 3.1. Let K be a Poisson operator of order m E R (cf: (3.3), 
etc. ), originally defined as an operator from C n. ( f) to C Oc (a) and extended, 
as an operator that is constant in t, to map Cm(s) into Cw( 0). Then for an) 
r > max{m, 4) and s > 0, K extends to an operator with the continuity 
property 

K: H’ 1.‘2..%(,) --* H’ -“l.“(Q), if‘ m,<f, (3.14) 

K: H’ 1,‘2.(r-- 1j2) W(,) --) H’ m.(r “‘S/r(Q), if m>f. (3.15) 

Proof: It is known from [BM] that K is continuous, 

K: H’- ‘j2(I-) --+ H’- “(SL), (3.16) 
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for r 2 m. When the t-variable is included, this readily gives the continuity 
properties 

K: L2(I; H’-- ‘!‘(I-)) + L’(Z; H’-“(Q)), 

K: H’(I; H” - 1!2 (r)) + H’(I; L’(Q)). 
(3.17) 

When m d f, this implies (3.14) since L’(Q) is continuously imbedded in 
H”--“‘(Q). When m 2 f, we get (3.15) from (3.17), when we furthermore 
apply a version of (2.9) with Q replaced by f, r replaced by r - &, and r’ 
taken equal to m - f. 1 

Remark 3.2. The Poisson operators have a more refined structure than 
what is apparent from (3.16). In fact, the operator K, considered in local 
coordinates (where 52 and f are replaced by R”, and R”. ‘), is continuous, 

J(. f,‘.+ r’ 
. .A’ 9R” ‘)+ H!‘-“J’I(R:), (3.18) 

for all r and r’ E R, where Hp*j(R”+ ) stands for the space of restrictions 
to R”+ of distributions U on R” satisfying 

(t)u (t’)” &3~L2(Rn) (3.19) 

(cf., e.g., [Gr2, Theorem 2.5.13 for lixed p). For example, (3.18) implies 
easily the following rule, allowing negative norms over the boundary: 

IlKull L2(It Him’.r’ m -m:(R: )) 
d c lbll [.+I;/,” -(R” I)) for all m’ > 0, r’ E R. (3.20) 

One point of interest in this is that yj of any order can then be applied to 
Ku, giving yjKr;~L2(I; H”-‘i2-m-‘(R”-‘)); in fact, yjK is a pseudo- 
differential operator on r of order m + j. 

There are related (x’, x,)-anisotropic estimates for the other types of 
pseudo-differential boundary operators, which we invoke whenever they 
are needed. However, we refrain from a systematic analysis here of 
estimates that are anisotropic in all three variables x’, x,, and t at the same 
time, in order to keep notations relatively simple. Actually, one can base 
such an analysis on the considerations already made in [Gr2] concerning 
p-dependent norms, for pd (or cl’/“) there plays the same role as 1~1 here 
(where T is the variable corresponding to t by Fourier transformation). 

For the other types of operators in the Boutet de Monvel calculus, one 
finds 

PROPOSITION 3.3. (1) Let P be a pseudo-differential operator on R” of 
order m E Z, having the transmission property at c define P, on Cm(n) by 
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(3.2) and extend it to C=(Q) as an operator that is constant in t. Then for 
any r>max{m,O} and any ~30, Pn extends to an operator with the 
continuity property 

P,: H’.“(Q) -+ H’--.“(Q), where s’=min{(r-m)s/r,s). (3.21) 

Here and heloh; (r - m) s/r is read as s when r = 0. Similarly, when S is a 
p&o. of order m E R on r, extended to an operator in C”(s) that is 
constant in t, then S extend.y by continuity to a continuous operator 

S: H’*‘(S) -+ H’ - m-s’(S) 

when r, s, and s’ are as aboce. 

(3.22) 

(2) Let T be a trace operator of order m E R and class I EN, 
T=x O<k<,-I Skyk + T’ (cf: (3.5)), defined as an operator from C”(Q) to 
C”(s) ;hit is constant in t. Let G be a singular Green operator of order 
mER and class IEN, G=&<k<l-, K,y,+G’ (cf: (3.7)), defined as an 
operator in C=(Q) that is conita& in t. Let r > max{m + i, 0) for T and 
r>max{m,Oj for G; then for s>O and r>l-4, T and G extend to 
continuous operators 

T: H’.‘(Q) ~ H’- t?- l;*.s’(s), where 

s’=min{(r-m- +)s/r,s}, if I=O; 

s’=min{(r-m- i)s/r, (r-I+$)s/r}, if I> 1; 

G: H”‘(Q) + H’ “,“‘(Q), where 
(3.23) 

s’=min((r-m)s/r,s}, if I=O; 

s’=min{(r-m)s/r, (r-I+f)s/r}, if I> 1. 

Proof: (1) S has the continuity property 

S: H’(r) --t H’ -“(I-), (3.24) 

for all r. When the r-variable is included, this gives the continuity 
properties 

S: L*(Z; H’(T)) + L*(1; H’- “‘(I-)), 

S: H”(/; H”(r)) + H’(I; L’(f)). 
(3.25) 

For m < 0 < r, we then get (3.22) by use of the fact that L*(f) c H’“(T); 
and for r 2 m 2 0, we use instead a version of (2.9) with Q replaced by f 
and r’=m. 
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For P, [BM] shows that 

P,: H’(Q) + H’-“(Q). 

As above, this gives the continuity properties, since r 2 WI, 

P,: L2(Z; H’(Q)) + L2(I; H’- “(f2)), 

P,: H”(I; H”(R)) + H’(I; L*(Q)). 

(3.26) 

(3.27) 

For m <O<r, we then get (3.21) by use of the fact that L2(CI)c H”(Q), 
and for r>,mbO, we use (2.9) with r’=m. 

(2) Now consider T. For the terms Skyk we use that by Lemma 2.1, 
yk maps H’*‘(Q) continuously into H’ k - ‘i2.‘r- k “2)s!‘(S), since 
r > I- i > k + f. Then (3.22) gives that the Sky, are continuous: 

s k7k: H’,“(Q)+ H' -m- 1:2.(r.--m 1;2blr(S) if k<m, 

SkYk: H”“(Q) --, H’. m- liZ.(r-k 1.:2)0(S) if k2m. 
(3.28) 

For the term T’ of class 0 it is known (cf., e.g., [Gr2, Proposition 2.5.23) 
that in local coordinates 

11 T’ull q, m-‘;2(R”. 1) < c Ilul1 L~(R+ +w(R:: ')) for all (T E R. (3.29) 

It follows, by application of e-r to T’u and u and integration in r, that 

11 T’ull L2(R,:H”-m- 1:2(~“:‘)) 11 
s c II41 Lz(R,.L2(R,,,“.H”(R:-‘))) for all CJ E R. (3.30) 

When m < - $, we use that (3.29) gives in particular, for ~7 = m + & 6 0, 

from which 

11 T’“ll H”.J(RxR”-l) < c Ilull ,,O.J(RxR;) 
follows as usual. This, together with (3.30) for u = r, shows the continuity 
of 

T':H'."(RxR:)+H'-"'- 1:2.S(RXR"-1) when m< - i. (3.31) 

When m 2 - i, we have from (3.29) that 

IIT'ullL$(R"-')@ II+,':+'.' 
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Taking H(’ - m - l/2) S/r norms in the r-variable we find, by application of 
(2.9) with r’=r-m - 1, 

/IT’UIIHO.(l-m-l/Z)S/r(RXRn-I). < c IMI H’J(R xR”+)’ 

Together with (3.30) for ~7 = Y, this shows the continuity of 

T’. H’,S(RxR”+)~H’-m-l/2,(r-m-1/2)S/I(RxR”-l), when ma-$. 

(3.32) 

(3.28), (3.31), and (3.32) together imply the statements on Tin (3.23). 

(3) The singular Green operator G is treated as follows. The terms 
K,Yk’satisfy, by Lemma 2.1 and Proposition 3.1, 

Kky,: H’.“(Q) + fJ-W(r-m- 1/2,s/r(Q) if k+$<m, 

Kky,: H”“(Q) + H’-m-k--k- 1/2,“+(Q) if k+$am. 

For G’ one has, by [BM], that G’ is continuous, 

G’: H’(l2) + H’-“(Q). 

Then one proceeds exactly as for P, obtaining 

G’: H”“(Q) -+H’-“T”-“‘“/r(Q) for r>maO, 

G’: H’,“(Q) -, H’- m3s( Q) for r>O>m. 

Taken together, the statements show (3.23). 1 

(3.33) 

(3.34) 

(3.35) 

Remark 3.4. The various rules are a little complicated in the way one 
distinguishes between the cases where s’ takes the most natural, propor- 
tional value (s’ = (r-m) s/r for P, G, and K; s’ = (r-m - f) s/r for T) and 
the other cases. For P and K, this is linked directly with the order m of the 
operator. But for G and T it is linked also with the class 1; if 
I> max{m + i, 0}, the class takes over in the definition of s’. These cases 
are precisely the ones with negative regularity v, as defined in (3.13) and in 
[Gr2, Sects. 1.5, 2.31; and the whole discussion could be formulated in 
terms of the regularity concept analyzed in [Gr2]. 

In the direct calculations connected with parabolic pseudo-differential 
problems, the operators are of positive regularity, so the proportional 
values enter. However, the general statements above are needed in some 
liner calculations, as in [G-S3]. 
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COROLLARY 3.5. Let q > 0. For the operators considered in Proposi- 
tions 3.1 and 3.3, one has in particular the continuity properties 

K. H'- I/2*(r 1!2,:y(s) --) H' rnJ'(Q), where (3.36) 

r’=min{(r- 4)/q, (r-m)/q}; 

p,: H~.~!Y(Q) --) or- mmin((r m)iu.r;4)(Q); (3.37) 

s: H’y S) + H’ -- m.m~n((r--)/q.r.i4}(s); (3.38) 

T: ~‘,‘:Y(Q) --* Hr. nr - l!‘.“(S), where (3.39) 

r’=min{(r-m- i)/q,r/q}, if I=O; 

r’=min{(r-m- f)/q, (r-l+f)/q}, if 12 1; 

G: H’J’4(Q) + H’-“‘.“(Q), where (3.40) 

r’ = min{ (r - m)/q, r/q}, if l=O; 

r’=min{(r-m)/q, (r-f+i)/q}, if I2 1. 

In all these statements, r 3 max { m, 0 ); moreover, r > i in (3.36) and r > I - f 
in (3.39) and (3.40). 

All the rules extend without difficulty to operators between vector 
bundles. 

4. PARAMETER-ELLIPTIC AND PARABOLIC PROBLEMS 

The systems we consider are of the following kind: E is an 
N-dimensional C” vector bundle over 8, extended to a bundle ,!? over a 
neighborhood Q, of D. There is given a pseudo-differential operator P of 
order d (integer > 0) in E having the transmission property at f, and a 
singular Green operator G in E of order d and class 6 d. The boundary 
condition is defined in terms of a column vector of trace operators 
T= {T,,, . . . . T,- , }, where the T, go from E to bundles F, over f of fiber 
dimension N; (N; 2 0), with T, of order I and class < I + 1, i.e., of the form 

T/= 1 S,yj+ T;, 
OCjQl 

with T’ of class 0. We denote xf=d N; = N’ and F, @ . . . @ Fd-, = F. (The 
zero-dimensional bundles over f have been included for notational 
convenience-to avoid having to specify the subset of (0, . . . . d- 1 } 
consisting of the orders of the non-trivial trace operators.) Then we define: 
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DEFINITION 4.1. ( 1) Let 0 E R. The system 

.pl = P,+G+p“e” 
,I 

> T ’ 
(4.1) 

depending on the parameter p, is said to be parameter-elliptic when the 
following properties hold (expressed in local coordinates): 

(I) The principal interior symbol pO(.q 0 + #e’” is bijective for 
all x, all (<,~)ER;+’ with /~12+1~12>l. 

(II) The principal boundary symbol operator 

Hd(R + )” --+ L*(R + )N x C”’ (4.2) 

is a bijection for all x’, all (t’, p) E R’!+ , with ll’l > 1, p > 0. 

(III) For each p>O, each x’, the strictly homogeneous principal 
boundary symbol operator ah(x), <‘, ~1, D,) (coinciding with (4.2) for 
15’13 1) converges in the operator norm for 5’ + 0 to a limit operator 

d(x’, 0, p, D,): Hd(R + )” -+ L2(R + )” x CN’, (4.3) 

which is bijective. 

(2) The time-dependent system (8, + P, + G, T} is said to be 
parabolic when {P, + @e’” + G, T} is parameter-elliptic for all 6)~ 
[ - @,n/23. 

The above formulation is a version of Definitions 1.5.5 and 3.1.3 in 
[Gr2]. One small difference is that we here consider the boundary symbol 
operators as going from Hd(R+ )” to L2(R +)N x CN’ instead of from 
Y(R+)” to Y(R+)“‘xC”‘, which does not change the content of the 
ellipticity property, as explained after Definition 3.1.3 there. Also, the 
convergence in symbol norm, defined generally in [Gr2], coincides with 
the convergence in operator norm in the present case. 

We recall from [Gr2, Remark l.S.lO] that when (2) holds, d is even and 
N’ = Nd/2. 

We also recall from [Gr2, Lemma 1.5.73 that when (1) holds on 
a ray, T is necessarily normal (the contribution from T to the limit 
boundary symbol operator a”(~‘, 0, p, D,) is the standard trace operator 
{&o’Jo, ‘..9 Sd- l.d- ,yd-, }, where the S,, are surjective vector bundle 
morphisms). 

One of the main results in the book [Gr2] is that the parameter- 
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ellipticity implies resolvent estimates in the following way (cf. [Gr2, 
Theorem 3.3.1, Corollary 3.3.21): 

THEOREM 4.2. Let P, G, and T be as defined in Definition 4.1, and let 8 
be a value for which (1) holds. Let A he the associated L2-realization 

Au=(P,i-G)u, D(A)= {u&fd(Q, E)I Tu=O}, (4.4) 

and let R, = (A - I) -’ be the resolvent, i.e., the solution operator for the 
problem 

(P,+G-i.)u=f in Q, 

Tu=O on 1: 
(4.5) 

defined for the ). E C for which it exists as a bounded operator in L*(Q, E). 
There are an E and a constant r0 such that the resolvent exists on the rays 

). = re”‘, r 2 rO, 8’ E [tI - E, 0 + E], satisfying for each s E R + the estimate 

lIR~fll.s+~+ (i)."“+ ' IIRj.fll, 

~C.JlIfll.~+ (~>““‘Ilfllo) for fEH’(Q,E). (4.6) 

Moreover, the spectrum a(A) is discrete, and R, is holomorphic on C\a(A). 
In particular, tf {a, + P, + G, T} is parabolic, the spectrum of A has a 

real lower bound a, = min { Re 1. I I. E a( A) } > --co and lies in a sectorial 
region 

Y=(i\ReI>a,}n{i( Ill<r, or largiI<n/2-f:,}, (4.7) 

for some E, > 0, r, 2 0; and for any 6 > 0, (4.6) holds (with C, depending on 
6) in 

andarg3.E [n/2-~, +6, 3n/2+&, -S}. (4.8) 

The discreteness of the spectrum follows from the compactness of R, for 
a constant c in the resolvent set, and this compactness follows from the 
continuity of R,. as an operator from L’(B, E) to Hd(Q, E). 

The points in the spectrum are eigenvalues of A, but the eigenfunctions 
need not form a basis of L’(Q, E) (they do of course if A is selfadjoint). It 
is of interest to know in the parabolic case whether one can remove the 
eigenvalues in { Re 1. < 0} by a finite dimensional modification of A. This 
can in fact be done in a quite concrete way. 
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THEOREM 4.3. Assume that parabolicity holds. Let { 1, } be the sequence 
of mutually distinct eigenvalues, ordered in such a way that 

Re i, < Re i., < . . Q Re i, < . . ; (4.9) 

then Re ik + x. Let k’ EN. There is a decomposition oj’ X= L’(Q) into 
closed subspaces V and W such that 

x=viw, W has finite dimension, 

D(A)=(D(A)n V)i W, 

A(D(A)n V)c V and A(W)c w 

and the operator Al y (with domain D(A) n V) has the spectrum 

(4.10) 

dAlv)= {&jkzr. (4.11) 

For any linear operator B in W, the operator A, defined by 

A.u=Av+Bw $or u=v+wwithvED(A)n V, WE W, (4.12) 

has the spectrum 

4Ad= {h},c~vuo(B); (4.13) 

and Y = A, - A is a ps.d.0. of order ---co and finite rank (written explicitly 
in (4.20-21) below). One can in particular choose B such that, e.g., 

o(A,)c {i.ECIReA>Re&}, or Wd= {j.,},,,~. (4.14) 

Proof: Let c < Re &,; then R, = (A - c)- ’ is a compact operator in X 
with spectrum equal to the set (~k=(I.~-~)-‘lkEN~{Re~>Oj. By a 
theorem of F. Riesz (see, e.g., Riesz and Nagy [R-N, Sects. 77-80]), there 
is an integer v0 2 1 such that 

Z,= (uW(~o-Rc)” u = 0 for some n} = {u E XI (r(1” - RC)‘” u = 0}, 

Z, has finite dimension r0 2 vg, and Z, has the closed complement V,, 
where 

V, = fi (p. - R,.)” X= (pO - RC)“” X. 
n=l 

Clearly, Z, and V0 are invariant under R,, and the spectrum of R,( v0 is 
precisely the set {P~}~ >,. The procedure is repeated, with 
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Zi=(u~ V~_l)(~~--R,.)“u=Oforsomen} 

= {UE V,-,I(p,-RJ”u=o}, 

V,= fi (P,-R,)” V, I= (PI- Rc )” Vj 19 
n-l 

until we arrive at the closed subspace 

V= I’,, , = (pk. , - R,.)“’ ’ ... (p, - R,)” (p,, - Rc)“O X, (4.15) 

which is invariant under R,. and has the complement W in A’, 

w=z,,/z,/ ... iz,. , (4.16) 

of dimension r = r. + r, + . . . rk. _ , . W is likewise invariant under R,. The 
spectrum of R, I,, is the set { p(k jk, k.. Since A = R‘- ’ + c, V and W are also 
invariant under A (in the sense expressed in (4.10)); and the spectrum of 
Al,, is the set {I.k)k,k.. 

Now define the perturbation A, of A by (4.12). Clearly, A, - i is 
bijective from D(A) to X if and only if both Al y - i.: D(A) n V -+ V and 
B - %: W -+ W are bijective, so (4.13) follows. We here have 

A.=A+(B-A)n=A+Cn, (4.17) 

where K is the projection of X onto W along V, and C is the linear operator 
B-Al ,+, in W. By the ellipticity of A, W lies in C”(D, E), cf. (4.16). Since 
R,* is a resolvent associated with a normal elliptic pseudo-differential 
boundary problem adjoint to the given one (cf. [Gr2, Sect. 1.6]), the space 
VI, equal to 

V’={ZEX((~~-R~)‘“(~,-R,*)“‘...(C(~.. ,-R,*)Yk’-‘z=O}, (4.18) 

lies in C”(Q, E); it has dimension r like W. Then the projection n can be 
written as 

I 
KU = 1 a,/Au, zn) “;, 

j.k= I 

(4.19) 

where the zk form a basis of V’ and the wj a basis of W, all C z functions. 
It follows that Ag- A can be written as 

Yu=(A.-A)u=Cm= c c,,(u,zk)w,, (4.20) 
j,k= I 
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so it is an integral operator with C” kernel 

K.v(x, Y) = c cpgx) Z,(y), 
/.k= I 

(4.21) 

hence a ps.d.0. of order --cc (a negligible, smoothing operator) in the 
calculus. 

For the last statement in the theorem, one takes B with spectrum in 
{),~CIRei.>Reik,}, resp. with B=%,,Ifor some k,>k’. 1 

When A is selfadjoint, v0 = ... = vk, , = 1, and Z,, . . . . Zk. _ , are the 
eigenspaces associated with the eigenvalues A,,, . . . . I.,, , for A; so V is then 
simply the closed span of the eigenspaces associated with the eigenvalues 
{i-kjk,k’. 

Remark 4.4. In the above construction, it is of interest to know 
whether C = B - Al w  can be chosen with special properties, e.g., with much 
lower rank than r, or with range in a special subspace of W. (Actually, one 
could also let C map out of W, then it is A( w  + nC that determines the new 
spectrum.) In particular, when the operators in W are expressed as 
matrices in terms of a basis of W, one can ask whether C can be obtained 
on the form C = EF, where E is a given (r x q)-matrix with q < r. Questions 
of this kind are well known in control theory; see, e.g., Wonham 
[W, Chap. 21 for an analysis of the possibility of choosing F such that 

B=Al,+EF 

has prescribed eigenvalues (pole assignment) or eigenvalues in a particular 
set (pole shifting). (For example, if dim Z, = . . . = dim Z,, _ , = 1, then 
a(B) c R + can be obtained by a C of rank I !) In this connection, it is also 
interesting to see what it takes to interpret C as a “boundary feedback” 
term (cf. the articles of Lasiecka and Triggiani, e.g., [L- T], and a recent 
analysis by Pedersen [Pe]; these works treat cases where the eigenvectors 
form a basis). 

5. COMPATIBILITY CONDITIOKS 

According to Lemma 2.1, both of the mappings y0 and r,, are defined for 
u E H’*“(Q) when r > f and s > i, with 

Ir’()UEH r- l.:Z.(r- 122)sil(s), rOuE H” I:21 r,s(Q(“)). 
(5.1) 

Here the restrictions to the “corner” Tco, = (XE r, t = 0} are defined 
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according to Lemma 2.1, when (r - f) s/r > f, and (s - i) r/s > 4, i.e., when 
l/r + l/s < 2, and then 

by extension by continuity of the identity valid for smooth functions. So if 
an initial-boundary value problem is considered, where both y,u and rOu 
are prescribed, 

then in order to have solutions in HC”(Q) with l/r + l/s < 2, we must 
necessarily prescribe the compatibility condition (or corner condition) 

rOcp = you. (5.2) 

For the study of differential equations in higher order Hr.” spaces, one also 
needs links between initial and boundary values of x and t-derivatives; 
more, the larger r is. 

The limiting cases l/r + l/s = 2 are not covered by Lemma 2.1. Also 
when r and s are larger, there occur exceptional cases, now for the 
derivatives of u. So in order to have solvability results for a full scale of 
values of r, we must include these cases in the study. 

In the following, we set 

r/s = 4, i.e., s = r/q; 

then the limiting cases for the consideration of (5.2) are the cases 

r = (4 + 1 l/2, s=(4+1)/29=(1/9+1)/2, where qER+. 

Let us take a fixed q E R + and define the integral 

I[% VI =J’ J j 
Idx’, l)- 4Y)12 

/El I’EI,,, .~ED,0,(IX’-y14+l)1+n’4 
dy do,. dt (5.3) 

for functions cp(x’, I) on S and r(y) on 52,,, (a,. is the surface measure on 
r). When this integral is finite, we say that cp and u coincide at TCO,. Related 
integrals (in W;‘!* spaces) appear in [Sa-S] and in [L-S-U, p. 3173. 

THEOREM 5.1. ( 1) There is a constant C, such that when u E 
Hk7-C l)/*.(q+ “‘h(Q), then youe H q’2.“2(S) and rOu E H ‘/2(Q,0,) coincide at 
I- ,,,), with 

I[you, rou] < C, Ilull $+ 1);2.(~- lj,*(v,. (5.4) 
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(2) There is a constant Cl such that fcp E Hqj2~“*(S) and u E H “‘(sZO,) 
coincide at I-(,,,, i.e., I[ cp, II] < x, then there exists u E H (y + ’ v*.(~ + “:“‘(Q) 
such that 7,~ = cp and r,,u = L; and 

(3 ) In particular, when cp E H y’2,“2(S), it coincides with 0 at TcO, [fand 
only if cp E H,b, y/z. I”(S). In that case, there exists u E H ‘y + ’ ‘.“.M -+ ’ I”“(Q) with 
y,u = cp and rOu = 0, i.e., u E H I$,+ ‘)‘2.‘q+ ‘)!“‘(Q). Ifu is given in Hr(acO,), 
then there exists u E Hey + ‘v’.(~ + “““(Q) with you = 0 and rou = c. 

Prooj: In local coordinates, (5.3) takes the form 

x Idx’, I’) - U(Y’3 YJ12 
(Ix’-y’I4+y;+t)‘+“~4 

dy d-y’ dt, (5.6) 

and we shall show that when cp E Hy~2.“2(Rn ’ x R, ) and UE H’!‘(R”+ ), 
Z[~J, v] is finite if and only if the following integral introduced in Grisvard 
[Gri] is finite: 

I’[@ t!] = I- R” Iq(x’, 1) - u(x’, t”4)12 y 

Id 
dx’ ds 

x’, t’) - u(x’, r)l* y-. 

Observe that for t > 0, 

I 
-cc 

I 

4’ dyn 

t ’ R”, (lx’-y’J”+y;+r)‘+“‘4 
=c r 

dy’ ds 
2 

<RI (Ii - $1” + t4 + 3)’ +‘I;” 

(5.7) 

(5.8) 

When q>/ 1, we insert the following decomposition in (5.6): 

cp(x’, 1) - u(y’, J”) = [fp(x’, t) - c(x’, t”4)] + [u(x’, t”Y) - u(v’, y,)]. 

The first bracket gives I’[q, u] in view of the first formulas in (5.7) and 
(5.8), and the second bracket gives an integral satisfying 
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Iu(x’, P”)-u(y’,yJ2 
*~ (\,K’-J,‘14+,,~+1)1+wdL‘dx’d’ 

- 
Jii 

Iu(x’, x,,) - u(y’, yn)12 x;- ’ = 
(Ix’ - )“I” + y; + xg’ +niy 

dy dx’ dx, 

<c I I 
IW, x,) - C(Y’, YJZ 

TSR: (IX’--?“IY+I~~,l--ynIY)“y+n’y 
dy dx 

YER: 

here v’ denotes an extension of c’ to II’!‘( depending linearly and 
continuously on u, and we have used (2.4) and (2.5). This shows that 

JCV, 01 d C,(I’C% VI + I141:i2)9 

I’[% 01 G C2(Gcp, cl + liull:;2) 
(5.9) 

for q>/l; 

in this sense the two integrals are equivalent. 
When q < 1, we insert instead in (5.6) 

cp(x’, 1) - u( y’, yn) = c&d, 1) - (P(Y’9 [)I + CdY’* 1) - cp(Y'9 4'31 

+ [dy’, y",, -GY’t Yn,l. 

The third bracket gives I’[q, u] by the second formulas in (5.7) and (5.8), 
with r = y, and x’ interchanged with y’. The first two brackets give 
integrals estimated by 

c 

JIj 

IdY’, I)- (P(Y’, Y312 
(lx’-y’14+ y~+I)‘+“/4dx’dydf 

* < C’ hi 
IdY’, t) - dY’l s)12 

dy’ dr ds 
* If -.~I2 
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here we have replaced Y,, by ~‘~4 and used that s’~Y-’ 6 (Ix’ - ~‘1“ + 
s + I)‘,+ ’ and s + t Z 11 -s] for s, r E R + . Then we can conclude (cf. (2.7)) 

CR VI 6 c;(~‘[cp, 01 + Ilcpll~,2.~;*)~ 

I’Cn cl G GUC~, 01 + lIdl:;2. ,,*I for 4< 1. (5.10) 

In view of (5.9) and (5.10) the theorem can be carried over to [Gri, 
Theorem 6.1 J (with r = (q + 1)/2, s = (q + 1)/2q). More precisely, [ Gri] 
shows the equivalent version of (1) and the surjectiveness in (2); then the 
estimate (5.5) follows. Now consider (3). Here we use that by (5.8), we 
have in local coordinates 

(5.1 I ) 

and hence (cf. (2.12)) 

which shows the first statement. The second statement is then a special case 
of (2), and the third statement is an analogous version with the roles of S 
and QO, interchanged. 1 

The integral (5.3) has the advantage over (5.7) that it shows explicitly 
the invariant character of the coincidence condition. 

Concerning higher order spaces, we have when u E H’.““(Q), 

cp,=yjuEH’ I-liZ.(r-/ W/4(s) for O<j<r- t, 

u,=a’uEHr-‘4-4’2(a(0)) , for O<I<rfq- 4, 

so if j + fq < r - (q + 1)/2, then necessarily 

r,dicp,=y,u,Erf-j -‘4-(q+1)/2(r,o,); (5.13) 

and if j+lq=r- (q+ 1 j/2, then, with x denoting a function in C;(Q,) 
that is 1 on a neighborhood of r, 

r[a;cp,, D&,] < cc. 

A combination of the proof of Theorem 5.1 and the general trace 
theorem [Gri, Theorem 7. I ] now gives immediately 
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THEOREM 5.2. Let r > 0, q > 0. The mapping 

u++sh= {oIp~0~,~,-~~2, {r0?u)Os,<r,,4 I:2} (5.14) 

is continuous and surjectke from H’.‘!“(Q) to the space of wctors 

@ = i iv, 10 G j  <, 1.‘~) { “110 $ / < ri4 1:2 1 satisfying 

‘piE H’-’ l.z.(r--/ ‘i2’jy(S) for O<j<r- l/2, 

D,EH ‘~~‘4-4’2(L?(o,) for OQI<rjq- l/2, 

r06,(P,=~,il, for j+lq<r-(q+ 1)/2, (5”5) 7’ 

m:cpj, O!X~,l< cc for j+fq=r-(q+ 1)/2, 

provided with the norm II@)] defined by 

+ c m: q,, qxv,1; (5.16) 
/+14=r-(y+l):2 

and 9? has a continuous right inverse in these spaces. 

The theorem is easily generalized to vector valued functions and sections 
in vector bundles. 

We shall also need an extension of the theorem to the more general 
trace operators occurring in the pseudo-differential calculus. Let T= 
{ To, . . . . T,- , } be a system of trace operators as defined in the beginning of 
Section 4, and assume that T is normal (this holds in particular if 
Definition 4.1 (1) is satisfied). It means that for each 1, T, is of the form 

T,= c Syyl+ T;, (5.17) 
OCjSl 

where S,, is a surjective morphism of El I‘ onto F, (the S, with j < I being 
ps.d.o.‘s from El,- to F, of order I-j) and T; is of class 0. Setting pu = 
{‘r’ou, . . . . yd- ,u} (the Cauchy data of u on f with respect to the order d), 
we write 

T= Sp + T’, where S is the matrix S = (S,), 4 ,,, < d; (5.18) 

here we have set S,j = 0 for j > I, considered as ps.d.o.‘s of order I - j. 
We first remove the term T’ by use of the following reduction introduced 

in [Gr2, Lemma 1.6.81: One can find an operator A (of the form 
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A = I+ G’, where G’ is a s.g.0. of order and class 0), such that A is a 
homeomorphism of H’(I?, E) onto itself for all r 3 0, and 

T= Sp + T’= SpA. (5.19) 

A then also defines a homeomorphism of I?‘.‘( Q, &) onto itself for all r 2 0, 
~20. When T’=O, we just take A = I. 

Now if S is the restriction to f of a (matrix formed) differential operator 
S on 8, this first reduction suffices. Otherwise we need the following 
considerations: 

Representing a neighborhood Z of I‘ as 1.x ] -6, S[, we can lift the 
vector bundles F, to bundles F; over t’ and the ps.d.o.‘s S,, on I’ to 
operators SY, going from El1 to F; (defined as “constant” in the variable 
s E ] -6, S[ and then carried over to the neighborhood of f in R”); and 
after truncations in the normal direction, we can view the sections S+ as 
extended by zero to all of 52. This is an extension to an extra variable s 
carried out in exactly the same way as the extension to the r-variable 
described in Proposition 3.3, so we get operators S; that are continuous 
from H’(S2,E) to H’-“‘(a,E) for r>/--j>O; for I-j<0 they are 0. 
(Note that H'(Tx]-b,6[)=L2(]-6,6[;H'(f))nH'(]-b,6[; L'(r)).) 

We remark here that the extended operators SQ are not ps.d.o.‘s on x 
unless the S, are differential operators, in which case the extensions can be 
chosen as differential operators also. 

Altogether, we can write 

foreach l~{O,...,d- 1). (5.20) 

THEOREM 5.3. Let d he an integer > 1 and let r>O, q> 0. Let E he a 
vector bundle over 0 of dimension N, and let T= ( To, . . . . T,- I ) be a system 
of normal trace operators T, qf order j, going from E to bundles F, over I- 
of dimensions N; 2 0. Introduce A, ST, Ff , and ): as explained above, so that 
(5.20) holds. The mapping 

uH*yu= {{Tju}o<J<r -1,‘2./<d~ {r001~U~O$l<r/q-1:.2~ (5.21) 

is continuous and surjective from the space HC”14(Q, E) to the space of 

vectors qfsections @= {{cP/)~~)<r I!2.J<d9 {vlj~s,<r~y .li~> satisfying 

(i) (P/E H’-j 1!2.(r J- l.i2h,(s, _F,) for O<j<r- 1/2,j<d, 

(ii) V,E H r-rq ~y~2(Q,o,, E) .for O<I<r/q- l/2, 



284 GRUBB AND SOLONNIKOV 

(iii) 

(iv) 

r,+p, = T,v, for j+lq<r-(q+ 1)/2,j<d, 

Z[cqp,, s;plv,] < 00 .for j + lq = r - (q + I )/2,j < d; 

(5.22) 

provided with the norm (I@11 defined by 

+ c Ca:Vj9 s~XAv,l; 
j+/y=r (q+ I):2 

/Cd 

(5.23) 

and 9 has a continuous right inverse in these spaces. 

ProoJ The continuity of .F follows from the continuity properties 
established in Lemma 2.1, Proposition 3.3, and Theorem 5.2. 

We show the surjectiveness as follows: As accounted for in [Gr2, 
Lemma 1.6.11, we can supply S with a diagonal matrix S’ = (Sb), G ,.I <d, 
where the Si, are morphisms of El, onto certain bundles 2, over f, such 
that 

understood ass= (.r?lj)Os,.JCd, SO= 

is bijective from n,, jcd H’-/(El.) to nOslCd H’-‘(F,@Z,); note that 3 
is triangular. Here, moreover, the “diagonal part”, Sdiag = (S,s,),, G ,. J < dr is 
a homeomorphism from ~,~,,,,El,- to &.,<d(F,@Z,). We can then 
supply Sp with the normal trace operator S’p and compose with (3) -I, 
obtaining that 

p=(S)-’ sp 
( > S’P 

: H’(Q, E)-+ n H’-’ “‘(f, El.). (5.24) 
OSl<d 

The construction extends to the neighborhood Z of f, giving operators S;, 
qj mapping into sections in Z;, F; @ 27, etc. We denote S,? = Sz 0;. The 
operators and bundles extend as usual to the r-variable also. We define 
moreover T, = yj for j = d, d + 1, . . . 

Let w,= Au, for each 1. We want to construct w  E H’,““(Q, E) such that 
xSjky,w=cpjforj<r- f, j<d, and r,a’,w=w,for I<r/q- 4. In order to 
use the sujectiveness in Theorem 5.2, we shall supply the given section 
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p = {(PO, ...Y (Pd I } in @,=0, ,,,, d-, -F, with a section @ = { $0, . . . . It/J. ,} in 

O,=O.....d 1 Zj 9 and sections tij E El r for d< j < r - f, such that the 
section (3))’ { cp, *} in El,-, together with the 1+9~ for j > d and the in,, 
satisfy the full compatibility conditions in Theorem 5.2. This means that we 
shall choose the tij such that rod:+,= yOS;‘w, (possibly in the sense of 
coincidence) holds for j + lq < r - (q + 1)/2, j < d, and rO# $, = ~~“7, holds 
for j+ fq < r - (q + I )/2, j> d. This is a purely differential operator 
problem. If r/q - (q + 1)/2q# N, the $, can be chosen according to (2.16ii) 
with Q replaced by S. If r/q - (q + 1)/2q E N, we apply (2.16ii) to the initial 
data w, themselves to find a section W in E with r,,Z: W= w,, and then we 
take $,=yoS;‘Wforj<dand II/,=y,Wforj>d, j+Iq<r-(q+1)/2. 

Altogether, we can supply the qj with sections $j in z,, resp. in El,, so 
that the sections (3))’ {dicp, a:$}, {I//,}~~~, match the w’, at the corner 
TcO, (cf. (5.24)). Then Theorem 5.2 shows the existence of w  with initial 
values w, and vertical Cauchy data (3))’ {cp, Ic/}, {$j}iad; and U= A-‘i+ 
solves the original problem. 

The continuity of the right inverse follows automatically. m 

Remark 5.4. The formulation of the compatibility condition (5.22 iv) 
refers to the auxiliary operator ,4. Here one could use instead that the T; 
may be written as 

T; = y. P;, (5.25) 

where the Pi are ps.d.o.‘s in S$, defined on a neighborhood of Iii (going 
from ,? to F,‘) and having the transmission property at f, as shown in 
[BM]. Then (5.22 iv) can be written in the form 

Z[2:qj, (SJX + P;) Cl] < Co for j + lq = r - (q + 1)/2. (5.26) 

As a corollary, we get a complete description of the interpolation spaces 
between L2(a, E) and (U E Hd(LJ, E) 1 Tu = 0}, for general pseudo-differen- 
tial trace operators, extending the result of Grisvard [Gri] for differential 
trace operators and the result of Grubb [Gr2, Theorem 4.4.2, Remark 4.4.31 
for trace operators (5.18) with S differential: 

COROLLARY 5.5. Let d be an integer 2 1, and let T= { T,,, . . . . T,- , } be 
a normal system of trace operators as in Theorem 5.3. Let 

H.>(l2, E)= (u~H~(l2, E)I Tju=OforO,<j<s- 4) 

for sE [O,d],s- f&z, (5.27) 



286 GRUBB AND SOLONNIKOV 

ir is a closed subspace of‘ H’(Q, E); and let (with auxiliary definitions as in 
Theorem 5.3.) 

HkT+ “‘(a, E) = {u E Hk+ “2(52, E) 1 T,u = 0 for 0 < j < k, 

dist(x, f)-I’* S;;~AUE L2(52, F;)} for k =O, . . . . d- 1, (5.28) 

ir is provided with the norm defined by 

IIull’,;..~.~~~,~)= IIuII:+,~~+ Ildist(x, V ’ 2S;~h41~zcn,G,. (5.29) 

Then for any 8 E 10, 1 [, 

[Hd,(Q, E), L*(Q, E)le = H; -“jd(Q, E). (5.30) 

Proof We use the following characterization of the interpolated space 
(cf. [Gri, Definition 2.23): 

VE cx Ylo if and only if 
(5.31) 

t’=rOu for some u E L2( R f ; A’) n H “c2e’( R + ; Y). 

Here [X, Yle has the norm induced from f.*(R + ; A’) n H “‘*“)(R + ; Y) by 
the mapping rO: 

Thus in the present case the interpolated space consists of the initial 
values u = rou of functions u E H d.‘!(2e)(Q, E) with Tu = 0. Theorem 5.3 
applies with r=d, q= 20d, to show that such v are described by the 
properties 

v E Hd- y’2(Q, E) = H” .- “)“(Q, E), 

T,v=O for j<d-(q+ 1)/2=(1 -0)d- l/2, (5.33) 

I[O, S,‘plv] < 33 for j=(l-0)d-l/2. 

The last statement, that enters only when (1 - 0) d - l/2 E N, means that 
S;xAv E HA’2(6, F,‘) (cf. Theorem 5.1), and can therefore be reformulated 
as the statement that dist(x, f) -I’* S,‘x/iu~ L*(a, E); cf. (2.6). m 

Remark 5.6. By the use of (5.25), one can also write 

H~+‘~2(SZ,E)={uEHk+1’2(R,E)IT,u=OforO<j<k, 

dist(x, f)-“’ (Six + Pi) UE L*(Q, Pi)} 

for k = 0, . . . . d- 1. (5.34) 
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6. SOLUTION OF PARABOLIC PROBLEMS 

With the operators P, G, and T= (T,,, . . . . T,- , } defined as in Section 4, 
we finally consider the time-dependent problem in the “cylinder” Q = 52 x I 
with “vertical” boundary S = r x I and “bottom” a: 

(i) 
(ii) 

(iii) 

r’,u+ P,u+Gu=f for (x, I) E Q, 

Tu=cp for (x, f) E S, (6.1) 

r”u=u(,=~=ug for XESZ. 

Here I= 10, h[, b d 3cj. Let us for brevity denote 

P,+G=M. (6.2) 

Since d, is of order 1 and P and G are of order d, it is natural to consider 
the problem for u in spaces of the type H r,“d(Q, E); here the operators have 
the continuity properties: 

p,, G: Hr+d,r:dt 1 (Q, E) -+ H’.‘id(Q, 0, 
T  . H’+d.‘.d+ ‘(Q, E) + Hr+d .i- l!Z.(r+d-/ I:‘2).:d(S,f,), 

J’ 
(6.3) 

ro: H r+d.r!d+ I(Q, E) --) Hr+d:2(Q, E), 

for all r b 0, by Lemma 2.1 and Corollary 3.5 with y = d. 
Recall that some of the bundles F, may have dimension 0, and are then 

only included for notational convenience. 
It is of course necessary for the solvability of (6.1) in Hr+d.r!d+ ‘(Q, &‘) 

that the boundary data (p, match the initial value ug as described in 
Theorem 5.3: 

rocp, = T,uo for j<r+d-(d+ 1)/2=r+d/2- l/2; 

~Cv,* qwd < cc for j=r+d/2- l/2 

(the latter condition only occurs when r + (d- 1)/2 is one of the integers 
jE (0, . . . . d - 1) for which F, is nonzero). But now we furthermore have to 
take the equation (6.1 i) into account. It implies, successively, 

r?;+‘u= -Md;u+dl,f, I=O, 1, . . . . (6.4) 

Applying r. and T, here, we find that when u solves (6.1), one must 
necessarily have 

roc?~+‘(p,=rof?:+’ Tp= T,(-Mr,d:u+r,djf), (6.5) 
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whenever these expressions have a sense. To formulate this as a condition 
purely on the data {J cp, u,}, we define successively the functions on Sz 

u(O) = u 03 u(‘+ 1) = -Mu”‘+ ro#x for I=O, 1, . . . . (6.6) 

then (6.5) gives rise to the compatihiky conditions 

T,u(‘) = r,d’,cp,, (6.7) 

applied when the expressions have a sense. 
Altogether, we can formulate the complete compatibility requirements as 

follows: 

DEFINITION 6.1. Let r E R + . A set of data 

f E H’.“d( Q, E), 

9 
I 

E Hr+d- j  l.:Z.(r+d- j- 1/2)!d(s, _F,) for jE { 0, . . . . d-l}, (6.8) 

U,EH ‘+d:2(12, E), 

is said to satisfy the compatibility condition for (6.1) of order r, when the 
functions u(‘) defined by (6.6) satisfy 

r. 8: ‘pi = Tju(‘) for j+Idcr+d/2-1/2,dimF,>O, 

I[d:9j, S~XAU”‘] < 00 for j+Id=r+d/2-1/2,dimF,>O; 
(6.9) 

in the latter expressions the auxiliary operators from Theorem 5.3 are used. 

Here we have used that when the data satisfy (6.8), then r. Sjfis defined 
for I< r/d - i and lies in H ‘--‘d-d’2(Q, E) by (2.16 ii), so 

u(‘)E Hr+d”2(B, E), . . . . u(‘)E H’- ‘dLd’2(Q, E) , ..., for l<r/d+ l/2; 

(6.10) 

and moreover, the r-derivatives of the vertical data satisfy 

,~:~DIE H’ -/d-j ls’Z.(r- Id- ,- I:Z)id(& _~i), (6.11) 

Our main aim is to show that when the parabolicity condition in 
Definition 4.1 is satisfied, then the problem (6.1) has a unique solution in 
H ‘+ d*“d+ ‘(Q, &) for any set of data (6.8) satisfying the compatibility 
condition of order r. First we establish an auxiliary result that is valid 
regardless of parabolicity: 

PROPOSITION 6.2. Let M = PO + G, where P is a ps.d. o. of order d > 0 
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having the transmission property, and G is a s.g.0. of order and class d. Let 
r > 0. For any set of data 

fe H'3"d(Q, El, 
u. E H’ + ““(Q, E), 

(6.12) 

there is a function w E Hr+d,rld+ ‘(Q, &) such that 

r,a:w=d’) for O<l<rfd+ l/2, 

@,+Ww-f-;ij?Q,E,, (6.13) 

where the u(‘) are defined from f and u0 by (6.6). Here w can be chosen so 
that one has estimates 

Ibll;‘+d.rld+Q,~) + Ii(a,+M)~--fil2H~/d~~,~) 

d c( I/f 11 ;W.+@,&) + hail ;‘+dW(n,& (6.14) 

Proof: When r/d- i is not integer, this is a simple application of the 
surjectiveness in (2.16 ii). Then &, = [r/d- 51 is strictly less than r/d- 1, 
and the u(‘) satisfy 

do) E Hr+d’2(SZ, E), . . . . u($+l)E~‘-$d-d/*(~, ,q 

for lo = [r/d- l/2 J. (6.15) 

According to (2.16 ii) there is a w  E Hr+d*r’d+l(Q, E) with initial values 

r. a; w  = LP, for I= 0, . . . . lo f 1; (6.16) 

and since w  can be chosen to depend linearly and continuously on the data, 
we obtain the estimate of the norm of w  in (6.14) by inserting the formulas 
defining the u (I) These formulas also show that f’ = f - d,w - Mw has . 
initial values 

r,aiff=O for I= 0, . . . . lo, (6.17) 

and since f’ E H’srjd(Q, E), this means that f’ E H;Gd(Q, E). Here the H;b;l 
norm is equivalent with the Hr*‘ld norm, so (6.14) follows. 

When r/d- $ E N (i.e., r/d- f = lo), this argument does not work, since 
r. affis not well-defined. But here we can take recourse to another device: 
Add an extra variable x,, , E R + to the space coordinates, and regard Q as 
the boundary of Q = Q x R, , CC2 as the boundary of fi = 52 x R, . Since 
r 2 d/2 > 0, f E Hr*‘ld( Q, E) is the boundary value according to (2.16 i) of a 
function FE H’+ 1’2*(‘+1’2Ud(&, E), and u. E Hr+d’2(sZ, E) is the boundary 
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value of a function ti, E H” d’2 + “‘(si, I?); and the new functions can be 
chosen to depend linearly and continuously on the given functions. Note 
that 

H'(Si,~)=L'(R+;H'(~,E))nH'(R+;L'(n,E)), 

Hr.'@, E,= L2(R + ; W"(Q, E))n H'(R + ; L*(Q, E)). 

For the operator M extended to the new spaces we find the continuity 
properties, by use of (2.9), much as in Proposition 3.3: 

M: L'(R+ ; H’+‘@, E)) -+ L'(R+; H’(R, E)), 

M: H’(R + ; Hd(lJ, E)) + H’(R + ; L’(Q, E)), and hence 

M: H’+“(Si, &+ H’(Si, g); and similarly 

M:H r+d.r.‘d+ ‘(6, E) ~ H’,r:d(& $), 

for r>O. Since (r + i)/d- i= lo+ 1/(2d) is not integer, we are now in a 
situation where the first part of the proof can be applied. This gives a 
function ME H,+d+ 112.(I+d+ li2):‘d (0, & such that 

and then ~=GJ[,~+,=,, solves the original problem. The estimates follow by 
restriction to x,+ , = 0, using that f- i?,k - Mti can be regarded as an 
element of 

H r+ I;2.(r+ l.'2l;d@ x I-=, b[, & 

supported in (I 2 0). 1 

We can finally show: 

THEOREM 6.3. Let P, G and T = { T,, . . . . Td- , } be as defined in Sec- 
tion 4, and assume moreover that the system (2, + P, + G, T) is parabolic, 
so in particular d is even and N’ = Ndf2. Let r 2 0. Consider systems of func- 
tions {f, cp, u,}, given as in (6.8) and satisfying the compatibility condition 
of order r for (6.1). 

( 1) Let I = 10, b[, where b E 30, cc [. The evolution problem (6.1) has 
a unique solution u in H’.‘(Qb, IZ), and the following estimates hold: 
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If r - i is not integer, then there is a constant Ch., such that 

I” r - i is integer, then, writing r = Id+ k + i - d/2 with 1 E N and 
kE (0, . . . . d- l}, 

(6.19) 

where the last term cunishes if dim Fk = 0. 

(2) Let I = 10, SC;, i.e., h = x. u the real lower bound u. of the 
spectrum (cJ Theorem 4.2) is >O, then (6.1) has a unique solution in 
H”‘(Q,, E), satisfying (6.18) when r- f#N, resp. (6.19) when r- $EN. 

If a, GO, let p > JuoI. When the given data {f, cp, uo} are merely such 
that (6.8) holds for {e “‘f, e- “‘9, uo}, and the compatibility condition oj 
order r for (6.1) is satisfied, then (6.1) has a unique solution u with 
e -“‘uE H”‘(Q,, E); and e -“‘u satisfies the estimates (6.18) resp. (6.19) in 
terms of { e - “111 e - “‘q, u. }. 

(3) For each r, the operator norm of the solution operator 

9*: {j;‘P,uolHU 

is non-decreasing as a function of b. Thus the constants in (6.18), (6.19), can 
be chosen such that C,,, d Ch.,, for h d b’ < cc; here b’ = x is included when 
a, > 0. 

Proof: According to Proposition 6.2 there is a function H’ such that 

r. i?: w  = 14”’ for O<l<r/d+ l/2, 

f’= f -d,w-MwE H;b;ld(Q, E), 

and (6.14) holds. Since the u(” coincide with the d:cp, at f x {0}, the new 
boundary values 

‘P; = ‘P, - T,M 
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coincide with 0 at f x {O}. Then if we introduce the new unknown function 
U’ = u - w, the original problem is reduced to the problem 

a, u’ + Mu’ = f ’ in Q, 
TM’ = cp’ on S, 

r,u’=O on 52, 

(6.20) 

where 

f' E H;b;ld(Q, 0, (P’E fl H;,;,d i I:Z.(r+d , 1!2)!d(~,3’), 

OS/cd 

Since the spaces H&‘y interpolate well, we only have to solve this directly 
in some particular cases. In fact, we let r = 0, d, 2d, . . . . Consider m E N. For 
r=md, 

(PtE H;;;+ I)d I- 1:Z.m + I /:d- 1’2d(S,-FJ) 
I for each j, 

which means that ‘p; E Hem+ IId ’ li2.* + ’ Iid 1/2d(S, _F,) and the a:(p, 

coincide with 0 at I = 0 for I < m (note that j/d + 1/2d$ N). By Theorem 5.3, 
there exists w’ E H’” + “d*m •) ‘(Q, E) (depending continuously on cp’) with 
T, w’ = q, for j = 0, . . . . d- 1 and r. a(,w’ = 0 for I < m; in particular, 
w’ E HI;;,+ ‘)d.m+ ‘(Q, E) and a,w’ + Mw’ E H;Io”;“(Q, E), Denoting 
u’- w’= F, we can then replace the problem by that of finding 
L: E Htm+ ijdrn+ ‘(Q, E) such that 

a,v+A!fv=g i Q, 
Tu = 0 on S, (6.21) 

r,,v=O on 52, 

whereg=S’-d,w’-Mw’EHto, mdvm(Q, E). Here the formula (6.6) gives 

v(O)= . . . = v(m) = 0 

so we are in fact searching for a v E H(,, (m+ “d.m+ ‘(Q, E). The problem (6.21) 
can then be formulated as a problem in L2( ] - co, b[; L’(sZ, E)). 

a,a(t) + AC(~) = g(t) for fE]-cc,b[, (6.22) 

where 0’ and g are the extensions by 0 on R , and A is the realization of 
M defined by the boundary condition TV = 0, cf. (4.4). 

Now let us restrict the attention to the case where b = co and a, > 0. We 
shall use the Laplace transform method as described in Lions and Magenes 
[L-M, Chap. 43, with some precisions of the kind made in Agranovii: and 
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Vishik [A-V]. Whenf(r) is a function on R + and?is its extension by zero 
on R-, we denote by p(t; + iv) the Laplace transform 

~(S+i9)=fRe-‘i-llnji(t)~~=f~e.‘I ““f(f)df 

(the Fourier transform of e ‘<J(r)); this notation will also be used for func- 
tions valued in a Hilbert space ,I’. We denote 5: + iv = p. In view of the 
Paley-Wiener theorem, the space of functions f o L2(R + ; X) carries over to 
the space of X-valued functions f(t + iv) holomorphic in p = 5 + iv for 
< > 0 and with Ilf(t: + h)tl I?(R;X) 
following norms are equivale&: 

uniformly bounded in r; in fact the 

i>o R 

Since L’:?(t) carries over to py(p) by the Laplace transformation, we have 
moreover 

for k E N. Applying the Laplace transform to (6.22) (cf. [L-M, A-V]), we 
find the equation 

(A + P) WJ) = i(P), 

p = 5 + iv, where the given properties of g carry 
by (6.24), 

sup .r_ (P>‘” Ild(P)lC2(I2.E) h < a, SUP r _ 

(6.25) 

over to the informations, 

<>O‘K <>O’M 

Since a, > 0, A + p has an inverse (A + p) - ’ = R p: L2(Q E) -+ D(A ) for 
all p with Re p 2 0, satisfying (4.6) there (with i. = - p). Thus for Re p > 0, 
(6.25) is solved (uniquely in D(A)) by 

fi(p)= (A + PF ’ g(P), 

which is holomorphic in { Re p > 0}, satisfying, by (4.6) 

= IlFAl &p(fJ.Q. (6.26) 
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Let C be the inverse Laplace transform of fi, then we conclude that it is 
supported in {t 2 0) and its restriction t’ to R + lies in HiIS;+ ‘jdrn f ‘(Q, E), 
with the norm estimated by the right hand side of (6.26). 

This shows the solvability of (6.22), hence of (6.21), (6.20), and (6.1), for 
r = md, m E N (in the case h = 3c, a, > 0). So there is a unique solution in 
Hd.‘(Q, E) (at least) for any r. We shall show that it satisfies the estimates 
(6.18), (6.19). 

By interpolation between the values m = 0, 1, 2, . . . . we get the continuity 
of the solution operator 9 for (6.20), 

9: {f’, &) E H;.;“(Q, E)~ fl H;;,d I-- H.(r + J I Wd(S, _F,) 

0s /cd 

CIU’E H;o;d.“d+l(Q, E), (6.27) 

for all r~ii+, cf. (2.13). 
Then we have for u = u’ + H’, cf. (6.14) and (6.27), 

Ilull ffr .d.,d-,<2 (Iu’ll:,r.4rd-I+2 IIwlI:,‘.d,r‘,*l 

<2 Ilu’l12,;yw” +2 )IW’Il;‘+d.rd-l 

~CwllS,;b;~+ II’P’llf-,q;)” l-~2.trtd ,-121d+ llJll~,.rd+ Iluoil~rLd,2) 

G C,(llcp - w2, Hi;,” ’ I?.lr~d ,-l?l~d+ Ilfll;,.,d+ IIU011~r.d.2). 

When r - i I$ N, the H$f norms in the above estimates are like H”.P norms, 
and we get (6.18) by a simple use of continuity properties of T and (6.14). 
Otherwise, let r = Id + k + f - d/2 for some IE N and k E (0, . . . . d - 1). The 
only nonstandard contribution is 

II9l,- T~wIl:,~~;~~.~.~+~:(s,~~) 

cf. (2.12). We have in local coordinates, using (5.8), (5.20), (6.9), and 
(6.13), 

dx’ dr 
I~:((P~(x’, r) - Tk w(x’, r))l’ I 

1%(9,(x’, 1) - Z-k+-‘, t))12 
=c’.f,,R. j,.,R. L[~,,: (lX’-y’ld+yd+#+n@ dydx’df ” 

<2c, 
Ii?:cp,(x’, 1) - s;plu”‘( y)12 

(I.~~_y’(d+y~+l)l+“:d dydx’dr 

+2c, 
* jajT,w(x’, r)-S;pl~“‘(y)(~ 
* (Ix’-y’ld+yf+f)l+“‘d 

dy dx’ dt. 
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Thus 

-7‘ P 
J ! 

d.x’ dt 
Ii$pk(X’, t) - T~W(.Y’, r))12 - 

0 I‘ t 

The last term here is estimated by C,( IIu~(I~,. d? + ,If‘~l,,,.,d), since u”)= 
r. C;~MV and w  satisfies (6.14). Collecting the terms, we find (6.19). 

If cl0 < 0, and p > laoI, then a replacement of u by u,, = e “‘u carries (6.1) 
over into the problem 

d,N,,+(M+P)U,,=j;,, 

Tu,, = (P,, 1 (6.28) 

rou,> = uo, 

where f, = e “‘f and cp,, = e “‘q. Then the statement in the theorem follows 
immediately from the preceding case. 

Finally, let b < co. Here there are continuous extension operators from 
If’.‘ld( Q,,, 6) to H’.r”d(QFL, E), mapping into functions supported in Q2,,, 
say (so that also exponential estimates are valid); and there are similar 
extensions for the spaces over Sh. We can then apply the preceding results 
to the extended functions and restrict back to Q,, afterwards; this gives the 
estimates (6.18b(6.19). 

To see that the norm of 9, increases with h, we denote the norm of 
{f, cp, uo} indicated in the right hand side of (6.18) resp. (6.19) (taking the 
square root) by Nh,,(f, cp, uo). Then 

Il%ll = SUP{ Il%(L cp, uo)ll ,,‘.-qVh,Ej I N&L cp, u,,) < 1 }. 

Let b’> 6; then for any set {.f, cp, uo} given over I, with Nh,,(J cp, uo) < 1, 
there is a set {,f’, cp’, uo} over I,,. extending {f, cp. uo}, such that 
N(/‘, cp’, uo) < I (cf. (2.1)). Then 

l!%ll = SUP{ Il%(J cp, ~o)llwq~~,~, I N&t cp. u”) < 1 ) 

= SUP{ Il*%u-3 % ~o)liH’.~~,Qh.qI {f, cp3 UC,) 

has ext. with Nh.,,(f’, cp’, uo) < I ) 

c SUP{ ik%(f’, Cp’v Uo)li Hr.r~d(Qh.,E) 1 Nb..r(f’, Cp’, 4~) < 1 ) 

= II9&li. 

When a, > 0, W, also has a finite norm, so the case 6’ = 00 can be included 
then. 1 
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In a recent work, Purmonen [Pu] has treated a more general type of 
parabolic pseudo-differential initial-boundary problems with a, entering in 
higher powers, on the basis of the estimates in [Gr2], with a systematic 
formulation in terms of exponentially weighted spaces (and with some 
exceptional parameters). 

7. EXTENSIONS AND COMPLEMENI-S 

Of special interest is the solution operator U: u~(x)I-+ u(x, 1) for the 
problem where f and cp are 0, 

~,u+Mu=O in Q, 
Tu=O on S, (7.1) 

rou=u(J on s2. 

It is easy to show that the solutions of (7.1) are C” up to the vertical 
boundary for t > 0. In fact one has: 

THEOREM 7.1. IA r 2 0, and let u be the solution of (6.1) for a set 

of data {f, cp, u,} according to Theorem 6.3. If f  E Cz(12 x I, E) and 
q~~,~~,,C~(fxI,f’,), then UEC~(DXI,E). 

In particular, the solution operator U for (7.1) maps Hdi2(12, E) into 
cm@ x I, E). 

ProoJ: Let I= 10, b[, and let I,,= [a,, b,], where O<a,< b,< b; we 
shall show that UEC~(~XI,,, E). For this purpose, let {qk(t)jkcN be a 
sequence of functions in C,“(I) such that qk + 1 tfk = tfk + 1 and qkllu = 1 for 
all k. When u is the solution of (6.1) with data {f, 40, u,}, then 
UEH ‘-+ d,r’J+ ‘(Q, E), and qku solves 

(8, + Whu) = tlkf‘+ rl;u in Q, 
T(rl,u) = tlk'p on S, 

ro(rtku) = 0 on Sz 

for each k, where tlkfEflseR+ H;$'(Q,E) and h(PEno~,<dnsER+ 

Hf$(S,_F,). Since &UE H’+d”d+‘(Q, E), we find by Theorem 6.3 that 
vou E H,o, ‘+ 2d~“d+ *(Q, E). Now since qk is 1 on supp qk + , , 

(2, + w  Vk + I u=~k+If+~;+IU=~k+If+~;+l~kU for each k. 
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Then Theorem 6.3 gives successively 

rl,UEH r+3d+‘d+3(Q, E), ..., ~kUEHr+(k+2)d.r.d,-k+2(Q, E), ..., 

so we conclude that u is C” on 0 x I,. m 

However, the smoothness at t = 0 will of course depend on r. 
In order to describe the compatibility condition of order r for (0, 0, uO}, 

we recall the definition of H;(Q, E) in (5.27) and (5.28) for 0 <S < d (cf. 
also (5.34)), and set, for m E N, 0 <s d d, 

H ~.d;“(Q, E)= {~EH~~+~(R,E)~M~uEH‘#&E) 

for 0 <k cm, M”‘uE H;.(Q, E)}. (7.2) 

We note here that the spaces H.>.M(O, E) f orm a full interpolating family: 

THEOREM 7.2. For all r > s 2 0 and all 0 E 10, 1 [, 

[H’,,(Q, E), H.;~,(C?, E)], = H&O)’ ‘HS(Q, E). (7.3) 

Proof: Let r =md for an integer m > 0. Then since r is noncharac- 
teristic for P (the principal symbol in local coordinates at the boundary is 
of the form 

with an invertible coefficient sd(x’)), the system {T, TM, . . . . TM” ‘} is, 
like T, a normal system of trace operators, now of orders up to md- I. 
Corollary 5.5 shows (7.3) in this case for any S, and the statement for 
genera1 r follows from the reiteration property of the interpolation (cf. e.g., 
[L-M, Theorem 1.6.11). 1 

Now it is clear from (6.6) and (6.7) that (0, 0, u,,} satisfies the com- 
patibility condition of order r for (6.1) precisely when USE H>.M(Q, E). We 
observe moreover that when u solves (7.1), u(t) is a well-defined element of 
C”(Q, E) for each t > 0 by Theorem 7.1, and hence, since u(t, + 1) is C* 
for (x, t) ~0 x [0, b - I,[ and solves the problem (7.1) there with initial 
value u(t,), one has that 

u(to) E (7 H;.#, E) = C&(0, E) for 1,>0; (7.4) 
SZO 

here we have introduced the notation CF,(d, E) for the Frtchet space of 
C” functions satisfying all compatibility conditions (6.7) with f = 0, cp = 0. 
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The problem (7.1) can be viewed more abstractly as a problem for 
u(t): t H D(A), 

a,u(t)+Au(t)=O for t > 0, 

u(0) = 240. 
(7.5) 

So far, we have solved it for u0 E H$,,(Q, E) with s 3 d/2 (and shown that 
a,, applied at first in a Sobolev space sense, is really taken in a C” sense 
in I). But this can be extended down to ~30. We assume in the following 
for simplicity that the real lower bound of the spectrum a, (as defined in 
Theorem 4.2) is positive, since this can always be obtained by a reduction 
as in (6.28). Then, in particular, A is bijective from D(A) to L2(Q, E). 
Moreover, A maps H , $?G lJd(Q, E) homeomorphically onto HyfM(SZ, E) for 
all m EN, and therefore one has by interpolation 

A : HF;(S1, E) --+ H’;,,(S2, E) homeomorphically, for all s > 0. (7.6) 

We also take Z=R+, since the results for finite intervals can be deduced 
from this case. 

First, consider 0 < s < d/2. When u,, is given in H”,(S2, E), let u,, = A -‘I.+,; 
it lies in HFJB, E), and hence (7.5) with initial value u,, has a (unique) 
solution UE H3d’2+sS3/2+s’d(Q, 8); here r,u=u(t) is as in (7.4) for t >O. 
Setting u = Au E Hdi2 + ‘2 ‘I* + ‘ld( Q, E), we see that it solves (7.5) with initial 
value u,; the first line holds since the functions are in fact in C”(Z; D(A”)) 
for any m E N, and the initial value is assumed in the sense of (2.16 ii). 

Next, let s= 0. For UEL*(Q, E) we can again take the solution u of the 
problem (7.5) with initial value u0 = A-b, E H$(D, E), and then define 
u = Au to be the solution with initial value uO. But here, since 
UE Hdi2,1/*(Q, E) only, the initial value is (at first sight) assumed only in an 
abstract sense. If A4 were a differential operator, we could use that A4 then 
maps L*(e Hd’*(SZ, E)) continuously into L*(Z; H-d’2(SZ, E)) so that, since 
atU= -MU, 

u E L*(1; Hd’*(G, E)) and a,u E L*(1; H-d’2(CI, E)) 

imply u E CO@ L2(s2, E)), 

cf. (2.18), with u(O)= Au(O)=u,. However, the present operators M= 
Pn + G only map H’(SZ, E) into Hred(L2, E) for r > I- i, where 1 is the 
class of the singular Green operator G; it can be any integer between 0 and 
d. Other special arguments can be invoked when A is variational (i.e., is a 
realization of M defined from a coercive sesquilinear form, cf. [Gr2, 
Section 1.73). 
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At any rate, thanks to the fact that the resolvent satisfies the estimates 
(4.6) not only in a halfplane { Re A<a,-- 6}, but also on rays (2 =reie} 
with +8 = n/2-c, cf. (4.8), we can involve another theory that is valid for 
all our realizations A, namely the theory of holomorphic semigroups (cf., 
e.g., Hille and Phillips [H-P], Friedman [F]; and [Gr2, Sect. 4.11). Here 
we define the family of bounded operators U(r) in L2(Q, E) by 

for r>o, o’(0) = I, (7.7) 

where ‘3 is a curve in C going around the spectrum of A in the positive 
sense (e.g., V can be the boundary of ^wl, in (4.8)). U(t) extends to an 
operator valued holomorphic function of t E {Z E C\{O} 1 larg ;I < E, }, 
where E, is as in (4.7). It is well known that (7.5) has the solution 

u(t)= U(r) U”EC”(I; L2(Q, E))n C”(I; D(A))n C’(I; L2(Q, E)); (7.8) 

and the solution is unique in this space. As soon as I >O, the solution is 
very smooth; it is in fact holomorphic in { r~C\,{0} ( larg r1 <E, } with 
values in D(A”), for any m > 0. 

Since A -‘U(r) = U(f) A - ‘, the solution of the problem with initial value 
uO=A. ‘u. is A -‘U(t) uO; this must coincide with c(r) constructed further 
above, since u(t) is in C”(k L*(Q, E))nC”,(I; D(A”)), all m, cf. (2.17). 
Applying A, we see that the solution UE Hdi2.‘!‘(Q, E) constructed above 
equals the semigroup solution. In particular, UE C”(& L’(Q, E)). 

Similarly, the solutions with more smooth initial data USE H.;,M(Q, E) 
constructed above equal the semigroup solutions, so we can take advan- 
tage of all the general results known in connection with holomorphic semi- 
groups, when we study our solutions. 

We only do this when it is useful to us, not for its own sake-for exam- 
ple, the use of fractional powers A”, which is customary in some treat- 
ments, seems to be much too circumstantial, now that we already have a 
solvability theory for a full scale of interpolating spaces H”,,,(SZ, E), s 2 0. 
(The precise characterization of the fractional powers A” is a complicated 
affair; see [Gr2, Sect. 4.43 for some partial results. Note that their domains, 
at least in the selfadjoint case, are completely characterized by 
Corollary 5.5 above, as the H”,.., spaces.) 

To sum up, we have shown: 

THEOREM 7.3. Let a, > 0, and IPI I = R c . For any s 2 0, any 
L+,E H.T;..,,,(Q, E), there is a solution qf (7.5) in the space 

u E Hdi2 +.x. I!? + .y.:d 
(Q9 E) n co@ + ; &..&4 El) n C”(R + ; c;,(Q 0); 

(7.9) 
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in fact the solution is holomorphic in {t E C\{ 0} 1 larg tj < E, } with values in 
C&(Q, E). Th e solution is unique in the space defined in (7.8); and for 
s > d/2 it is unique in H”‘(Q, E). 

For a, < 0, there is a solution u such that similar statements hold for e-%, 

P > laoI. 

We can also obtain estimates of norms of u(t) for t + 0. 

THEOREM 7.4. Let r > ~20. Let a,> 0, and let Z= R,. There is a 
constant C> 0 such that when u(t) solves (7.5) with initial value 
u. E H>,,(SZ, E), then 

Ilu(t H’T.M(R,E) < Ct-(‘-s)‘d IIuoll H;,McR,Ej for all t > 0. (7.10) 

When a, < 0, the inequality holds with C replaced by CeP’, where p > laoI. 

Proof Let a, > 0. It is well known from the semigroup theory (cf., e.g., 
[F, Sect. 2.21) that the L2 operator norms of AmU satisfy 

IIA”U(t)ll < C,t-“, for all t > 0, all mEN. (7.11) 

When m and k E N, m 2 k, then by (7.6) and (7.11), 

II U(t) uoll HyM 1 cc, IIAmU(t)uollL2=C~ IIA”-kU(t)AkuollLz 

<C,t-“+k IjUollHkd 
T,M’ 

for u. E HF,(G, E). 

Interpolating between m and m + 1 and between k and k + 1, we find 

IIu(t) uoll+$$~~Cst-m+k IIUoll,y;$y, 

for O<o<d, u,EH$~~~(O, E), (7.12) 

which shows (7.10) when r - s is an integer multiple of d. 
Now let r > s >, 0. Choose 8 E 10, 1 [ and k integer such that r - s = 8kd. 

Then in view of (2.3) and (7.12), 

11 u(t) uoll H;,~ = 11 u(t) UoIl Hj[tMOl’d< c, 11 u(t) UOII”,;$~ 11 u(t) uotl i/T,; 

G Cs(t-k IluollH;,)” lluoll~~,~= C5t-(‘--s)‘d II~OIIH;,,~ 

which completes the proof of (7.10). 
If a, < 0, we replace U(t) u. by ee@U(t) u. with p > laoI, which solves 

the analogous problem for A + p, cf. (6.28). 1 

Besides having an interest in themselves, these estimates are useful in the 
treatment of nonlinear generalizations of the parabolic problems. 

U(t) can of course be studied further-for its kernel structure and 
asymptotic trace formulas see [Gr2]. 



PARABOLIC BOUNDARY PROBLEMS 301 

We end by showing some improvements concerning exponentially 
decreasing solutions. 

First, when a, ~0, we can shift M a little bit by replacing u by e““U for 
a, E 10, a,,[, so that M is replaced by M-a,, still an operator with positive 
lower bound of the spectrum; thus the solutions satisfy 

II~(O~OllL~~Cu,e-“” lluollI.~ forall t>O, 

IIWr) ~ollH;,,u~ C,,.,t -“--(i”de--u” II~OllH.;,,w for all t >O, r>s>O. 

(7.13) 

It is perhaps more interesting that when a, < 0, we can also get exponen- 
tially decreasing solutions, now for u0 in a subspace V of L’(Q, E) offinire 
codimension. In fact we can in both cases get solutions that decrease 
exponentially us fast us we like, for u,, in a subspace of finite codimension. 

THEOREM 7.5. Let I = R + and let a, he a given real number. There is a 
decomposition of X = L’(Q, E) into closed subspaces V and W satisfying 
(4.10), and an integral operator Y with finite rank and C” kernel (of the 
form (4.20)-(4.21)) such that the solution operator U, : U,,H u for the 
parabolic problem 

a,u+Mu+Yu=O in Q, 
Tu=O on S, (7.14) 

rOu = u0 on 52 

satisfies, for all r > s 2 0, 

ll~l~O~~llH;,,~~~Cr.s.o,~~“~-S”~~~--(I” llkdIH;,H for all t>O. (7.15) 

Proof: Ordering the mutually distinct eigenvalues as in (4.9), we let k’ 
be the first number such that Re &, > a, ; then Theorem 4.3 provides us 
with V, W, and Y such that the lower bound of the spectrum of 
A.=A+Yis >u,,whenforBwetake,e.g.,B=(u,+1)1on W.Since.Y 
‘is a negligible ps.d.0. (a ps.d.0. of order -co), the principal part of the 
operators is unchanged, and the parabolic theory applies to the problem 
(7.14), defining a solution operator U, that can also be expressed as the 
semigroup U,(t) solving 

d,u(t) + A,u(t) = 0 for t >O, 

u(0) = u(). 
(7.16) 

In particular, (7.15) follows from the discussion preceding the theorem. 1 
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COROLLARY 7.6. For any a, E R there is a closed subspace V of L’(51, E) 
of finite codimension, such that the solutions u(t) of (7.1) (or (7.5)) with 
initial values u0 E V satisfy, for all r 2 s > 0, 

lI~(t)lIH;M~C~,s,a,f~(r~~r)'de~a'f lluollH;, for all t>O. (7.17) 

Proof. We take V and A, = A + Y as in Theorem 7.5. For I outside 
o(A) u a(A,), the resolve&s (AB--12)-l and (A - 1))’ coincide on V, in 
view of (4.10) and the construction of A,. Thus for USE V, 

U(t) u. d/l 

i 
=sc ae I 

-A’(A,-A)-l u,dA= U,(t)u,, (7.18) 

where %’ goes around a(A)uo(A,). Then (7.17) follows from (7.15). 1 

We refer to Remark 4.4 for some observations concerning optimal 
choices of 9. 

Also the results on the problem 

a,u+Mu=f in Q, 
Tu=O on S, 

r,u=O on Sz, 

(7.19) 

can be improved in this way. Take for simplicity a, = 0, and choose V and 
Y according to Theorem 7.5; then the solution u of 

a,u+ik+934=f in Q, 
Tu=O on S, (7.20) 

r,u=O on 0, 

with f  given in H;;y(Q, E), satisfies u E HCo, r+d,r’d+ ‘(Q, E), with an estimate 

Ilull H;o;d~“d+‘(Q,_E)~ cr lifll f$,',ld(Q,/q (7.21) 

Here u is determined from f  by Laplace transformation of the resolvent, as 
described in the proof of Theorem 6.3. Now if f  takes its values in V, more 
precisely, if 

fE L*(R+;H'(Q,E) n V) n H;'(R+; V), (7.22) 
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then X can be replaced by V in (6.24), and (A, + p)- ’ coincides with 
(A + p).“ on V, so we find that u solves (7.19), and 

UEL’(R+; H’+d(Q,E)n V)nH;“+‘(R+; I’). (7.23) 

When a, is general, V and Y are chosen such that A,-a, has its 
spectrum in {Rei.>O}; then for any ~<a,, 

(7.24) 

We formulate the consequences for (7.19) in a theorem: 

THEOREM 7.7. Let I = R + and let a, be a given real number. There is a 
closed subspace V of finite codimension, invariant under A in the sense that 
A(D(A) n V) c V, such that when f is given with 

e”yE L’(R+; H’(Q, E)n V)n Ht’(R+; V) (7.25) 

for some t-20, b<a,, then the solution u of (7.19) satisfies 

e”‘uEL’(R+; H’+d(Q,E)n V)nHcd+‘(R+; V), (7.26) 

and the estimate (7.24) holds. In particular, it holdr with (T = 0 of a, 2 0. 
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