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Properties of Normal Boundary Problems
for Elliptic Even-Order Systems.

GERD GRUBB (*)
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REFERENCES.

In this paper we present a «reduction to the boundary)) for normal
boundary value problems for elliptic systems A, that is used to reduce the
study of coerciveness inequalities

for realizations As of A, to related coerciveness inequalites for the pseudo-
differential operators acting in certain vector bundles over the boundary.
The reduction is also used to establish a perturbation formula, from which
we deduce a new asymptotic estimate for the negative eigenvalues of sel-
fadjoint elliptic realizations of strongly elliptic systems. (The study of (1)
requires a more delicate reduction than those given in [18], [25].)

(*) Universitetets Matematiske Institut - gbbenhavn, Danmark.
Pervenuto alla Redazione il 31 Maggio 1973.
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The paper has two chapters. In Chapter I (Sections 1-4), we study
the coerciveness problem from an abstract viewpoint and work out a theory,
that would be applicable also to other boundary problems than those for
elliptic operators (e.g. the parabolic and hyperbolic cases treated in Lions-
Magenes [21, vol. 2], and certain degenerate elliptic operators). (The
difficulty in such applications of course resides in the interpretation of the
more or less abstract statements.) Let .A.y and be linear, closed, den-
sely defined operators in a Hilbert space H, such that .A.o C J. c being
bijective. Then the closed linear operators A lying between .A.o and .,A.1 are
in a 1-1 correspondence with the closed, densely defined operators T : Y --~ ~,
where V resp. W run through all closed subspaces of the null-spaces 
resp. cf. [11]. Under further hypotheses on Ao, AY and .A.1 (in parti-
cular, that ~.Y is regularly accretive and has a compact inverse), we now
show that when .g’ is any Hilbert space between jI and Hy (Hv = the closure
of under the norm Re u) + const. and U is any linear
set between D(A,,) and K, then A satisfies

for some c &#x3E; 0, 1 E R, if and only if T has the properties

(3) Vç; W, and Re(Tz, Vz cD(T) n U,

for some c’ &#x3E; 0, A’ E R. This is the statement for the case where A*
and (cf. Theorem 2.13 below); in the case where A =,4 A* the
condition (3) must be replaced by a more complicated version (cf. Theorem 3.6).
The result was proved earlier for quite special choices of .g’ in [12] and [13];
the difficulty for the general case lies in concluding from (3) to (2) when - A’
is large negative. This is overcome in the present paper by a technique that
uses compactness of and involves a study of how the set-up changes
when Ao , Ai (etc.) are replaced by Ao - p, Al - It (etc.) for real a outside
the spectrum of 

Chapter I ends with Section 4, where the negative spectra of Z and T
are set in relation, in preparation for Section 8.

The methods of Chapter I are elementary Hilbert space techniques,
whereas the application to specific boundary problems in Chapter II (Sec-
tions 5-8) involves the use of more extensive theories. We consider a 2m
order elliptic differential operator A in a q-dimensional vector bundle E over
an n-dimensional compact C°° manifold Q with boundary .1~. Section 5 con-
sists of background material. In Section 6 the normal boundary conditions
Beu = 0 are introduced; here eu denotes the Cauchy data of u, and B is a
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triangular matrix of differential operators, with surjective zero order ope-
rators in the diagonal (and possibly pseudo-differential operators below it);
such conditions were studied in detail in [17]. Let AB denote the realization
of .A with domain D(A B) = {u E L2(E) lAu E L2(E), Beu = 0~ ; then .,A.o C

where Ao and Ai are the minimal, resp. the maximal, operators
for A. Denoting by AV the realization of the Dirichlet condition yu = 0,
and assuming JL bijective, we have that A B corresponds by Chapter I to
an operator T : It is now shown, by use of [17], that

where 0 and W are injective (pseudo-) differential operators, and the Zk
and F, are certain vector bundles over 1~. Moreover, T is by use of 7, 0
and 1JI carried into a pseudo-differential operator t (a representation of T)

m-1 2m-1

going from to +~ F,; and the dimension of Z(AB), the codimension
x;=o ?-w

of R(Az) and the regularity of A B correspond to analogous features of ~.

Section 7 takes up the coerciveness problem (for which the assumption
of normality is justified, as observed by Seeley [27]). In [17], there was gi-
ven a necessary and sufficient condition (on B and A near F) for the weak
semiboundedness estimate

With the present notations, that condition is also equivalent with the property
(and with the range space for B has total dimension mq) ;

in such cases, C is replaced by more convenient representations. Assuming
that .9. is strongly elliptic, we construct (from £ and ~.) a pseudo-differential

operator with which we have:

THEOREM. Let K be a Hilbert space satisfying

(continuous injection-R)

and containing D(AB) and let U = K n ~~c E L2(E) lAu + e

m-1

and U, denote certain subspaces of n derived from K
1c=O

and U by use of y and 0. There exist c &#x3E; 0, Â E R such that
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i f and only i f (i) and (ii) hold:

( i ) AB satisfies the condition for (5).

( ii ) There exist o’ &#x3E; 0, ~,’ E R such that

Wt-1

for all with 
k-o

This is Corollary 7.8; cases of more general K and II are included in the
more complicated Theorem 7.7. When K = H"(E) for some s E [0, m], (8)
takes the more familiar form

For s = m, (9) holds if and only if Re &#x3E; 0 on T*(h)B0; this charac-
terizes the realizations satisfying Garding’s inequality, completing the suf-
ficient conditions of Agmon [1] and de Figueiredo [8]. For s = 0, the theo-
rem characterizes lower boundedness of A Bby the analogous property of J .

(See Theorem 7.10 and Corollary 7.11). The results generalize (and improve)
those given for scalar A in [13].

Finally, we consider in Section 8 the selfadjoint realizations AB of a for-
mally selfadjoint elliptic operator A, and derive an isometric representa-
tion l) of T, that allows for sharper correlations of properties; in particular
we set up a Perturbation formula (8.19). This is applied to a study of the
negative spectrum of A B in the case where ~. is strongly elliptic. We show
that when AB is elliptic and unbounded below, then the number of eigen-
values in ]- t, 0[ satisfies the asymptotic estimate for t ---&#x3E; + o0

improving previously known estimates (Theorem 8.11.10). This is derived

from a more general theorem (Theorem 8.7), that also describes the number
of negative eigenvalues in the lower bounded (finite) case, and allows for

a discussion of the sharpness of (10), and of non-elliptic cases.
Some of the above results were announced in [14]. Moreover, we presented

a sketch of part of the theory in S6minaire C. Goulaouic- L. Schwartz (and
in S6minaire J. L. Lions-H. Br6zis) [15], and a further developed version
at « Colloque sur les equations aux dérivées partielles, Orsay 19?’2 » [16],
which also includes a direct proof of the characterization of Garding’s inequa-
lity. The author would like to thank the organizers of these meetings for
the inspiring occasions.



5

CHAPTER I 
’

ABSTRACT THEORY

1. - The general set-up.

The study of extensions of linear operators in Hilbert space is a well

known tool in the theory of boundary value problems. The basic notions

for the framework used here were developed in [11], additional studies were
made in [12] and [13]. In the present chapter we obtain a complete discus-
sion of abstract coerciveness inequalities (under the assumption that a cer-
tain fixed operator is compact); moreover, we derive a result on comparison
of eigenvalues.

For an operator P from a topological vector space .X to a topological
vector space Y, we denote the domain, range and kernel by D(P), .R(P)
and Z(P), respectively (*). I denotes the identity opertor in various contexts.

ASSUMPTION 1.1. There is given a Hilbert space .H with norm 11.BB 11 and
inner product ( ~, ~ ), and a closed, densely defined, unbounded operator Ai’
in H, bijective from onto H. There are given two closed, densely
defined operators Ao and in H, satisfying C A1: Denote 

v

07 A0* °

Clearly, and maps bjiectively onto H. Ao and A§
are injective with closed ranges, A1 and Ai are surjective. Thus

orthogonal direct sums. Define

they are continuous operators in D(A1), and they project D(ÂI) onto its two
components resp. Z(Ai)

(direct topological sum).

We also denote 7 Similarly,

(*) D(P) is provided with the graph-topology.
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decompose we write pr~=~. The

orthogonal projection onto a closed subspace X of H is denoted by prz’U
or uz.

vii denotes the class of linear operators A (resp. A’) satisfying
When for some Ã E vii, we usually

simplify Ãu to similarly Ã’ u is usually written A’u.
The closed were characterized in [11, y Section 11.1] as follows:

PROPOSITION 1.2..Let A Let

closures in H. Then the set G C: V’ x W defined by

is the graph of a closed, densely defined operator T from V into W, with D(T) =
=pr, D(A ) . Conversely, let V and W be any closed subspaces of resp. Z(.9. i),
and let T be any closed, densely defined operator from V into W. Then

is the domain o f a closed operator Z Hereby is established a 1-1 cor-

respondence between all closed .9 and all such triples V, W, T.
When Z corresponds to T : Tr --&#x3E; W in this way, A* corresponds to T* : W -

---&#x3E;- Tr in the analogous way (relative to M’ ) .

The proof is based on the identity, valid for all u E D(.9), v E D(Ã*),

which shows that u, = 0 implies (J.~)~== 0, so that G is a graph. Simi-

larly, there is a mapping Ti:~~~(~.~)~. One then shows that T and Ti
are adjoints, that all triples are attained, and that .1 corresponds 1-1 to T,
V, ~f. We recall from [11. 11.1] the properties:

PROPOSITION 1.3. Let I correspond to T: V -+ W as in Proposition 1.2.
Then

in this decomposition ,
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PROPOSITION 1.4. Let 1 correspond to T : V - W as in Proposition 1.2.

Then

and

When = 0,

where PC-I)f = T-1 prw f f or f E R(Ã).
(1.5) corrects a wrongly presented formula in [11, Theorem II 1.3] (the

proof is an immediate consequence of (1.3)).
We shall now use Proposition 1.3 to discuss lower bounds. When P

is an operator in H, its lower bound m(P) is defined by

and P is called positive, nonnegative, lower bounded or unbounded below,
according to whether m(P) is &#x3E; 0, ~ 0, &#x3E; - o0 or =-oo.

2. - Inequalities in the selfadjoint set-up.

In addition to Assumption 1.1 we assume in this section

ASSUMPTION 2.1. Ay is selfadjoint with m(A,,) &#x3E; 0. A1 = A:, and D(Ao)
is dense in D(Al).

Note that AV is the Friedrichs extension of Ao, we do not here consider
a more general extension Ap as in [11].

In the following, let A correspond to T : V - W by Proposition 1.2.

(A will of course in general not be self-adjoint.) When Vc W, we have a
simple identity:

((2.1) holds whenever W.) We shall also need the inequality
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x and y belonging to H ; it is proved as follows:

The following results were proved in [11, Section 11.2].

PROPOSITION 2.2.

(i) I f m(l) &#x3E; - 00, then V S Wand 

(ii) If then

The proofs are based on (2.1); (i) furthermore uses the denseness of D(.d.o)
in (like in the proof of Theorem 2.13 below), and (ii) uses (2.2).

In order to include the cases where m(T)  - we shall study how
the set-up changes when Ao, .AY and are replaced by 
and 

DEFINITION 2.3. For p, E (the resolvent set for define the

operators

Clearly, and FP are bounded operators in H, selfadjoint when p is

real; moreover

since for v belonging to
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LEMMA 2.4. Let K be a linear space satisfying

Then

and

If K is provided with a norm .llll for which the injection8 in (2.5) are oontin-
uous, one has for all u E K

with positive congtantg c Of.

PROOF. When u E K, = E K since K. So 

C K, and similarly (cf. (2.4)) EfJ Applying EP resp. FfJ to these

inclusions, we find .K C E’4 .g, F&#x3E; K, which completes the proof of (2. 6 ).
When the inclusions in (2.5) are continuous, we furthermore have for

u K

and similarly proving (2.9).
Finally, let z E Z(.A1) r’1.g. Then Ep z E K, and

so E This proves n K) C ZeAl - ti) n K. One

shows in a similar way that /1) Z(.,A.1) r1.g, and applies
(2.3) to conclude (2.7) and (2.8).

Introduce the projections, for 
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they decompose D(A,) = into the topological direct sum

The relation to the usual decomposition of is found by observing that

where by (2.?’), and

so that

We now introduce an operator in 

DEFINITION 2.5. Let f-l G e(A~). The operator (jP in Z(.14.1) is defined by

in other words,

Denote by the class of linear operators between Ao - p, and .A.1- p;
clearly .9 E.,lC « h - p 

PROPOSITION 2.6. Let A be a closed operator oorresponding to T : V --*
- W by Proposition 1.2. Let a E Q(Ai’) n R. Then A -,u corresponds to
T": (by Proposition 1.2 applied to J/P), determined by

PROOF. By
Moreover,
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since E" is an isomorphism in H. Similarly, W~‘ = Now we have

for all all (cf. Proposition 1.2) :

which shows (2.15 ), where we set I

Now, as long as &#x3E; 0, Proposition 2.2 applies to the correspondence
between and T~. The treatment of large negative bounds for T then
hinges on whether T" can be brought into the range of applicability of Pro-
position 2.2 (ii) for - p large. Indeed, we shall show that m(G/-’) -* + o0
for p - - oo. This is obtained by use of a lemma of Rellich [24] (see Dun-
ford-Schwartz [7, XIII. ?’.22] ) :

LEMMA 2.7. Let ~’1 and S, be symmetric operators, and assume that 81 ç S2 ,
and ~(~2) = ~- N, where N is f inite dimensional. I f m(8I) &#x3E; - o~o

then m(~S2) &#x3E; - 00.

This will applied to a very special case:

PROPOSITION 2.8. Assume that compact. Let À E R, and denote
by T(2) the operator 21 with domain Z(.A.1). Let be the operator correspond-
ing to T(~,) : - Z(.A.1) by Proposition 1.2. Then m(.Z(A)) &#x3E; - 00.

PROOF. In view of Proposition 2.2 (ii), we may assume A -  0.

By Proposition 2.2 (iv), is self-adjoint, and by Proposition 1.3,

here In particular,

so u, = z = Â-I Aui’. Introduce the operator
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it maps continuously onto and clearly

Conversely, if v E D(.~.Y), we put z = Ov and x = v - then

so x E D(Ao). Thus

and we have shown

Since R(e) = 

so pry serves as a left inverse to I + e.
Now let z &#x3E; 121 and let X,, and Nz denote the eigenspaces belonging to

the eigenvalues of Ay that are &#x3E;í, resp.  r; NT is finite dimensional.

Let ÃT(Â) be the restriction of Ã(Ä.) with domain

it is closed, and

For U E D(~=(~,))B~0~, we have uY E X,,, so and, by (2.1)
and (2.2),

since T + 1 &#x3E; 0. Thus m(AT(~,)) &#x3E; - oo, and Lemma 2.7 applies to show
that m(I(I) ) &#x3E; - oo.

DEFINITION 2.9. When is compact, we define the function q : R - R
according to Proposition 2.8 by
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It follows from Proposition 2.2 (i) that ~ ~, for all A E R, so - - o0

for Since h(1) ;2 Ao, we also have

moreover, Proposition 2.2 (ii) shows that 

so that in fact for A --* + oo. Define 

u {+ 00} by

THEOREM 2.10. Assume that is compact, and consider GO for
On this interval,

In fact, the f unction V: p ~-* - defined for p E ]- co, is the

inverse of the function qJ de f ined on ]- 00, a[ (of. (2.16), (2.18) ) ; both functions
are strictly increasing and continuous. In particular, 00, 0] ) = ]- (-1 ~0].

PRoof. For p,  lz’  m(Ai’)’ - + is a positive operator on H,
since it equals where the function f satisfies

for all i &#x3E; Thus, by restriction to Z(AI),

so the function 1p: It is strictly increasing on ]- oo, 
Now let 2 E ]- oo, a[ and consider 9(2) defined from T(2) == 21 on 

as in Proposition 2.8. For p E ]- oo, m(Ay)[, let T"(2) denote the operator
in Z(A, - It) corresponding to Then by Proposition 2.6

Since Ell maps Z(Ai) isomorphically onto Z(Ai - p) for each p, it follows that

holds if and only if
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Since we have assumed ,u  m(A,,), Proposition 2.2 applies to the correspon-
dence between TJJ(Â) and showing that (2.21) holds if and only if

Now the equivalence of (2.20) and (2.22) gives: When I E ]- coy a[ and we

put p = = ( meAi’) by the definition of a), then A = - =

= v(/z). Conversely, when p E ]- oo, m(A.Y)[ and we put A _ - m(GP) = 
then p = = T(A); here by (2.17), a. By the monotonicity
of ip, ~  p,’  m(Ay) implies  which shows that in fact

’P(]- oo, ~(-~Ly)[) ~ ]2013 00, a[. Altogether, we have found that 99: ]- oo, a[ -
-~ ]- oo, oo, [ - ]- 00, a[ are inverses of each other.

Since y is strictly increasing, both functions are continuous and strictly
increasing. Finally, "P(]- oo, 0]) T ]- oo, 0], since

REMARK 2.11. It should be noted considered as an operator
on alt of H, does not have a property like (2.19). In fact, if v is a normalized
eigenvector for .Ay belonging to the eigenvalue z, then

However, the eigenvectors for ~.y do not tie in In earlier, futile attempts
to prove (2.19), we tried to measure and utilize the positive angle
between Z(Ai) and the finite dimensional eigenspaces for Ai’. In our applica-
tions to realizations of an elliptic differential operator of order 2m, takes

the form of a certain elliptic pseudo-differential operator over the boundary
(cf. Remark 8.2 below). In special cases (of constant coefficient operators
on R+) one finds here that m(G") &#x3E; this is also our conjecture for
the general 2m-order elliptic operators.

We can now complete Proposition 2.2.

THEOREM 2.12. (Assumption 1.1 and 2.1). Let compact, and let

correspond to T: Tr -~ W by Proposition 1.2. Then m(A) &#x3E; - oo if
and only if V C Wand m(T) &#x3E; - oo. (In particular, m(A) &#x3E; 0 ~ V C W

and m(T) &#x3E; 0 ; and m(T)&#x3E;0.)

PROOF. The implications from zi to T, and from T to I for m(T) &#x3E;

&#x3E; -m(A,,), are contained in Proposition 2.2. So let V C W and m(T) =
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= 1 - m(A~). Let It = 99 (A), then ~n((~~‘) _ - ~1. Now, with the notations
of Proposition 2.6, and TO satisfies

for all z E D(T), whence Thus i.e., m(A) ~,u. Q,e,d.

We shall finally apply Theorem 2.10 to treat some more general inequa-
lities.

Define the Hilbert space

(2.23) By= with norm

it is dense in H. As is common, we identify

the duality between Hy and its dual space gY denoted ,), extending the
inner product (, ) in H. Considered as an operator from HY to H, Ao has
an adjoint from H to Hy that we denote A.l,s; it clearly extends so we

abbreviate to Au as usual. We denote by EA, so altogether

Let Av.0 be the restriction of Al.0 to Hv; it is an isomorphism of H"I
onto HY, extending ~.Y: ¡¡ It is easily seen that

(direct topological sum),

where the decomposition is defined by the projections

extending the original projections (1.2).

THEOREM 2.13. (Assumptions 1.1 and 2.1.) Assume that A;l is compact,
and let I correspond to T : V - W by Proposition 1.2. Let K be a Hilbert

space with norm 11 - ilK and satisfying

(2.2 $) 
~ Hy C K s H (continuous 
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Let U be a linear subspace of .K containing There exist c &#x3E; 0, A E R
8uoh that

i f and only i f (i) and (ii) hold:

(i) D(T) t1 W.

(ii) There exist c’ &#x3E; 0, A’ E R such that

PROOF. Assume first that (2.29) holds. Let f E Z(A,) E)
e W, xn E D(Ao), and set

it lies in D(h) by Proposition 1.3, and in U, since D(AV) C U. Now, using
that R(Ao) 1 Z(A,),

Let + f) in By; then ~cY --~ 0 in Hv and thus in .K and in H,
so that the inequality implies

This holds for f multiplied by any complex number; thus ( f , z) = 0, which
shows (i). When this is inserted, we find the inequality (ii) with c’= c, A’== A.

Conversely assume that (i) and (ii) hold. If - 1’ &#x3E; 0, we find for u E D(A) n
using (2.1),

with o’ &#x3E; 0, which shows (2.29). Now assume - If  0. Let ~u = 

By Lemma 2.4f Ell maps isomorphically onto r1 K.
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Let TO be the operator corresponding to -i - /t (cf. Proposition 2.6), then
we have for z E D(T) n U

where the constant c" &#x3E; 0. Moreover, by Lemma 2.4, n U) =
r1 U = D(TP) n U. Then the previous argument may be applied

to the correspondence between A - p and TO, showing that there exists c &#x3E; 0

so that

o

i.e.,7

REMARK 2.14. Previously (cf. [12, Proposition 2. ?’] ), we only had a com-
plete result for g = l~8(S~) with being the
Dirichlet realization in H = L2(Q) of a 2~n order elliptic operator A in a
bounded open set S2 c R"; the proof was based on trace theorems and compact
injections Note that above we do not assume compactness
of K C H.

REMARK 2.15. When satisfies

and for 

with positive constants. The proof of Theorem 2.13 shows that (2.29) is

also equivalent with

In particular, A is lower bounded if and only if (2.31 ) holds with KI equal to 
(or any space between Je.,( and H).

REMARK 2.16. It follows from Theorem 2.12 that we can also complete
the results of [12] (Théorèmes 1.1, 1.2) on variational A (i.e., those that are

2 - della Norm. Sup. di Pisa
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associated with coercive sesquilinear forms by the Lax-Milgram lemma):
A is variational if and only if V = W and T is variational; and then

the associated sesquilinear forms d and t are connected by

(2.32) D(a) == H,, + D(t) (direct topological sum),

here

3. - Inequalities in the nonselfad j oint set-up.

In this section, we assame, in addition to Assumption 1.1,

ASSUMPTION 3.1. The operator is positive and variational with 

= ~(~). Moreover, equals and is dense in Hv where Hi’ denotes
the domain D(ay) of the sesquilinear form ay associated with Ay; i

For details on variational operators, cf. e.g. [12, Section 1.2]; some
authors call such operators regularly accretive. Let us just mention that gy
is a Hilbert space, continuously and densely injected in H, and v) is
a continuous sesquilinear form on H X .Hy satisfying for all 

with positive constants c and Av is associated with ay by the Lax-Milgram
lemma. We use the identification (2.24) and the there mentioned notations
for the duality.

Define also the « real parts » :

it is the selfadjoint positive operator associated with the sesquilinear form

11 I [a,,(u, v) + ai’(v, u)] defined on gy; and

The class of linear operators between A’ 0 and will be denoted -t’.

The three operators Ax and ~.i are extended to operators from H
to HY by 

I I
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their domains are denoted

and we as usual abreviate notations by writing as as A.’ u, 9
and A",.u as Aru. (See the analogous construction (2.25).) The restrictions
of these three operators with domains Hy are isomorphisms ~.Y,e, resp. AY,Q
of Hi’ onto Hy, and they clearly satisfy (cf. (3.1))

Defining the projections

(extending definitions of Section 1), we have the decompositicns into topo-
logical direct sums

just like in (2.26)-(2.27). We shall often write as u;, and as u(:
Clearly, the results of Sections 2 apply to the operators in 

The fact that D(Ao) = D(.~.o) = with implies easily,
by use of the definitions :

LE&#x3E;rMA 3.2. One has

For u in any of these sets,

Moreover, the projections fit together as follows:
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LEMMA 3.3. one has

PROOF. For we have three unique decompositions accord-

ing to (3.3) (cf. (3.5))

Rewriting the third member of (3.11) we find

where and so that by comparison
with the second member,

This shows the first identity in (3.8) ; the remaining identities follow similarly.

LEMMA 3 . 4. Let u E D (A.1 ) n Then

PROOF. By (3.6), we can define x = = pr[ u, and then
Thus

and we find by insertion
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where Re [x, + (Ay, r) ] = Re ~(.A, + A.’ ) y, x~ = 0 because y E 
This shows the lemma.

We shall apply the techniques of Section 2 to the operators in -4fr, so
we define, for ft 

The class of operators between and is denoted and we

have the projections denoted = and pré’P u = ~c=~~‘, decomposing 
into the direct topological sum

LEMMA 3. 5..Let Then for 

PROOF. The identities (2.11) extend immediately to u E JeÃ,,:

Denote Then

since

THEOREM 3.6. (Assumptions 1.1 and 3.1.) Assume that is compact,
and let Z correspond to T : V --* W by Proposition 1.2. Let K be a .Hilbert

space with norm 11 - II g and satisfying

(3.14) HVCKCH (continuous injections),

and let U be a linear subspace of n K containing There exist c &#x3E; 0,
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A E R such that

i f and only if (i) and (ii) hold :

(ii) There exist o’ &#x3E; 0, 1’ E R such that

for all z E D(T) r1 U. Here, if - A &#x3E; 0( ~ 0), - ~’ may be taken &#x3E; 0 (&#x3E; 0),
and vice versa.

PROOF. 10 Assume (3.15). When u E D(l) n U, we have the three decom-
positions (recall (3.6) and Proposition 1.3)

Then we find by use of Lemma 3.4

For given U and W, we can choose a sequence
of elements converging to in Hi’. Then

xn + + f ) -f- z belongs to and pr~ un = xn + +

+/)+pr~-~0 in so that in K, in view

of (3.14 ) . Inserting un in (3.17) and passing to the limit, we find that

for all z E D(T) r1 U, all f E e W. Since f may here be multiplied by
any complex number, this implies that ( f , z~) = 0 for all f, z, which shows (i).
When this is inserted in (3.18), we find (3.16).
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20 Assume conversely that (i) and (ii) hold. We first take the case
Here, by the above decomposition, we have for U E

e 2)(Jt) n U

with c" &#x3E; 0, in view of (3.14); this shows (3.15). Next, let - 1’  0. We
then have for u E D(Ã) n U

Now let p = q(- 2’) so that = A’ (cf. Theorem 2.10 ) ; note that p  0.

Then by use of Lemma 3.5,

Re (Au, u) 

with O2 &#x3E; 0, since H. C; K. This proves (3.15). The last statement in the

theorem is evident.

REMARK 3.7. Note that the proof of Theorem 3.6 hinges on the decomposi-
tion, valid for u E D(A) r1 JeAr with uIc- W,

where t’’ (y, y) = Re y’) + (Ay, pr~ y~ ), cf. (3.17). Here, Re u)
might be regarded as the sum of the two « quadratic» forms .,~.~’ uy , 
== a;(u;, uy) and tr(ué, u"), like in (2.33); and the study of coerciveness ine-
qualities (3.15) becomes part of a study of such sums of forms on subsets
of JCZ.

In view of Remark 2.15, Theorem 2.13 in a special case of the above
theorem. Observe also the following consequence of the proof of Theorem 3.6,
which extends Theorem 2.12:
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COROLLARY 3.8. (Assumptions of Theorem 3.6, with .g = H.) There

exists p E R so that

if and only if (D(T) n Wand there exists ,u’ so that

for all U. If It &#x3E; 0 (It &#x3E; 0) then y’ may be taken &#x3E; 0 (&#x3E;0) and
vice versa.

4. - The negative speetrum.

As noted in [11], Proposition 1.4 leads to methods for estimating the spec-
trum of zi by applying perturbation theorems to the spectrum of A~ (or of
T). Similar ideas have been used previously by Krein and by Birman (loc.
cit.) and others in the study of lower semibounded operators. We shall here

give a few estimates concerning the negative spectrum of selfadjoint, not

necessarily lower bounded operators. The methods are quite elementary,
but do however provide the basis for a new result for elliptic boundary
value problems in Section 8. The application of the same techniques to
the positive spectrum does not improve the very delicate estimates already
known (cf. (8.22)) so we shall not here discuss the positive spectrum.

Some notations: When P is a selfadjoint operator in a Hilbert space X
with discrete spectrum with finite multiplicities, the nonzero eigenvalues
are arranged in the two sequences (counting multiplicities)

For t E ] o, + oo], we denote

When N-(P; cxJ)  oo, we also arrange the eigenvalues in one sequence
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so that, when 0 ~,~ (P) _ 1#_,~~(P) N~(P ; oo), and I;(P) =
= 1)~(P) for j &#x3E; N.

When Q is a compact selfadjoint operator in X, the nonzero eigenvalues
are arranged in the two sequences

and we denote by N±(Q) the total number of positive, resp. negative, eigen-
values. When Q is injective, = 

We assume in the following, that Assumptions 1.1 and 2.1 hold, and
that A;1 is compact. Moreover, A will denote a selfadjoint operator in JI,
with and A-1 compact, and corresponding to T : V - V by Pro-
position 1.2; so 0 E e(T) and T-1 is a compact selfadjoint operator in V, by
Proposition 1.4.

LEMMA 4.1.

PROOF. Follows from Theorem 2.12, since the statements mean that Z
resp. T is unbounded below.

LE&#x3E;£MA 4.2. For any t E ]0, 00],

and

PROOF. We apply the maximum-minimum principle to the identity (cf.
Proposition 1.4)

where nonnegative, so that x) &#x3E; (PC-I) x, x). oo) =

= N (A-1) we have
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here runs through all subspaces of H of dimension c j -1. This shows

LEMMA 4.3.

PROOF. This was shown in Lemma 4.1 for the infinite case, so we may
assume N (A ; oo)  oo. Then A is lower bounded, and the associated sesqui-
linear forms constitute a direct sum

for all u, v E D(a) = D(ai’) + D(t), cf. Remark 2.16 (or [12]). Let a &#x3E; - m(Ã),
then in particular a &#x3E; - m ( T ), cf. Proposition 2.2 (i). Then 

D(a) = D(a + ce) = D((! + a)*). Now another wellknown version of the

maximum-minimum principle gives (in the notation (4.4))

where runs through all subspaces of H of dimension  j - 1. Now
D(t) 9 D(a) and for z E D(t) we have a(z, z) = t(z, z) by (4.10). Thus, for

each 

When runs through the subspaces of ~I of dimension  j - 1, then

pry runs through the subspaces of Tr of dimension  j - 1. Taking
the maximum in (4.11) over all we then get

and thus

In particular we see that
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which, combined with (4.7), proves the lemma. Then for the negative eigen-
values, (4.12) is just a restatement of (4.8).

Finally, y we shall determine an inequality going in the opposite direc-
tion of (4.8).

DEFINITION 4.4. For any closed subspace V of Z(A,,), we define the ope-
rator By in V by

The compactness of implies the compactness of each operator Sv I
moreover they are injective and nonnegative.

LEMMA 4.5. One has f or all j + T-1)

PROOF. For v E V, we have

Thus

T-1 ) (like in the proof of Lemma 4.3).

Let us collect the results in a theorem.

THEOREM 4.6. (Assumptions 1.1 and 2.1). Assume that is compact.
Let Z EJI be selfadjoint with 0 E and 1-1 compact ; Z corresponds to

T : V - V by Proposition 1.2, where T is selfadjoint with 0 and T-1

compact. Then

where By is defined in De f inition 4.4.
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CHAPTER II.

APPLICATIONS TO ELLIPTIC SYSTEMS

5. - Preliminaries.

The abstract results of Chapter I will now be applied to normal boundary
value problems for elliptic systems. A treatment of scalar elliptic operators
was given in [13], and much of the background material presented there
carries over to the case of systems (or rather operators between vector bundles)
without any trouble; such results will just be stated without details here.

For scalar operators, a normal boundary condition consists of a finite
set of boundary conditions of distinct orders, where in each condition the
order equals the normal order and the coefficient of the highest normal deri-
vative is an invertibte function (Aronszajn-Milgram [5]). For operators on
vector-valued functions, one groups together the boundary conditions of the
same normal order, and normality means (following Seeley [27]) that in

each of those sets, the coefficient matrix of the highest normal derivatives is
surjective (a precise statement is given below in Section 6). This more general
concept requires the introduction of new techniques; the resulting theo-
rems contain and in a sense simplify the statements in [13].

Normal boundary conditions for systems of differential operators were
studied extensively in [17], which we shall build on here. We recall that
the requirement of normality, which is unnecessary for existence and regu-
larity studies (cf. [4], [18]) is justified in the study of semiboundedness ine-
qualities (cf. e.g. [17, Remark 2.2]).

Let A be a 2m order properly elliptic differential operator in a hermitian C°°
vector bundle .E of fiber dimension q over a compact n-dimensional rieman-
nian manifold 03A9 with boundary 0393 (and interior denoted D); m, q and n
are positive integers (2). On E and Blr one defines the usual Sobolev spaces,
the norm on or being denoted 11 - ll.. In particular, 
==L2(E), and L2-inner products will be denoted (., .);
their extensions to (sesquilinear) dualities will be denoted ~ ~ , ~ ~ (these will

mostly occur over T) . Co (E) shall denote the space of C°° sections in E with
support in D, and its closure in Ha(E) for s &#x3E; 0. All differential ope-
rators will be assumed to have C°° coefficients (when expressed in local coor-
dinates).

(2) Some results in the following are only interesting (or meaningful) for

n &#x3E; 1; this should be clear from the context.
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Define for s and t E R

it is a Hilbert space with the graph norm - + 11:)1. Define

also

it is a closed subspace of H’(E) and of any Analogous spaces are
defined for the formal adjoint A.’ of A. Introduce the index sets

and, with y, denoting the k-th normal derivative for u e

E C°° (E), define

the Cauchy data, Dirichlet data, resp. Neumann data of u. By an easy gene-
ralization of [21], y and v extend to continuous mappings

for all s E R. For the norms in the latter spaces we shall use the notation

One has the following Green’s formula (cf. [17], or [25], [13]) : For s E [0, 2m],
and 

where jt== a certain invertible skew-triangular matrix of diffe-
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rential operators ASk in of orders 2m -1- ~ - k ;

and

Define now A.o, and A1 as the operators in Z2(E) sending u into Au
and with domains

We shall assume

Assumption 5.1. A maps bijectively onto .L2(E).

Define the analogous operators for ~4.’, then we have from well known
theorems on elliptic operators

so that the introduced operators altogether satisfy the hypotheses of Sec-
tion 1. The graph-norms on D(Ao) and D(Ai’) are equivalent with the 
norms, and since Q is compact, is a compact operator. The operators 21
in -4t (i. e. satisfying Ao ç Ã ç A.1) are now called the realizations of A. Clearly,
we have

In particular, when A is strongly elliptic, we may assume that a constant
has added to A so that, with cm &#x3E; 0,

then Assumption 3.1 is satisfied, and

moreover, y the operators Ao, etc. are the analogous realizations of
the formally selfadjoint strongly elliptic operator
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Proposition 1.2 is turned into a correspondence between realizations and

boundary conditions by means of the following theorems :

PROPOSITION 5.2..F’or t ~ - m, ~2013~2013~...y2013~+~ and for
- oo  + 2m, the mapping ~A., y~ defines an isomorphism

Here, x ~U~~ = n and &#x3E;C

= ~(-S)’ With y2 defined as the isomorphism
kEMo

the operators

coincide with the projections prv and pre de f ined in Sections 1 and 3, and they
decompose into the direct topological sum

PROPOSITION 5.3. The composed operator

is an of pseudo-differential operators in Elr, it is of type
(- k, and its principal symbol is at each point in obtained

by the analogous construction for a related ordinary differential operator.

Proposition 5.2 follows from well known theorems on the well-posedness
of the Dirichlet problem, extended to general spaces by Lions and Mage-
nes [21], see [13, Theorem 2.1] for a detailed account. Proposition 5.3 fol-
lows from Boutet de Monvel [6]; the related ordinary differential operator
is obtained from the principal part of A by freezing the coefficients at a point
of T’ and Fourier transforming in the tangential variables. A matrix 
of pseudo-differential operators P,,, from .Ex to Fj (vector bundles over a mani-
fold X) is said to be of type (tk, is continuous from 

ibey,
to (For the case where A is scalar, we showed in [13] how the

jen 1

result follows from [18], [25], y and calculated the principal symbol of Py,,,. )



32

The analogous concepts are introduced for A’ (and A’’ in the strongly
elliptic case), with notations y~, (and y;, p;.,,). Define furthermore

and the analogous operators relative to A’ and A’’; we note that for the ope-
rators A’ and A’ entering in the Green’s formula,

Finally, define the pseudo-differential boundary operator ,u by

,u’ and It" are defined analogously relative to A’ and A’’. It has the properties
(cf. [11], [13]):

PROPOSITION 5.4. For 

and p maps D(A,,) continuously onto moreover,

The mapping {y, p,} is sarjective f rom onto

with kernel H:m(E). I

Now, when .9 is a closed realization of A and corresponds to T : V - W
by Proposition 1.2, we can use the isomorphisms in Proposition 5.2 to carry T
into an operator Z : X - Y’, where

yp. and yW denoting the restrictions of y to isomorphisms from V to X resp.
from W to Y. Here

for all ’U E D(Ã), w E W; so we find that A corresponds to .L: .X --~ Y’ by
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the formula

whete i*y is the adjoint of the injection
We refrain from further details (see [11], [13]), since we shall now restrict

the attention to normal boundary conditions, for which one may construct
other representations of T, where X and Y are replaced by whole Sobolev-
spaces over T and L is replaced by a pseudo-differential operator.

6. - Realizations of normal boundary conditions.

Recall the set-up of [17]: There are given 2m hermitian C°° vector bund-
les Fj over F, of fiber 0,1, ..., 2m -1. There is given
a matrix B = of differential operators B;k from Elr to .F’~ of orders

j - k, respectively (differential operators of negative order being zero),
i.e., B is of type (- k, i In the present paper, we also permit the Bj,

to be pseudo-differental operators (cf. Remarks 1.14 and
2.7 of [17]); pseudo-differential operators occurring below will be called

(pseudo-) differential operators if they are differential operators when the Bfk
are so.

B is lower triangular, and is split into four blocks (compare (5.7))

B defines the boundary condition i.e.

The diagonal part of B

consisting of zero order differential operators, may be viewed as a vector
bundle morphism from Q Elr to Q an identification we shall use through-

kEM jEM

out. We denote B-B(j= B,, the subtriangular part of B.
We assume from now on that the following definition holds :

3 - Annali della Scuola Norm. Sup. di Pisa
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DEFINITION 6.1. B (or the boundary condition Beu = 0) is said to be

normal, when Ba is a surjeotive vector bundle morphism (i.e., Bu is a surjec-
tive morphism from to for each j in particular for all j).

Under this assumption, B itself is surjective from to
xeat

for all 8 E R, and it has a right inverse C = con-

iEM 
’

sisting of (pseudo-) differential operators Cjk from to of orders j - k;
C is lower triangular and injective; cf. [17, Section 1.3]. Let Ca&#x26; - 
( ~, s = 0,1 ), then C°° is the analogous right inverse of BOO, and C11 is the
right inverse of 811.

With the notation (for s E R)

and analogous notations for Z*(BOO) and Z’(BI1), we showed in [17,
Lemma 1.11]:

Note the easy consequence

LElBfMA. 6.2. For t  s, Z’(B) (resp. Z’(B8B), 8 = 0, 1 ) is dense in Zt(B)
(resp. s = 0, 1) in the norm (resp. 

We shall now study the realization A Bof A defined by

Clearly, is a closed operator in .L2(E). (Because of the extended defini-
tions (5.3), (5.4); we do not need to restrict the domain to H2m(E) as in [17].)
Let

closures in L2(E) (as in Proposition 1.2), and let

closures in the restrictions of y to isomorphisms

from V to X, resp. W to Y, are denoted y, resp. Yw; X and Y are analyzed
as follows:
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PROPOSITION 6.3.

(i) For each k E let Zk denote the (q - Pk) -dimensional sub bundle

of defined as the kernel of the morphism Bkk; let izo denote the injection of
Q Zk into Q Blr; and denote by 0 the injective (pseudo-) differential operator
kex, gem.

Zk to Q E ~r
KEM

it is of type (- k, Then one has

(ii) Let 1JI denote the injective (pseudo-) differential operator from (1) Fj
to e-sjr lEM1

jEM

it is of type (- 2m + k --~-1, Then one has

PROOF. (i) By (6.2), C ZO(BOO). On the other hand, Z2m(BOO) C
c yD(AB), since, for given 99 E Z2m(BOO), we can always find u E H2m(E) with

such functions u satisfy (6.2). Since Z2m(BOO) is dense in Z°(B°°), it follows
The second identity in (6.11) was proved in [17, (1.34)].

(ii) For the determination of Y, we have by Green’s formula (5.6)

This implies, by use of (6.5), that for or

more precisely
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The range space Q Elr for the (pseudo-) differential operator (I - CB)* A*
t63f

has so large fiber dimension that this operator will usually not be surjective.
However, we showed in [17, Section 2.4] how the operator can be replaced
by a surjective (pseudo-) differential operator B’ with smaller range space
(B’ defining a normal boundary condition adjoint to the given one); and this
we can treat as in (i). The calculations of [17] imply in particular (cf. [17,
(2.48)])

from which (6.13) follows, since I is dense in Q.e.d.

By [17, Lemma 1.12], 0 has the left inverse

where pr,. is the orthogonal projection of so we have

and for

1JI has the left inverse

so that

In particular, we have now found isomorphisms

the operator in (6.21) has the adjoint

We use these to represent T by an operator from to
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THEOREM 6.4. (Assumption 5.1.) Let A.B, defined by (6.7), correspond to
T : V - W by Proposition 1.2. Denote by El the operator f rom II H-k-l(Zk)

tejtf.

to induced from T : V - W by the isomorphisms (6.20) and
Jemi

(6.22), i.e., 9

or in other zuords

Denote by £ the pseudo-differential operator (continuous from
to II defined by

fEMi

Then C, is exactly the restriction of £ with domain

PROOF. Let u E D(AB) and w E W. Lest 99 = 0(-’)yu and
Then (cf. Proposition 5.4)

(duality between

(duality between

This shows that E,, acts like t, and that, when 99 E D(E,),
holds in (6.25).
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Conversely, let cp E with ET E Then q ==
kcm, JEN,

= AOI C11 belongs to in view of the types of the operators
keM. 

-A:-iinvolved; and belongs to By Proposition 5.4, there ex-
ists u E D(AI) satisfying keY,

Here yu so B°° yu = 0. Moreover, since p,’UJ == we have

that

and thus

Then u E D(A.B), which shows the inclusion D in (6.25). Q.e.d.
Any operator obtained from T : V - W by replacing V and W by spaces

isomorphic to them, will be called a representation of T. In speoial cases,
e.g. when X = Y, it will be convenient to use other representations of T
than Ci.

COROLLARY 6.5. When X = Y, define the representation of T by

It is the restriction of the pseudo-differential operator in Q Pi of type (- 2m +
+ k + "2", 1 - 1 - I 

with domain

and it satis f ies
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PROOF. Compose ~1 to the right with the isomorphism 

For the case where X C Y, we shall make do with

COROLLARY 6.6. Assume that X C Y. Then for z E D(T) r1 one has

(duality between 11 Hk+i(Zk) and II H-k-i(Zk))’ where 99 = E 

kem, kEMo

PROOF. When z E D(T) n pr~ z = E (y~)-I Y = W (cf. (5.15)).
By Theorem 6.4 we have that = and that, since X C Y,

where ø*1J’-l)* LI == - ø* AOI OIl(BIO + BII ø, by (6.18) and (6.24).

Concerning the generality of El we have the following important observa-
tion

PROPOSITION 6.7. Given a system of 2m vector bundles over r of
dimensions p f c q, and given two normal (pseudo-) differential operators BOO
and B11 of types (- k, - j)¡.1cEMs’ f rom Q Elr to Q Fj (s = 0, 1). When BIO

kEMs 

runs through all pseudo-differential operators f rom p Elr to EÐ F, of type
keM, iem,

then L (derived as above from AB de f ined by the boundary
condition (6.7)) runs through all pseudo-differential operators from E9 Zk to
E9 Fi of (- kg kEM.

¡EMl

PROOF. L is derived from BlO by (6.24). Conversely, when £ is given (of
the above mentioned type), a solution BIO of (6.24) is

Note however that the £ obtained when BIO runs through strictly diffe-
rential operators, form a special subclass of the pseudo-differential operators
of the mentioned type.

We shall now prove a general theorem concerning existence, uniqueness
and regularity.
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THEOREM 6.8. (Assumption 5.1). Let AB be the realization defined by (6.7)
and let Land ~.1 be the operators defined in Theorem 6.4, c f . (6.24), (6.25). Then

10 dim Z(A.,) = dim Z(Cl) .

20 The ranges of A B and C, in L2(E), resp. in are simul-
;E Jll

taneously closed, and they have the same codimension.

30 Let satisfies

if and only if C satis f ies

PROOF. 1 ° and 20 are immediate consequences of Proposition 1.4, since C,
is a representation of T.

To prove 3°, let us first assume that (6.31) holds. Let 99 E II H-k-I(Z,)
kens

with Egg E II We shall construct u E D(A) so that (6.31) can
jem

be applied. To do this, let v be the solution of

it is a Dirichlet problem for the strongly elliptic operator A’A, clearly the
solution is unique.

implies by an application of Propo-’ 

EMl
sition 5.2. Furthermore, let satisfies

and

so U E D(AB). Moreover, Au = Av E .Ht(E). Then by (6.31), u E .Ha(E) and,
since v E and st+ 2m, z = Thus finally g~ = E

This shows (6.32).
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Conversely, y assume that (6.32) holds. Let with Au E Ht(E).
Then prv u = A;IAu E Ht+2"(E) by Proposition 5.2, so furthermore pu =

prY u E II Ht+k+l(Elr) by (5.4) and (5.20). Let q; = 0(-I)yu, so yu =
?6~

- øq;. Then

in view of the types of the operators involved. By (6.32) it follows that

(p E II and hence yu = 099 E and pr u = E

kEM p kEM p

Since s  t + 2m, which shows (6.31).

REMARK 6.9. We have not bothered to give an « abstract ~) version of

the result in 3°. Let us just mention that the argument from (6.31) to (6.32)
generalizes to all closed 1, where as the other direction only holds under
certain assumptions on T.

COROLLARY 6.10. AB is the realization of an elliptic boundary pro-
blem (3) if and onl y if L is elliptic (as a pseudo-differential operator of type
(- k, Then dim p Zk = dim 0 i.e.,

kEN. ;EM1

and

The « reduction to the boundary)&#x3E; in the above theorem is different from
those introduced in Hormander [18] or Seeley [25], where the involved vector
bundles over .1~ have dimension 2mq or more. An advantage of our theorem
is that it keeps track of the dimensions of the kernel and the cokernel indivi-

dually (cf. 10 and 20), not just of the index. Otherwise, our statement 30
resembles Hormander’s characterization of regularity in [18, Theorem 2.2.3],
which treats more general (non-normal) boundary conditions. The strength
of the present theory rather lies in its ability to treat semiboundedness and
spectral problems, as will be shown in the following sections.

(3) i.e., A, is a Fredholm operator satisfying (6.31) with s = t + 2m, all t &#x3E; 0.
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7. - Semiboundedness and coerciveness.

We shall now characterize various inequalities. The weakest one is defined
as follows:

DEFINITION 7.1. A realization I of A is called weakly semibounded if
there exist c &#x3E; 0, 0 e R such that

Note that Ao is always weakly semibounded, simply because A is of

order 2m. Furthermore, a realization must be weakly semibounded in order
to be symmetric (i.e., Rei(Au, ’U) = 0) or selfadjoint, or satisfy any of

the usual coerciveness inequalities (for an s E [0, m])

Weakly semibounded AB were characterized in [17], from which we quote
some results :

THEOREM 7.1. Let A Bbe the realization of A defined by (6.7). The fol-
lowing statements are equivalent :

(a) ~.B is weakly semibounded.

(d) There exists c &#x3E; 0 such that v) 1: c 11 u 11m Il v 11m for all u E D(A,) r1
r1 H2m(E), all v E H-(B) with B°° yv = 0.

For the proofs, see [17], Theorem 2.4, Remarks 2.5 and 2.7, and, for (c),
Lemma 2.8, (2.18). A further analysis of (b) and (e) leads to

THEOREM 7.2. 1 o When A.B is weakly semibounded, then

2° When As is weakly semibounded, then 1Pi== mq holds if and only
jcm

if X = Y, and i f and only if .A.B is weakly semibounded.
Then weak semiboundedness of ÂB is equivalent
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with

(f) [i.e., 0].

40 For any given BOO (or B1I) there exists B11 (resp. BOO) so that (e) holds ;
such (resp. BOO) are determined up to a (pseudo-)differential isomorphism.

For proofs and further details, see [17], Theorems 2.11, 2.13 and 2.15,
and Corollaries 2.14 and 2.20.

The is usually assumed in the study of boundary
f EM

problems. It assures us that dim
I

which gives the best chance of having both existence and uniqueness for
the boundary problem (cf. Theorem 6.8). When X = Y, we shall of course
use the representation .,111 of T introduced in Corollary 6.5.

Selfadjoint AB clearly satisfy I pj = mq, since for those, both A and A*
are weakly semibounded. The proof of [13, Corollary 4.3] easily generalizes
to give

THEOREM 7.3. Let AB be the realization of A defined by (6.7). Then AB is
selfadjoint if only if (i) - (iv) hold:

(i) A is formally selfadjoint.

(iv) defined by (6.27), is formally selfadjoint, and II C°° (Fj) is dense
in (of . (6.28)) in the graphtopology. JC-Jfl

In particular, the density requirement in (iv) is satisfied if JI is elliptic
or subelliptic.

We shall now restrict the attention to strongly elliptic A, to which we
shall apply the results of Section 3, in the same manner as done for the scalar
case in [13]. We assume

ASSUMPTION 7.4. A is strongly elliptic, and a constant has been added
so that, with 0. &#x3E; 0,
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Then .A.’’ _ -~ (A. -f - A’ ) is selfadjoint elliptic, and the operators Ao, Ay
AI, Ao, A~, A[ , Ao, A.y and Ai satisfy the assumptions of Sections 1 and 3.

The following two statements are immediate generalizations of [13,
p. 60-61]

DEFINITION 7.5. The quadratic form q(q, ~) on n X,] is defined by

Recall from [13] that g~) c 0 for all 92. Recall from Lemma 3.3 that

X, n n JC,,, and n 2)(~~) = D (A,) n 

PROPOSITION 7.6. Denote by Q the pseudo-differential operator (cf. (5.18)-
(5.19) )

it is of type (- k, - 2m + 1 
and

duality between

Now we find

THEOREM 7.7. (Assumption 7.4) Let AB be the realization of A defined
by (6.7). Let K be a Hilbert space and U a linear set, satis f ying :

Let K,, = f1 V) (cf. (6.8)-(6.11) and (6.16)-(6.17)), and pro-
vide K, with the norm

(4) Equations (7.6a-b) ensure that K and U do not impose extra boundary
conditions.
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Then there exist c &#x3E; 0, 7 A E ~t so that

i f and only if (i) and (ii) hold:

(ii) There exist c’ &#x3E; 0, ~1’ E R, so that for all

here ~ is the pseudo-differential operator

and defined in Theorem 6.4, satis f ies

When - ~1 &#x3E; 0 (resp. &#x3E; 0) in (7.8), - ~,’ may be taken &#x3E; 0 (resp. ~ 0)
in (7.9), and vice versa.

PROOF. We shall apply Theorem 3.6. Recall that pr’= and

pre = so that y pre ’U = y U = yu for 
c 

(cf. Proposi-
tion 5.2), and note that U implies y( U n = yU. So

which is a dense subset of X (cf. Proposition 6.3) by (7.6b). Thus

pr; (D(T) n U) C W n y U C Y --&#x3E;X C Y .

By use of Theorems 7.1 and 7.2, condition (i) of Theorem 3.6 then takes the
form of the present condition (i).

Concerning (ii), we note that
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by Theorem 6.4 and (6.17). Then, using Corollary 6.6 and Definition 7.5,
we have for z E D(T) r1 U, 99 = 

moreover, y by ( 7. 7 ),

We also have, with positive constants 7

using various isomorphisms accounted for in the preceding sections. Thus

condition (ii) in Theorem 3.6 may be formulated as the present condition (ii).
The statement of Theorem 3.6 then implies the statement of Theorem 7.7.

When (7.4) yields more explicit statements, for example:

COROLLARY 7.8. Let A.B be as in Theorem 7.7 ; let H’(E) C K C L2(E)
(alg. and top.) with D(AB) r’1 (alg.), and let TI = K n 
Then (7.8) is valid for some c &#x3E; 0, ~, E R, if and only if (i) and (ii) hold:

for all q r1 t-) X) (cf. (7.3), (7.7), (7.10-11)).
In the case where .1 pj = mq, we may use Y instead of 0, and.4-1 enters

f EM

in the formulae instead of C, which gives simpler calculations (cf. (6.12),
(6.18) and Corollary 6.5).

COROLLARY 7.9. Let A.B, K and tI be as in Corollary 7.8, and assume in
addition that .1 pj = mq. Then (7.8) holds if and only if:

jem
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for all V E 11 n1J’-I) (y rI 0 X) for which
- -- -

here I and

Consider the special case where K = HtI(E), s E [0, m]. (We let U = H2m(E)
for simplicity; more general choices are covered above.)

THEOREM 7.10. (Assumption 7.4)..Let AB be defined by (6.7) and let

K = for some s E [0, m]. Then there exist c &#x3E; 0, Â E R such that

if and only if: Theorem 7.7 (i) holds, and there exist o’ &#x3E; 0, A’ E gt so that

for all g~ E n H2m-k-i(Zk)
kEht o

In particular, (7.13) holds with s = m i f and only if

(the cotangent sphere bundle); in that case, D(AB) C (If I pj = mq,
is then elliptic in the sense of Corollary 6.10. ) jem

EAr n V) _ n V) with the

norm = When s == m, ( 7.13 ) means that
K + O*QO is strongly elliptic (both terms are of type (m - k - -1, - m +
+ j ~- I)J.k..11.)l which is equivalent with (7.14) by a well known result of
Hörmander, Lax and Nirenberg. Since Q is nonpositive, (1.14) implies ellip-
ticity of ~ _ ~* ~~-1&#x3E;* H, so that

for all t E R. Theorem 6 .8 .3° then shows that
KEM

in fact (6.31) holds with 
= itself is elliptic. Q,e,d. ~

The inequality (7.12) with s = m is often called Garding’s inequality.
In [17], we showed how Theorem 7.7 (i) complements the sufficient conditions
of Agmon [1] and de Figueiredo [8] for (7.12) (formulated by sesquilinear
forms) for the case of differential boundary conditions. For s = m - ~,
Fujiwara treated (7.12) for a special class of boundary conditions in [9];
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and Melin gave a complete discussion of (7.13) in [22] for the scalar case,
i.e., Results seem lacking for s  m - 2 and for systems.

leM!

In each of the above results, - Â may be taken &#x3E; 0 (&#x3E; 0) if and only if - I’
may be taken &#x3E; 0 ( ~ 0 ), cf. Theorem 7.7. For ~=0, Theorem 7.10 gives
a statement on lower semiboundedness ; however, Corollary 3.8 leads to the
sharper result :

COROLLARY 7.11. (Notations of Theorem 7.7.) Let with

r1 y U dense in X. There e l~ so that

i f and only if: Theorem 7.7 (i) holds and there exists ,u’ E ll~ so that for all
99 E D(Ll) n (y U n X)

Here p may be taken &#x3E; 0 (&#x3E; 0) if and only if ,u’ may be taken &#x3E; 0 (&#x3E; 0). (Simpli-
f ications as in Corollaries 7.8-9.)

REMARK 7.12. When n = 1, D(A1) = H2m(.E), and is finite dimen-
sional. Then Theorem 7.7 (i) alone is necessary and sufficient for lower semi-
boundedness (7.15), and when it holds, A.B satisfies Garding’s inequality
(7.12) (without requiring (7.14)).

8. - Perturbation theory; the negative spectrum.

The results in Section 7 were qualitative, in that only the signs of the
constants c, ~,, c’, ~1’ were discussed, not their values. More precise evalua-
tions require, among other things, that one fixes the norms in the various
Sobolev spaces and keeps track of the various isomorphisms in an exact
way. Similar efforts have to be made if one wants to use the formula

A 1= .A.Y 1-~- T~-1~ in Proposition 1.4. For this, it is important to choose a
representation b of T that is derived from T by isometries. We shall show
how to do that, and thereby give a key to the application of perturbation
theorems, for selfadjoint (with a remark on the non-selfadjoint case).
We give one application, namely to the study of the negative spectrum, by
use of the results in Section 4. (In the construction of 1), the compactness
of the manifold plays no essential role, and could be replaced by uniform
bounds on the symbols; the calculations are local. However, our application
to spectral theory is concerned with the compact case.)
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Assume in the following that A is formally selfadjoint satisfying Assump-
tion 5.1, and that A Bis a selfadjoint realization defined by a boundary con-
dition (6.7); such realizations are characterized in Theorem 7.3. We shall
need two auxiliary pseudo-differential operators A and 8 in h (jt was de-
scribed for general elliptic A in [13, Example 6.3]).

PROPOSITION 8.1..F’or all z, z, E ZeAl),

between 11 and II where, for i
kEMo kem.

and 899 are defined as follows :

where v is the solution in of

and

where w is the solution in of

Here, A is a strongly elliptic selfadjoint pseudo -differential operator in
of type (- k - ~ , j + with respect to the norm f

teAl o 
’ ° °

and 8 is, when A satis f ies Assumption 7.4, a strongly elliptic selfadjoint pseudo-
differential operator in Q of type (- k - ~, 2m + j + f positivekEMo ’ °

with respect to the norm 

PROOF. Note first, that for any n the boundary value problem

is elliptic and uniquely solvable, since the solution u is determined by solving
a succession of Dirichlet problems for A :

4 - Annali della Scuola Norm. Sup. di Pisa
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where f = Un, u = uo. Denote by yn the Dirichlet boundary operator for An,
then the pseudo-differential operator over 1~ defined as follows (compare
Proposition 5.3)

is elliptic and invertible. In particular, we may define

and

which are pseudo-differential operators in 0 Elr of types (2013 ~ 2013 ~y~ + 
kEMo 

’ °

resp. (2013 ~ 2013 ~ 2m + ~ + ~)~~j.f.. : Now let 99 e YY and let z =
’ ° 

kEN.
= The solution of (8.4) is exactly w = A;lZ, and we find for any

by use of Green’s formula

Then jt satisfies (8.1) ; and since yz) = ri We see

that Jt is selfadjoint strongly elliptic and positive as indicated.
The solution of (8.6) is exactly w = AY iv = A;2Z, and we find for any

ZI E Z(A.1)

Thus S satisfies (8.2) ; and when A. furthermore satisfies Assumption ?’.4,
we yz) == z) = so that the

selfadjoint pseudo-differential operator 8 is strongly elliptic and positive as
indicated.
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REMARK 8.2. By related considerations, one finds that G" (Definition 2.5)
satisfies

for here - pA-1-4) is an elliptic positive selfadjoint
pesudo-differential operator of type (- k - 2 , ~ -f - 2 ) f,kE~°’ (See
also Remark 2.11.) 

The symbols of tJt and 8 are found by use of (8.9) and (8.10), cf. Propo-
sition 5.3 and the remarks there.

Introduce the notation for the bundle Q F,
fEy

and choose a pseudo-differential isomorphism 11 of = 

jem

onto Recall the definition of 1J’ from Proposition 6.3 ; ll’ is
KEM

continuous and injective (with a continuous left inverse) from II 
Jemi

into The composed operator is then a selfad-
0

joint pseudo-differential operator of order 0 in Moreover, for all

"p E L2(FI),

so jt1J’ A is strongly elliptic and positive, and we may define

a selfadjoint positive elliptic pseudo -differential operator in F1 of order 0
with = aO(A*1J’* by the calculus of Seeley [26].

PROPOSITION 8.3. The mapping

is an isometry, with inverse ,
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PROOF. Let v E V and let Then, since

which shows the proposition.

THEOREM 8.4. Let A be formally selfadjoint satisfying Assumption 5.1,
and let AB be a selfadjoint realization defined by a boundary condition (6.7).
Let T: V - V be the operator corresponding to A B by Proposition 1.2, and
let ’G, be the representation of T

Then 1)1 is the restriction of the pseudo-differential operator in Fl of order 2m

with domain

131 has the same spectrum as T, and its eigenvectorg are mapped into
the corresponding eigenvector8 of T by the isometry J.

PROOF. By the isomorphism AS from

representation Corollary 6.5) is

carried into the representation

acting in it clearly satisfies (8.15) and is the restriction of (8.16) with
domain (8.17). The involved operators have the following continuity pro-
perties

so 13 is of order 2m. The last statement is evident in view of Proposition 8.3.
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Note that when 13 is a given selfadjoint pseudo-differential operator in .F’1
of order c 2m, then the « realization » ‘~1 in defined by (8.17) is a sel-

fadjoint operator in L2(Fll) when b has a certain regularity; in particular
if b is elliptic of order - E ]0, 2m].

Let us collect some facts about the correspondence between AB and b.
(In 2 ~ and 40, cf. Remark 7.12 for n =1. )

THEOREM 8.5. Let ~1 be defined as in Theorem 8.4.

1 ~ For all u, v E D(A B)

2° D(AB) C H2m(E) if and only i f b is elliptic of order 2m. If b is elliptic
of order 8 E ]0, 2m], then 

30 dim = dim and codim R(ÅB) = codim 
In case dim = 0,

40 When A satisf ies Assumption 7.4, then m(.AB) &#x3E; 0, &#x3E; 0 or &#x3E; - 00

i f and only i f &#x3E; 0, ~ 0 or &#x3E; - oo, respectively. Here, when ‘~ is el-

liptic of order s E ]0, 2m], m(’61) &#x3E; - oo i f and only if &#x3E; 0 on 

PROOF. 10 follows from (2.1). 20 follows from Theorem 6.8, carried over
from El to the representation 30 is an immediate consequence of Propo-
sition 1.4, in view of (8.15). 40 similarly follows from Theorem 2.12, together
with a wellknown result on elliptic pseudo -differential operators (described
e.g. in [12, Appendix]).

THEOREM 8.6. Let be any system of vector bundles over F with
dim F’3 c q, and let B11 be any normal (pseudo-)di f f erentiat operator from
EÐ to EÐ Fj (as in Section 6). Then and B°° : EÐ 0 Fj
kemi 

° 

kEMo 0 IEM 0

may be chosen, uniquely up to isomorphisms, so that X = Y. (Similar state-
ment with B11 and BOO interchanged. ) Let b be any pseudo-differential operator
in ED Pi of order 2m, for which ‘~1 defined by (8.1?’) is selfadjoint

jem1

in L2(.F1). Then one may choose BIO so that A, defined by (6.7) is selfadjoint
and oorresponds to b as in Theorem 8.4.

PROOF. Follows from Proposition 6.7 and Theorem 7.2.4°. (More details
may be found in [17, Section 2.3].)
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Concerning the negative spectrum, we have as a direct consequence of
Theorem 4.6:

THEOREM 8.7. Let A be formally selfadjoint satisfying Assumption 7.4.
Let AB be selfadjoint with 0 E and A.B1 compact, and let band be as

in Theorem 8.4. Then

40 Let strongly elliptic selfadjoint pseudo-
differential operator in .F’1 of order - 2m, positive with respect to the norm 1199 II _m : i

For 

PROOF. Only 40 requires comments; it is shown by observing that for
v E V, q = 

so is the operator in L2(Fl) derived from the operator By+ T-1
in V by the isometry J 1.

We shall now prove a consequence of these theorems, that improves
the previously known asymptotic estimates on t). Let us first recall

the known results.

Let A. be strongly elliptic and formally selfadjoint. When AB is a lower
bounded selfadjoint elliptic realization of A, then the eigenvalues satisfy

with any 0  I (Agmon [3)), and with any 0  1 if the eigenvalues of (1°(A).
. (x, E) are simple (consequence of H6rmander [19] by standard arguments) ;
here c(A) is a constant derived from A like in (8.25) below. When AB is not
lower bounded, the negative spectrum is also infinite and~ according to a
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statement in Agmon [3], (8.22) holds and

with 0 2 ; it seems plausible that Hormander [19] implies the validity for
6  1 when the eigenvalues of aO(A) are simple.

We shall show (independently of these assertions) that in fact

for t - oo, see the precise statements below. For this we shall use an estimate
like (8.22) pertaining to pseudo-differential operators on the compact mani-
fold without boundary F; recall that it is of dimension n - 1 (which we assume
positive in the following). H6rmander and Seeley proved

PROPOSITION 8.8. Let P be a strongly elliptic, selfadjoint pseudo-differen-
tial operator of order r &#x3E; 0 in a vector bundle F over F. Let

where the sum is over the eigenvalues of aO(P) (y, -q) at each (y, q) E ~S(.1~), the
cotangent sphere bundle. Then

where R(t) = if the eigenvalues of aO(P)(y, 77) are simple (H6r-
mander [19]) and R(t) = in general (Seeley [26]).

This is extended to the indefinite case as follows :

PROPOSITION 8.9. Let P be an elliptic sel f ajoint invertible pseudo-differen-
tial operator of order r &#x3E; 0 in a vectorbundle F over F. Let

where the sum is over the positive, resp. over the negative, eigenvalues of 21) -
Then

where R(t) = if the eigenvalues of are simple n &#x3E; 2,
and R(t) = in general (n &#x3E; 1).



56

PROOF. We use the calculus established in Seeley [26]. Let jPj = (p2)i,
it is a positive, selfadjoint, elliptic pseudo-differential operator in .~’ of order r.
Let

so in particular

Then .P-~- acts like P on the positive eigenspace of P, and is zero on the negative
eigenspace, whereas ..P’~ acts like P on the negative eigenspace of P and is zero
on the positive eigenspace; similar statements hold for orO(P+)(y, 27) and
aO(P-) (y, q). Now choose 0  a  1 so that

(which are positive elliptic) have simple eigenvalues in the principal symbol
if P has; this may be done since lr’ is compact. Then in fact

and it follows from (8.25), (8.27) and (8.30) that

Now (8.31) implies that for all t &#x3E; 0,

from which we obtain for P’~ :
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by use of (8.26) and (8.32); R1(t) is or according to whether
the eigenvalues of q) are simple or not. Now write

(where g(t) is to be determined), and insert this in (8.34); then we find

By an application of Lemma 8.10 below (with c = (1- a)-2 (1 + a)2 and
q = (n - 2 ) /r resp. (n -1 ) /r~, we conclude that

which proves the proposition for N+(P; t). The proof for N-(P; t) is ana-

logous.

LEMMA 8.10. Let g(t) be a locally bounded function on [0, oo[ satisfying,
for some c &#x3E; 1, q &#x3E; 0,

where h(t) is bounded. Then g(t) t-q is bounded. If h(t) - 0 for t - 00, then

g(t) t-11 - 0 for t - 00.

PROOF. Let k = lit E [0, 1]). Then for any s E ]0, 1], any n E N,

where .M’ = E [0, oo[}. This gives the first part of the lemma,
by setting t = For the second part, let s E ]0, o-’[, and define

then for any positive integers p  n,
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For given e &#x3E; 0, we may choose p so large that M(p, s)  2 E,
and choose n(&#x3E;p) so large that  2 E, then the expres-
sion in [ ] is  e for s’ &#x3E; s. This implies the second part of the lemma, by
setting t = cn s~ .

.A.pplying Proposition 8.9 to 1J, we now find the special consequences of
Theorem 8.7:

THEOREM 8.11. Let A be formally selfadjoint satisfying Assumption 7.4,
and let be a set f adjoint realization defined by a boundary condition (6.7).
Let 13 be the pseudo-differential operator in .F1 derived from AB by Theorem 8.4.
Assume n &#x3E; 1.

10 If is elliptic (i.e. D(AB) C H2m(E)),
then AB has infinitely many negative eigenvalues if and only i f o-(1J) # 0, and
then

where R(t) = t~ (t~n 2~~2m) for t - oo if the eigenvalues of are simple
(in particular if .1 pj =1 ) n &#x3E; 2, and R(t) is in general.

ic-M,

2° If D(AB) ç H’(E) for some s E ]0, 2m[, then there exists a constant c &#x3E; 0

so that

PROOF, 10 follows from Theorem 8.5.2° and 4°, Theorem 8.7.3° and Propo-
sition 8.9, by using that b is elliptic in of order 2m. For 2°, we use that

Ha(E) implies D(’61) C H’(FI), so that, by a theorem of Paraska [23]
(improving results of Agmon [2]), 7 N-(73.,; t)  const. t~n-1~~8, which gives (8.3 7)
by Theorem 8. ?’.3 ~.

Note that we have as a special case of 2°, that when b is elliptic of order
s E ]0, 2m[, then

with R(t) = c~ (t~n--2)/a) or c~ (t~n-1~~8) as usual.
In the converse direction we find :

THEOREM 8.12. Let A be formally selfadjoint satisfying Assumption 7.4.
Let (or BOO) be given arbitrarily, and choose BOO (or BII), so that X = Y.
Assume n &#x3E; 1 and let 8 E ]0, 2m]. For any c &#x3E; 0 we may choose BIO (pseudo-
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differential) so that the realization by (6.7) is selfadjoint with D(A) C
ç H8(.E), and satisfies

and moreover, if s  2m - 2m/n,

PROOF. Given s E ]0, 2m] and c &#x3E; 0. Let P be an elliptic selfadjoint
pseudo-differential operator in of order - s, positive w.r.t. ~~g~ ~~_8m, with
simple eigenvalues in Q°(P) ( y, q), and with c(.P-1) = c. Then + P is el-

liptic selfadjoint of order - s (since - s ~ - 2m) and positive in the above
sense, so we may define

it is elliptic of order + s, so = and

For jig (defined according to Theorem 8.6), we then get by Theorem 8.7.40

for all j E N, whence by Proposition 8.8

for t - 00. This proves (8.39).
Assume now furthermore that s  2m - 2m/n; then (n -1)/s &#x3E; n/2m.

By (8.19), (8.41),

where the operator C is continuous from L2(E) into H2- (B), so that the eigen-
values satisfy 03BCj(|C| ) c const. j-2"n (Paraska [23]). The positive eigenvalues
of the nonnegative operator 01 = JPJ* prv satisfy
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where ca = by Proposition 8.8. Since - s/(n -1 ) &#x3E; - 2m/n, a theo-
rem of Ky Fan [20] implies that

which gives

Together with (8.39) this shows (8.40). (Similar arguments seem to lie behind
M. Gehtman’s estimate of positive eigenvalues for certain lower bounded
realizations of the Laplacian [10]).

Without doubt it would be worthwhile to scan the literature for further

useful perturbation theorems and apply them to the correspondence between
and 1), by use of Theorems 8.5-8.7 etc.

REMARK 8.13. When A B is a nonselfadjoint realization of a formally
selfadjoint A, and X = Y, we still have the key formulae (8.18) and (8.19),
to which perturbation theorems may be applied. When A itself is nonself-
adjoint, we get partial information from the formula, valid when 

and X = Y:

where Gr is the 2m order pseudo-differential operator

in FI (A and E as in the text preceding Proposition 8.3, constructed relative
to and J is the isometry of L2(Fi) onto 

(c L2(E) ). (In fact, = ~c~) + cf. Re-

mark 3.7, from which and J are found by Corollary 6.5 and Propositions 7.6
and 8.3. )

REFERENCES

[1] S. AGMON, The coerciveness problem for integro-differential forms, J. Analyse
Math., 6 (1958), 183-223.

[2] S. AGMON, On the eigenfunctions and on the eigenvalues of general elliptic boundary
value problems, Comm. Pure Appl. Math., 15 (1962), 119-147.

[3] S. AGMON, Asymptotic formulas with remainder estimates for eigenvalues of
elliptic operators, Arch. Rat. Mech. An., 28 (1968), 165-183.

[4] S. AGMON - A. DOUGLIS - L. NIRENBERG, Estimates near the boundary..., II,
Comm. Pure Appl. Math., 17 (1964), 35-92.



61

[5] N. ARONSZAJN - A. N. MILGRAM, Differential operators in Riemannian manifolds,
Rend. Circ. Mat. Palermo, 2 (1953), 266-325.

[6] L. BOUTET DE MONVEL, Comportement d’un opérateur pseudo-différentiel sur
une variété à bord, J. Analyse Math., 17 (1966), 241-304.

[7] N. DUNFORD - J. SCHWARTZ, Linear Operators, Part II, Interscience, New York,
1963.

[8] D. G. DE FIGUEIREDO, The coerciveness problem for forms over vector valued
functions, Comm. Pure Appl. Math., 16 (1963), 63-94.

[9] D. FUJIWARA, On some homogeneous boundary value problems bounded below,
J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 123-152.

[10] M. GEHTMAN, Spectrum of some nonclassical selfadjoint extensions of the Laplace
operator, Funkcional. Anal. i Prilozen., 4 (1970).

[11] G. GRUBB, A characterization of the non-local boundary value problems associated
with an elliptic operator, Ann. Sc. Norm. Sup. Pisa, 22 (1968), 425-513.

[12] G. GRUBB, Les problèmes aux limites généraux d’un opérateur elliptique, prove-
venant de la théorie variationnelle, Bull. Sc. Math., 94 (1970), 113-157.

[13] G. GRUBB, On coerciveness and semiboundedness of general boundary problems,
Israel J. Math., 10 (1971), 32-95.

[14] G. GRUBB, Problèmes aux limites semi-bornés pour les systèmes elliptiques. Le
spectre négatif des problèmes aux limites auto-adjoint fortement elliptiques, C.R.
Acad. Sci. Paris, Sér. A 274 (1972), 320-323 and 409-412.

[15] G. GRUBB, Caractérisation de quelques propriétés des problèmes aux limites pour
les systèmes elliptiques, Séminaire Goulaouic-Schwartz 1971-72, exposés XIX
et 19 bis.

[16] G. GRUBB, Inequalities for boundary value problems for systems of partial dif-
ferential operators, Astérisque, 2-3 (1973) 171-187.

[17] G. GRUBS, Weakly semibounded boundary problems and sesquilinear forms,
Ann. Inst. Fourier, 23 (1973), 145-191.

[18] L. HÖRMANDER, Pseudo-differential operators and non-elliptic boundary problems,
Ann. of Math., 83 (1966), 129-209.

[19] L. HÖRMANDER, The spectral function of an elliptic operator, Acta Math., 121
(1968), 193-218.

[20] KY FAN, Maximum properties and inequalities for the eigenvalues of completely
continuous operators, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 760-766.

[21] J. L. LIONS - E. MAGENES, Problèmes aux limites non homogènes et applica-
tions, vol. 1 and 2, Ed. Dunod, Paris, 1968.

[22] A MELIN, Lower bounds for pseudo-differential operators, Ark. f. Mat., 9 (1971),
117-140.

[23] V. I. PARASKA, On asymptotics of eigenvalues and singular numbers of linear
operators which increase smoothness, Mat. Sb. (N.S.), 68 (110) (1965), 623-631.

[24] F. RELLICH, Halbbeschränkte gewönliche Differentialoperatoren zweiter Ordnung,
Math. Ann., 122 (1951), 343-368.

[25] R. SEELEY, Singular integrals and boundary value problems, Amer. J. Math.,
88 (1966), 781-809.

[26] R. SEELEY, Complex powers of an elliptic operator, Proc. Symp. Pure Math.
(AMS), 10 (1968), 288-307.

[27] R. SEELEY, Fractional powers of boundary problems, Actes Congrés Intern.
Nice 1970, vol. 2, 795-801.


