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ABSTRACT 

The paper treats coerciveness inequalities (of the form Re(Au, u) => c I]u]l~ 
- -  2 liul[02, c > 0, 2~ R) and semiboundedness inequalities (of the form 
Re (Au, u) >= -- 2 ill u Ill 2) for the general boundary problems associated with 
an elliptic 2m-order differential operator A in a compact n-dimensional mani- 
fold with boundary. In particular, we study the normal pseudo-differential 
boundary conditions, for which we determine necessary and sufficient conditions 
for coerciveness with s = m, and for semiboundedness with Ill u Ill = II u lira, 
in explicit form. 

1 .  I n t r o d u c t i o n  

Let  A be a p rope r ly  ell iptic 2m order  l inear  differential  ope ra to r  with 

C ~ coefficients on an n-d imens iona l  compac t  R iemann ian  man i fo ld  ~ with 

b o u n d a r y  F ( ~  \ F  deno ted  f~). Wi th  A l = A defined on {u s L2(t)) I Au ~ L2(O)} ; 

and  A 0 = the closure,  as an ope ra to r  in L2(f~), o f  A defined on ~(f~),  we call  

the l inear  opera to rs  A in L2(f~) with A 0 c X c A 1 the real izat ions  o f  A. In  par t  o f  

the pape r  we shall assume tha t  the real iza t ion defined by the Dir ichle t  p rob l e m 

is bijective,  which permits  app l ica t ion  of  [11]. 

W h e n  s > 0 we shall  say tha t  .4 is s-coercive 1 i f  there  exist c > 0, 2 e ~ such 

tha t  (with the L2(f~) Sobolev  norms)  

(1.1) Re(An,  u ) >  cH u I1 - u IIo for  all u e D ( A )  

(the case s = 0 is inc luded for  convenience).  M o r e  general ly,  we say tha t  Asa t i s f ies  

a semiboundedness  es t imate  if, for  some no rm III" III, one has the es t imate  

l This terminology is inspired by [20, Def. 2.9.2]; we use the term regularity for estimates 
like IIuL < c([IAull, + IluL-0, and coerciveness for estimates like (I.1). 
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(1.2) 

it 
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Re(Au, u )>  - 2 Illulll 2, for all u~D(.4);  

33 

will in particular be studied for ]tlulIl = H u ]I,,, and for 

Ill u LI[ = (I[ u 1]o + It A'.  [I Z ) I <  
In Chapter 2, we introduce notations and collect the known results that our 

theory builds on. 

In Chapter 3, we discuss (1.1) and (1.2)within the general framework of [11]. 

It was shown there how the set of closed realizations ~ is in 1-1 correspondence 

with the set of closed, densely defined operators L: X ~ Y', where X and Ydenote 

closed subspaces of l~';-~H-J-~/:(F); in such a way that each .~ represents a 

specific boundary condition described in terms of the corresponding L: X ~  Y'. 

Here X =  yD(A) and Y = yD(,4*), where y denotes the Dirichlet boundary 

operator 7 = {70,"',7m-1}, with yj = (i-~O/On) j. Under the assumption that A 

equals its formal adjoint A' it was shown, in [11] for s = 0, and in [12] for 

s e [0, m], how (1.1) is related to a similar property of L. In the present paper we 

permit A ¢ A', and then we treat (1.1) and (1.2) in general only on 

(1.3) D(A) c5 {u e LZ(f~) l A'u e H-m(~q)}, 

since we need the Dirichlet problem of A' as well as of A to have a sense. We find, 

roughly speaking, that (1.2)with 111 u Ill--[I u lira is characterized by: X c Y and a 

related semiboundedness estimate for L; and that (1.1), when A is strongly 

elliptic, again requires X c ¥, but now depends on the validity of a related coer- 

civeness estimate for L + Q, where Q is a certain non-positive pseudo-differen- 

tial operator in F, defined from A. (Q = 0 when A = A'.) (Theorem 3.4 and 3.6 give 

these statements with the relevant modifications; other estimates are also treated.) 

In Chapter 4 the results are applied to realizations defined by normal boundary 

conditions: 

(1.4) yju -- 2 f ikYk u = O, j e J; 
k~:K, k<j 

here J and K denote complementing subsets of {0, 1,.. . ,  2m - 1}, each consisting 

of m elements; and the Fjk  denote pseudo-differential operators in F of orders 

j -  k. We set 

(1.5) D(A) = {u e D(A1) [ (1.4) holds}. 

The main explicit results are here: 
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THEOREM I. (Cf. Theorems 4.1, 5.2.) When A is properly elliptic, and ~ is 
determined by (1.5), the following statements (1.6)-(1.8) are equivalent: 

(1.6) 3 ) ~  s.th. Re(Au, u)> -21[utt~, for all u~D(X)nHm(f~), 

(1.7) 7D(-~) m ~D(,~*), 

iS = {Jl2m - j - 1 ~ K}, and the matrix (Fjk)y>,. k>, is a certain explicit 

(1.8) { [function of the matrix (Fjk)j<m,k<m (cf. (4.66)). : ' = 

In the course of the proof one finds that (1.6)-(1.8) are also equivalent with: 

[(Au, v) l<=ci[Ulimi[Viira on D(.~)c~Hm(a), and with: ~D(A")=yD(.~*). 

THEOREM II. (Cf. Theorem 4.3.) When furthermore A is strongly elliptic, X 

is m-coercive if and only if 
(i) the equivalent conditions in Theorem I hold, 

(ii) a certain matrix-valued function on S(F), formed of the principal 

symbols on F of A and the Fik, is positive definite. 

The function in (ii) is a°(~,~(), where ~" is a pseudo-differential operator in F, 

which in a sense represents the real part of L + Q. The restriction indicated in 

(1.3) is eliminated in these theorems by easy density arguments. 

Theorem II solves completely the old problem of characterizing m-coerciveness 

of normal boundary problems; in Chapter 5 we compare this with previous 

results. It was solved by Agmon in [1] for the case where X is associated with an 

integro-differential sesquilinear form a(u, v) in such a way that 

(1.9) a(u,v) = (Au, v), for all u,v~D(.~) nH2m(t2); 

however, the problem of expressing when (1.9) may be obtained was left unsolved. 

Another characterization, not using sesquilinear forms, of selfadjoint .4 was 

given by Agmon in [2]. Recently Shimakura [26], Shimakura-Fujiwara [27] 

and Grubb [12] characterized, without the use of sesquilinear forms, the m-co- 

ercive realizations (1.5) where 

(1.10) J = { 0 , 1 , . . . , m - p - 1 ,  m , m + l , . . . , m + p - 1 }  

for some p E [0, m]. ((1.10) is necessary for the stability of  (1.1) w.r.t, perturba- 

tions of A.) All these partial characterizations concern principal symbols; the 

remarkable aspect of Theorem II is the condition (i), which concerns the full 

operators Fjk (not even just their symbols). It is trivially satisfied when (1.10) 
holds. For the case where the Fig are differential operators, we investigate in 
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Chapter 5 the connection between (i) and Agmon's sesquilinear forms, and find 

that indeed (i) is necessary and sufficient for the existence of a form a(u, v) fitting 

together with .4 in (1.9). 

The Appendix (Chapter 6)elaborates a statement in Chapter 2 about certain 

operators P in F ; a simple proof is given there that they are pseudo-differential 

operators, together with some explicit formulae concerning their principal sym- 

bols. (These were already used in [12], the proofs being deferred to a later paper.) 

Theorem II and a weaker version of Theorem I were previously announced, 

for the case A = A' in [13], and for general A in ]-14]. 

Chapter 5 was written after, and inspired by, a correspondence with Professor 

S. Agmon, to whom the author would like to express her gratitude. 

2. Notations anti preparatory theorems 

2.1. Spaces. Throughout this paper we assume: 

ASSUMVTtON 2.1. ~ is an infinitely differentiable n-dimensional compact 

Riemannian manifold with boundary F; ~ \F  is denoted by ~. 

As it will sometimes be convenient, one may regard ~ as an open subset of a 

compact Riemannian manifold 2 without boundary, in which fl has the C ~° 

boundary F and the closure ~. The generic points in 2 resp. F will be denoted x 

resp. y. In a neighborhood ~, of F, the points may be represented in tangential 

and normal coordinates: x = (y, t), where x denotes the point at the distance t 

from F on the geodesic through y (we take t > 0 in f~, t < 0 in ~\~), 

2 , =  {(y , t ) ]y~r ,  It[ < 5} 

for a suitable e > 0). Thereby is defined a first order differential operator 

D, = i-iO/Ot in Y,, which we call the normal derivative. 

For a manifold E, we denote by ~ ( - )  the space of C ~ functions on E with 

compact support in E. When u eN(E~) or N(fi nZ,) ,  we denote by yoU its res- 

triction to F, 7o u = u [r e~(F);  and by yju (j integer > 0) the function yju = yo(D{u) 

The cotangent bundle of E will be denoted by T*(E), the subbundle obtained by 

suppressing the zero section by T*(Z), and the subbundle obtained by replacing 

the fibres by their unit spheres by S(E). The restrictions to ~ resp. fl are denoted 

T*(~) resp. T*(f~), etc., and the analogous bundles for F are denoted T*(F), 

T*(F), S(F). The generic element of T*(Z) is (x, 0 ,  where ~ denotes a covector 

at the point x; analogously the generic element of T*(F) is (y,~/). 
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The space L2(~)= L2(f~) consists of the (equivalence classes of) complex 

valued square integrable functions on f~ w.r.t, the measure dx defined by the 

Riemannian metric, it is a Hilbert space with inner product and norm 

v ) = [  uSdx resp. [lUllo=(U,U) t. (u, 
J [1 

L2(F) is the analogous space for F, provided with the measure da induced on F 

by the metric on f~. 

By the help of local coordinates one defines the Sobolev spaces H~(f2) and 

Hs(F) for seN,  and H~(fl) for s > 0 (cf. e.g. Lions-Magenes [20]); they are 

Hilbert spaces with norms denoted ]l u IIs, and for s =  0 we identify them with 

the Hilbert spaces LZ(f~) and L2(F), respectively. For s # 0 we prefer not to fix on 

beforehand the choice of norm (since, as is well known, there are various equally 

sensible ways of defining these norms), but recall that, for s > 0, the anti-duality 

between Hg(f~) and H-~(f~), and the antiduality between HS(F) and H-~(F) 

(usually written with sharp brackets ( , ) )  coincide with the inner products in 

LZ(~) resp. LZ(F), when they are applied to elements that also lie in L2(f2) resp. 

L~(F). 

2.2. Vector- and matrix-notation. Throughout this paper we assume that 

m is a fixed positive integer. We denote by M, M o and M~ the following ordered 

sets of integers 

(2.1) M = ( O ,  1 , . . . , Z m - 1 ) , m o = { O , " ' , m - 1 } a n d m l = { m , ' " , 2 m - 1 }  

(so M = MoU M1). When N c M, we denote 

(2.2) N ~ M o = N o ,  N ~ M I = N 1  and { J l 2 m - l - j e N } = N  ' 

(N' again considered as an ordered subset of M). The number of elements in N 

will be denoted IN]. 

Let J c M and K c M. A matrix E = (Ejk)j~I ' k~K indexed by J x K will be 

called a J × K-matrix, and a vector ¢ = {¢j}j~j indexed by J will be called a 

J-vector. 

Let L c J a M and N = K = M. When E is a J × K-matrix, and {j, k} e J x K, 

Ejk denotes the {j, k}th entry in E, and E L N denotes the minor 

(2.3) ELN = "  (Ejk)jEL,keN. 

Similarly, when ¢ is a J-vector, qSj is the j th  entry, and eL is the vector 
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(2.4) ~bL = (q~j}j~L. 

We denote by I and 0 the unit resp, zero M × M-matrices 

(2.5) I = (3jk)j.keM, 0 = (O)j.keM 

(Then, in (2.4), eL = ILj¢.) 

The vector notation will primarily be used in the following connection: Let 

J c M and let {sj}j~s be a vector of real numbers. Then the elements ¢ of 

I-Ij~s H~J(F) are J-vectors with CjeH~J(F). When a norm I1" [[~J in H~J(F)is 

chosen for each sj, the expression (Y~j~s[] (oj [12)~ defines a Hilbert space norm 

in the product space rlj~J H~S(F) • Such a norm, and any Hilbert space norm in 

I-L~aH~J(F) equivalent with it, will be denoted 

(2.6) II 
where the '~/e J "  may be omitted if it is understood from the text. The duality 

s j  - s j  between 1-Ii~a H (F) and ]-L~a H (F) will be denoted < ~j}, {-~J} > or just ( , ) .  

Certain vectors of the boundary operators yj defined in Section 2.1 will be given 

special names: 

(2.7) P = {?j}j~M, )' = {)'a'}i~t0, v = {gj}i~u,, 

here 7 = PMo, v = PM,. We recall the classical "trace-theorem" (cf. Lions- 

Magenes [20]) 

PROPOSITION 2.1. 7, defined on ~ ( ~ ) ,  extends by continuity  to a mapping,  

also denoted by 7, which sends H~(~)) continuously onto /-Ij~toH~-J-÷(F)for 

all s > m - ½; here {u ~ H*(f~)lyu = 0} equals H~(f~), when m - ½ < s < m, and 

H~(f~) (~ H~(f~), when s > m. 

The matrix-notation will be used mainly on pseudo-differential operators in F 

and their symbols. We shall use the "classical" pseudo-differential operators 

(from now on abbreviated to ps.d.o.'s) introduced in Kohn-Nirenberg [18], 

H6rmander [16], [17], Seeley [25], to which we refer for details. Here, when P 

is a ps.d.o, in F, its symbol tr(P)(y, q) is, in local coordinates, a formal series of 

functions on T*(F), 

a(P) (y, tl) = ~ pt(y, tl), 
/ = 0  

each p~being C ® in y and homogeneous in ~/of degree rl, the rt forming a sequence 

of real numbers strictly decreasing towards - o o .  The principal symbol is 

trO(p) (y, q ) =  pO(y, q), also denoted a,o(P)(y , rl) if one wants to emphasize the 
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degree of homogeneity. Note that it is determined by its value on S(F) and ro. 

P has order ro, i.e., is continuous from Hs+'°(F) into H~(F), all s eR. 

DEFI~TION 2.1. Let J ~ M, K ~ M, and let {tj}jet and {Sk}k~r be vectors of 

real numbers. Furthermore, let P = (Pjk)j~t,k~K denote a J x K-matrix of 

ps.d.o.'s Pjk" Then P will be said to be of type (Sk, tj)j~t,k~K if each Pig is of 

order S k -  t j, for { j ,k}  ~ J x K.  When this understood to hold, the principal 

symbol of P is defined as the J x K-matrix 

(2.8) O(p)  = [ = 

We note that P being of type (sk, ti)i~" ker means that P is continuous from 

I-Ik~KHS~+'(F) into I-Ij~jHtJ+'(F), for all r e R .  Then P is also of type 

(sk + r, tj + r)jej" keg, any r e R. Now, the adjoint of P is the K x J-matrix of 

ps.d.o.'s 

(2.9) P* = (Qjk)jeK. keJ, where Qik = P~, 

P* is of type ( -  tk, -- Sj)j ~ K,k ~Z, and its principal symbol is a°(P) * (the conjugate 

transpose of a°(P)). When in particular K = J, and sj = - t j, each j ~ J, then P* 

is of the same type as P, and we define the " rea l"  and "imaginary" parts of P by 

1 
(2.10) Re P = 2x(P + P*), Im P = --~-(P - P*), 

a similar notation will be used for the symbols. 

Recall that P is said to be elliptic if a°(P)(y ,  tl) is injective at each point 

(y, rl) e S(F). Let us further mention the following results on positive semidef- 

initeness and definiteness: 

PROI'OSmON 2.2. Let J c M,  and let P be a J x J -matr ix  of  ps.d.o.'s in F, 

o f  type ( S k , -  Sj)j.k~t, where {sj}j~t is any real J-vector. 

(i) i f  

(2.11) Re (P¢ ,  ¢> > 0, all ¢ e 1-I ~(F),  
j e t  

then 

(2.12) Re a°(y,~1) > 0 for  all (y, rt)e S(F) 

(i.e., Re a°(y, , l)  is positive semidefinite). 

(ii) Let  r > O. In  order that there exist c > 0, 2 e N  such that 

2 (2.13) a1149~ 1-I ~(F), 
cJ 
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it is necessary and sufficient that 

(2.14) Retr°(P)(y,~l) > 0 for all (y, tl)~ S(F) 

(i.e., for some c' > O, Re tr°(P)(y, rl) - c' Isj > 0 on S(F)). 

These statements are well known or are at least elementary consequences of 

well known theorems, see e.g. [12], Appendix. 

We shall finally compose the boundary operators ?3 with ps.d.o.'s in F:  

A (pseudo-) differential boundary operator fl is a composite operator 

k 
= E B,71, 

1 = 0  

where the Bt are (pseudo-) differential operators in F. The order is the largest of 

the numbers l + order of  B t. When J c M, a normal system of (pseudo-) differ- 

ential boundary operators of orders m j, j ~ J, is a J-vector of boundary operators 

( f l j} jej ,  where each flj is of  the form 

flj -- bj 7mj + ~" BjkTk 
k<mj 

with bj and 1/bj e ~(F) ,  and the Bjk denoting (pseudo-) differential operators in 

F of  orders mj - k, respectively, the mj being distinct. (In contrast with previous 

papers we denote all boundary operators by small Greek letters.) 

2.3 The elliptic operator A. Once and for all we assume 

ASSUMPTION 2.2. A is a 2m-order uniformly properly elliptic operator with 

C ~° coefficients on ~. Its symbol is a(A)(x, 4); the principal symbol a°(A)(x, 4) 

will also be noted a(x, 4). 

With A are associated the following operators in L2(f~) 2: 

the maximal operator AI:  A defined on the domain 

D(A1) = {u s L2(~) ]Au ~ L2(~) in the distribution sense}, 

the minimal operator A 0 : the closure of A defined on N(f~), 

the realizations of A:a l l  linear operators ,4 in L2(f~) satisfying 

Ao c .~ cA~. 

2 When S is an operator in a Hilbert space H, we denote by D(S), R(S) and Z(S) its domain 
range and null-space, respectively. Moreover, we denote its numerical range 

((su, II u II. = 1}, 
and its lower bound 

re(S) --- inf Re v(S). 
The adjoint of S in H is denoted S*. 
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The (formal) adjoint of A will be denoted A', the "real" part ½(A + A') = A r. 

Recall that, with Ax' and A~ denoting the maximal resp. the minimal operator 

for A', one has 

(2.15) A~ = A*, A; = A*, 

and therefore, that adjoints .4" of realizations A of A are realizations of A'. We 

also recall that, because of the ellipticity, D(Ao)=D(A'o)=Hgm(~)), and 
2m D(AI) c Htoc(f~). A special realization of A is the Dirichlet realization A~ defined 

by 

D(A,) : H~(f~) t'3 H2m(~)).  

A well known regularity theorem assures that the realization A'~ of A' with the 

same domain satisfies" 

A; = (A,)*. 

DErINmON 2.2. A will be said to have uniquely solvable Dirichlet problem 

if A~ is a bijection of H~'(f~) c3 H2"(f~) onto LZ(f~). 

Most of the results in the following will presume the validity of Definition 2.2, 

which makes the theory of [11] applicable. In general, A~ has only finite dimen- 

sional kernel and cokernel; we have not made the effort to include this case in 

our general theory, but it is possible that it may be done by use of the technique 

of Lions and Magenes [20] and others, factoring out finite dimensional subspaces. 

Anyway, the main aim of the present paper is a discussion of inequalities that 

require at least semidefiniteness of a°(A), in which case Definition 2.2 is satisfied 

after the addition of a constant to A. More precisely, we recall 

PROPOSITION 2.3. 

(i) (G~rding [15]) In order that, with some c > O, 2 ¢R, 

(2.17) Re(Au, u)>__cllull2-, llU]ro, all ueH'~(~)NH2"(f~) ,  

it is necessary and suffÉcient that Re a(x, 4) > 0 for all (x, ~) e S(~) (i.e., A is 

strongly elliptic). 

(ii) (Agmon [ 3 ] ) / f  there exists 0 e [0, 2~] such that 

a(x, 4) eiO, (2.18) [ a(x, 4)[ # all (x, 4) ~ S(fi) 

then A - r e ~° has uniquely solvable Dirichlet problem for sufficiently large 

r > 0 .  
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(iii) I f  there exists 2 e R  such that 

(2.19) Re (au, u) >= - 2l] u H~, all u ~ ~(~) ,  

then Re a (x, 3) > 0 on S((I). 

The last statement is related to and derivable from Proposition 2.2 (i). Note 

that Proposition 2.3 (ii) is not its converse, since (ii) does not give information 

on the numerical range. 

We shall need one more observation on differential operators in ~ :  

When C is a 2m-order differential operator with C + coefficients in ~, then for 
u ~ H2m(~), v e Ho(n), 

(2.20) I(cu,v) l  = I <cu,  v>l _-< II cu II_.llvllo_-< co.st.  II u Ilollvllm, 

the sharp brackets denoting the duality between H-~(f~) and H~(Y~). 

2.4. General trace- and decomposition theorems. 

Define, for each s e R, t e N  the spaces 

~ t ( n )  = {u e HS(n)[Au e Hi(n)} 

and 

Z~(~) = {u e H~(f~)IAu -- 0 in ~}, 

Au always taken in the distribution sense. Provided with the graph-norms 

II u II~;"(o, :-< II u II~ + II Au 11,2> + 
resp. 

II u I1.:<o, = II u IIs, 
the spaces are easily seen to be Hilbert spaces. Moreover we note that, when 

s > t + 2 m ,  

with equivalent norms. Note also that Z](~) is a closed subspace of o~/~(~) 

for any t. 

Lions and Magenes proved in [19, II and V] and [20] 

PROPOSITION 2.4. Let J c M and let fi = {flj}j~j be a normal system of 

differential boundary operators of orders j ,  j ¢ J. Then fl, originally defined 

on ~(~) ,  extends by continuity to an operator, also denoted by fl, which maps 

3¢¢~ ° (.Q) continuously into I-[j+s HS-j-l/2 (F), for each s t  R .  

The operator ~ = {?s'}i+Uo may be extended even .further, to an operator, 
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also called y, that maps ~ - " ( f ~ )  continuously into 17L~toHS-~-~(F), for 

each s e ~ .  
With this extended definition of ?, we shall present a general version of the 

fundamental existence, uniqueness and regularity theorem, due mainly to 

Nirenberg, for s > 2m, and to Lions and Magenes, for s-< 2m. 

THEOREM 2.1. Assume that A satisfies Definition 2.2. 

(a) For all pairs of real numbers {s,t}, where t >_= - m ,  t ~ -  ½, - 3/2,--., 

- m + ½, and s <= t + 2m, the mapping {A,y} is an isomorphism of 

:~:~t(a) onto H'(f~) x I ]  Hs-J-~(F) • 
jEMo 

spf (b) For {s, t} as in (a), and u ~ 2/:~ (f)), let u~ denote the solution of 

(2.21) Au~ = Au, yu~ = O, 

and let u~ = u -  u v, then the decomposition 

(2.22) u = u~ + u~ 

decomposes J/t°~it(f~) into the topological direct sum 

(2.23) ~ / ' ( f~)  = [HE(n ) n Ht+2r"(f~)] 4- Z~(f~) 

(here, H'~(f~) nHt+2"(~)  is provided with the norm in Ht+2m(f~)). 

(c) For all s~R, ~ maps Z~a(f~) isomorphically onto ]--Ij~MoH'-J-~(F). 

PROOFS AND REFERENCES FOR THEOREM 2.1. 

(b) and (c) are easy corollaries of (a); however, we shall use (b) and (c) in our 

explanation of the proof of (a). 

For s = t + 2m, t integer > 0, (a) is a consequence of the regularity theory 

initiated by Nirenberg [-21] (see also Schechter [23], Agmon-Douglis-Nirenberg 

[5]) stating that a distribution solution u of the problem 

Au = f, ~u = (o, 

with f e  Ht(f~), (o ~ l-[J~Mo Ht+2"-J-~(F), is necessarily in H'+2"(f~). (They also 

showed that the problem satisfies the Fredholm alternative; then it is uniquely 

solvable when we assume Definition 2.2.) Their result was extended to integer 

t > - m by Peetre [22], and to non-integer t (excepting the values - ½,..., - m  +½) 

by interpolation by Lions and Magenes (cf.[20]), this gives (a) for s = t + 2m 

with t real > - m avoiding certain values. 

Next, (a) was proved for t = 0, 2m > s > - ~  by Lions and Magenes, see 
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[19, V] and [20] (the values s = ½ + integer were excepted in [-19, V], but may 

be included by an application of the results in [20]). 

Now, the validity of (a) for t > 0, s = t + 2m, and for t = 0, s < 2m, suffices 

to imply (c). After this, (b) is proved as follows: 

Let (s, t} be a pair satisfying the assumptions in the theorem. Then, evidently 

each summand in the right side of (2.23) is contained in ~/t(f~).  Conversely, when 

u e ~(Y~s't(~), then Au e Ht(f~), which implies u~eHt+zm(f2)NHr~(~2) (note that 

t + 2m > m) by the abovementioned regularity theory. Since s =< t + 2m, 

u; = u - u v ~ H*(f~); then, since Au; = Au - Au~ = O, u~ ~ Z](~). This shows the 

desired decomposition, which is unique because of (c). To complete the proof of 

(b) it remains to show that the decomposition is continuous both ways; this is 

easy and will be omitted. 

Finally, one obtains the remaining part of (a) by combining (b) and (c) with 

the fact that, by the already proven part of (a), A maps H~(f~)OH2m+t(~'~) 

isomorphically onto H'(f~), for t ___ - m, t # - ½,.-., - m + 1. 

In connection with this theorem, we shall introduce some further notation 

DEFINITION 2.3. Let (s, t} be as in Theorem 2.1. The projections u ~ u s and 

u ~ u;, defined for u ~ ~ t ( f ~ ) ,  will be denoted pr v resp. pr;. The inverse of the 

isomorphism y: Z](f~) ~ I-Ij~MoHS-J-~(F) will be denoted 7~ a.When convenient, 

we indicate the dependence on A by writing instead pr~ a, pr~ and (7A)- 1. However, 

when A is replaced by A' or A' = ½(A + A') (then assumed elliptic etc.), we write 

u = u  r ,+u~,  resp. u = u  s,+u~, 

and we denote the corresponding mapping pr~; pr~' and (Yz)' -~, resp. pry," pr~ 

and ( ~ ) -  1. 

We use here tacitly that the definition of each of these operators is consistent 

for varying (s, t), One may show furthermore, that y is consistently defined for 

varying A: 

LEMMA 2.1. Let A and B be two properly elliptic operators of order 2m, 

and lets <__ m. Let Ta and ?B be the extensions of the classical operator y, defined 

on v~-r~(f~) resp. ~ , -m( f~ )  by Proposition 2.4. Then yau=yBu for 
U E ~ - m ( ~ ' ~ )  n .~s~-m(~'~). 

PROOF. Let u 6 v ~ - m ( f ~ ) n  ~ - m ( f ~ ) .  Then, since Z](f~) and Z~(f~) lie in 

C°~(f~), u ~ Hto~(f~). On the surfaces F~ parallel to F in the distance e, "7u"  is 
therefore defined as an element y(~)u~YI j ~MoHm-j-½(F~), by Proposition 2.1. 
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By theorem 2.8.1 in [20] (p. 207), ?¢~)u --+ ?AU as well as ?Su in I-IjeMo Hs-j-+(F) 
(with a suitable identification between F and F~, of. [20]); thus ?au = ?nu. 

We now note that pr~ satisfies 

(2.24) pr¢ = ?z i o ?. 

By this formula, pr~ may actually be defined on any space ~ t ( f ~ )  as in Lemma 

2.1. We shall show 

PROPOSITION 2.5. Let A and B be properly elliptic, of order 2m, satisfying 

Definition 2.2. Let s~lI~. Then pr~ may be defined on J/t~-"(f~) by 

p 4  = o ? ; 

this coincides on ~ - m ( f ~ )  C3 ~*~-m(f~) with the original definition. Moreover, 

pr~ is continuous from o ~ ' - "  into Z](~2), and it maps Z~(f~) isomorphically 

onto Z](f~). Finally, when C is 2m order properly elliptic, satisfying Definition 

2.2, then 

(2.25) pr~ prgu = prgu, all u e ~b-m(f~) .  

PROOF. The first statements follow immediately by use of Lemma 2.1 and the 

properties of ? and (?~)-1 stated in Proposition 2.4 resp. Theorem 2.1 (c). For 

the last statement we note that 

. A - 1 p r ' ~ u ,  pr{prgu = (?z a)-  17 (?z B)- l?u = (?z) ?u = 

since ?(?zB) -1 is the identity on l-[j~toH~-~-'~(F). 

(2.25) will later be used with B replaced by A' or A'. 

2.5. Green's formulae, the operators P and It. Near F, we may write A in the form 

2m 

(2.26) A = ]~ A~(t)D I, 
1 = 0  

where each A~(t) is a differential operator of order 2m - l in Ft, the parallel 

surface to F in the distance t. 

In particular, A2,,(t ) is a function, nonvanishing because of the ellipticity of A. 

We denote Az(0 ) = A v Now a°(A) may at points y e F be written 

2m 

(2.27) a(y,q,z) = Z at(y, tl)z ~, 
/ = 0  

where at(y, q) = a°(At) (y, q), and z e R. For each fixed (y, q) e T*(F), the polyno- 
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mial a(y,q,'c) in ze  C has, by the assumption of proper ellipticity, m roots 
f -- m {z, +(y, t/)},'= l in C + = { 2 e C [ I m 2 > 0 }  and m roots G i ( y ,  tl)},=x in C_ 

= (xeCl m;.> 0}. Let 

(2.28) a+(y, rh z) = I-[ (z - z+(y,t/)), a - ( y , q , z )  = ~[ (z - zi-(y,r/)), 
i = 1  ~=1 

then 

(2.29) a(y, r/, z) = A2m(y ) a +(y, r/, z) a -(y, r/, z). 

The coefficients in a ÷ resp. a -  will be denoted h+resp, st-: 

(2.30) a+(y, thZ) = ~ s~-(y,t/)r 1, a - ( y , q , z ) =  ~ s{(y ,q)z  I. 
1=0 1=0 

Following Seeley [24] we find from (2.26) Green's formula 

(2.31) (Au, v) - (u ,A'v)  = d p u  • pv &r, u, v e  H2"(f~), 

where d = ('~jk)i,k~M is an M x M-matrix of differential operators in F of the 
form 

iAj+k+ 1 + Sjk w h e n j + k + l < 2 m ,  
f 

(2.32) ,~¢j~ = q iA2m when j + k + 1 = 2m, 
t ,  

0 when j + k + l > 2 m ,  

here the Sjk denote differential operators of orders < 2 m -  (j + k + 1). Note 

that the matrix (iA2m) - l d  is skew-triangular with ones in the second diagonal 

and zeroes below it. Therefore, d is invertible with its inverse d -  1 again a 

differential operator, now having (iA2~)-1 in its second diagonal and zeroes 

above it. A similar statement holds for any minor of the form ~4rr,, K c M;  

in particular it holds for ~4MoM ,. 

Denoting the corresponding operators associated with A'  resp. A" (when it is 

elliptic) by d '  resp. d ;  we note (cf. (2.31)) 

(2.33) d '  = - ,~'*, s¢" = ½(d + d ' )  [ = ½(see - s¢*) = i I m ~ ! ] .  

We now introduce the particular boundary differential operators 

)~ -- ~MoM1 v "~- 2~MoMo~ 

( 2 . 3 4 )  ( X '  = ' ~ / o M t  1~ -{- ½~vfoMo'~  [ = d~/ $ ld~ /$  n 
- -  M 1 M o  1~ - -  2 moMo~J" 
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Then in view of (2.32), the formula (2.31) may be written in the form 

(2.35) (Au, v) - (u, A'v) = (ZU, yv} - (yu, Z'v), u, v ~ H2m(~) 

(where ( , )  denotes the inner product in IIj~MoL2(F) or suitable extensions). 

The choice (2.34) of Z and Z' is not so special, for we observe 

LEMMA 2.2. The pairs of normal systems of boundary differential operators 

= ~xj}j'~Mo, xj and xj of orders 2m - j - 1, j ~ Mo, with which = ' ' 

(2.36) (Au, v) - (u, A'v) = <xu, 7v> - <ru, x'v>, u, v ~ n2"(fl),  

are exactly those of the form 

(2.37) x = Z + S~, to' = X' + S 'y ,  

where S runs through all differential operators in F of type 

( -  k, - 2m + j + 1)j,k~Mo. 

The proof  of this elementary fact amounts to a comparison of (2.36) with (2.35) 

for all u, v ~ H2m(f~); details will be omitted. 

It was noted by Lions and Magenes in [19, V] that the formula (2.35), with the 

extensions of definitions of y and Z given in Proposition 2.4, extends as far as 

the orders of  the boundary operators permit (and not further, cf. [11, Remark 

1.3.3]): When s~ [0,2m], (2.35) is valid for u ~ ~ o ( f ~ )  and v~ ~azY-s'°(f~) 

(with the relevant interpretations of the sharp brackets). In order to have a 

Green's formula valid for u ~ JF°'°(f~) and v E ~o,o(f~), we shall introduce an 

additional device. 

DEFINITION 2.4. When A satisfies Definition 2.2, we denote by P~,v the compo- 

site operator 

(2.38) Pr,~ = v o 7z  I, 

it maps I-[k~Mo HS-k(F) continuously into I-Ii~M~H~-J(F) for all s ~ R .  To 

emphasize the connection with A we may write pav,v instead of Pr,~" However, we 

usually write, for the operators associated with A' and A '(when it is elliptic etc.) 

t r (2.39) P ~  = v(r~)- a, Pv,~ = v(~'z)- ~. 

About  such operators one has 

PROPOSITION 2.6. P~,~ is a ps.d.o, in F of type ( - k ,  - J)j~U~,k~Uo, with 

principal symbol (Pjk)j~U~,~Uo consisting, at each (y, rl)~ T.*(F), of the coef- 

ficients in the rest polynomials 
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(2.40) ~ Pjk(Y, tl)Z k--  Z j (moda+(y,  rl, z)), j ~ M  1. 
k~Mo 

This result is a consequence of the work of Boutet de Monvel [6], and was 

also proved explicitly by Vajnberg and Grusin [28], in both cases by means of  a 

composition rule for boundary operators (like v) and Poisson integral operators 

(like 7z 1). Let us however also mention the observation, that it may be shown 

as an elementary consequence of the conceptually simpler result on the "Calder6n- 

Seeley-projector" (Calder6n [7] ,  Seeley [24], H6rmander [17]). We describe 

this 2' in the Appendix, which gives us an opportunity to derive some useful 

explicit formulae. 

We also introduce 

DEFINITION 2.5. When A satisfies Definition 2.2, and fl is a normal system of 

pseudo-differential boundary operators of  orders m j, j ~ J (the mj e M),  we denote 

(2.41) P~,~ = fl o Yz 1 ; 

it is a ps.d.o, in F of type ( -  k, - mj)jej,k~Mo. In particular, we denote 

t t t - 1  r (2.42) Pr z = ZTz 1 , P~,z" = Z (Tz) , P~.z" = Z'(7~-) -1; 

the last definition requires A'  elliptic etc., and then i f =  ½(Z + Z')- 

Note that by (2.34) 

(2.43) P~.z = dMoM1Pr v + ½dMoMo, 

with analogous formulae with . . . . .  and " r " .  

DEFINITION 2.6. Let A be a 2m order properly elliptic operator. Th e n  we 

define the (non-normal) pseudo-differential boundary operators/~, ~' and #" on 

~ o ( f l )  (s ER), when the respective ps.d.o.'s Pr,x, P~,z' or P~.z" are defined: 

t r r (2.44) /~ = Z - Pr,xT, # '  = ;~' - P~,z'7, #" = Z -- Prz'7" 

Note the formula, easily seen from (2.34) and (2.43) 

(2.45) # = J~CMoM, (V -- P~ vy). 

The fundamental properties of # are expressed in the following statement, 

proved in [11, theorem III 1.2] (where # was called M): 

PROPOSITION 2.7. Assume that A satisfies Definition 2.2. Consider l~, restricted 

2, The proof was constructed at a time where we needed the result but could not find it in 
the literature. We have later become aware that related ideas have been known for some time. 



48 GERD GRUBB Israel J. Math., 

to D(A1) = ,~o,o(f~). It maps D(A 0 continuously onto I-Ij~toHJ+~(F), and may 

alternatively be defined by 

pu = Z pr~u, (2.46) 

o r  

(2.47) , (Yz) (o), all (o ~ ]-I H-J-~(F)  • ( #u (o ) = (Au, ' -1 
{ j + ] - }  { - - j - - ~ )  j e m o  

The kernel of#:  D(A1) -o I]J~MoHJ+~(F) is D(Ao) + Z(AO. One has the general 

Green's formula 

(2.48) (Au, v) - (u,A'v) = (#u, yv) - (Tu, p'v), al lueD(Aa),v~D(A;) .  

Comparison of (2.48) with (2.35) for all u, v s Ham(f~) gives 

COROLLARY 2.7. For P~,z and P~',z" defined in Definition 2.5, 

, = p *  Py.~' y.x" 

We remark however, that P~.: is in general different from Re P~.z = ½(P~,~ + P~,*) 

3. General theory 

3.1. Resumd of old results. We assume throughout this chapter: 

ASSUMPTION 3.1. A has uniquely solvable Dirichlet problem (of. Definition 

2.2). 

With .4 o, A s and A, defined as in Section 2.3, Theorem 2.1(b) for s = t = 0 

may be expressed as follows: 

LEMMA 3.1. By the projections pry and pr~ defined in Definition 2.3, D(A1) 

is decomposed into the topological direct sum (with respect to the graph- 

topologies) 

(3.1) D(A1) = D(Av) 4- Z(AI). 

! t pry and pr~ decompose D(A' 0 similarly: 

(3.2) D(A~) = D(A*) 4- Z(A'~). 

With this as basis, the author showed in [11] 

PROPOSITION 3.1. Let .,t be a closed realization of A. Let 

(3.3) V= pr;D(A), W = prOD(.4*); 

they are closed subspaces of Z(A 0 resp. Z(A~). Then there exists a uniquely 

determined closed, densely defined operator T: V ~  W such that 
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(3.4) D(.d) = {u E D(A1) I u; ~ D(T), (Au, w) = (Tu;, w) for all w ~ W}, 

here D(T) = proD(.4). 

Conversely, if V and W are any closed subspaces of Z(A1) resp. Z(A~), and 

T is any closed, densely defined operator from V into W, then (3.4) determines a 

unique closed realization .4 of A, such that T: V ~  W is exactly the operator 

derived from .d in the above fashion. 

When X corresponds to T in this way, the general element of D(_d) is decom- 

posed uniquely as 

(3.5) u = v + A~I(Tz + f )  + z, 

where [v, z, f]  runs through D(Ao) × D(T) x (Z(A~)~ W). Moreover, the realiza- 

tion .4" of A' then corresponds to the adjoint T*: W ~ V by 

(3.6) D(A*) = {u~D(A;)[u;,~D(T*),(A'u,v) = (T*u¢,,v),Vv~ 1,7}. 

The correspondence introduced above carries numerous properties, --dimension 

of nullspace, closedness of range, codimension of range - - to  mention a few (cf. 

[11]). The property we are interested in, "s-coerciveness", was treated in [12] 

for the case where A' = A: 

PROPOSITION 3.2. Assume that A is strongly elliptic, with A' = A and 

(3.7) (Au, u) c.[lull , c,, ,>O, all ueH2o'~(fl) 

(then also m(Ao) > 0, cf2. ). Let Z be a closed realization of A, corresponding by 

Proposition 3.1 to T: V ~  W. With a real number s t  [O,m], we consider the 

two assertions 

(3.8) 3c>O,2eRs. th .  Re (Au, u) cllull -xllull , rueD(Z). 

/(i) V = W 

(3.9) { t(ii) 3 # > 0 ,  2' ~R s.th. Re (Tz, z) > c'][ z I[ 2 -  ;~'l[ z []2, Vz e D(T). 

Here, (3.8) implies (3 .9) for  all s~[0,  m], and (3.9) implies (3 .8) for  all 

s ~ ]m - ½, m]. When s ~ [0, m - ½], (3.9) implies (3.8) if furthermore 2" < m(Ao). 

This result was proved for s = 0 in [11], and for s ~ [0, m] in [12] (of. the proof 

of Proposition 2.7 there). The direction (3.8) :~ (3.9) uses that when u e D(.~), 

u = u~ + u¢ where u~ e D(T) and u~ may be brought to converge to 0 in H~(D), 

since D(.~) ~ D(Ao) = Ho2~(~2) which is dense in I-I~(~2). The converse direction 

uses a splitting of (Au, u) that holds when V ~ W. 
Let us point out that it is the very natural property V ~ W, necessary for the 



50 GERD GRUBB Israel J. Math., 

validity of (3.8), that leads to the seemingly previously unnoticed "global"  

condition for semiboundedness of realizations of normal boundary problems, as 

explained in Chapter 4. 

3.2. New results, formulated jor the correspondence between .4 and T. 

The main aim of the present chapter is to generalize Proposition 3.2 to non- 

selfadjoint A. As it will be seen, the splitting we use in the general case does not 

work on the full domain D(A1). On the other hand, we exploit the technique of 

the proof of (3.8)=~ (3.9) much further, to show how a condition generalizing 

V c W is necessary even for very weak kinds of semiboundedness, that do not 

require (semi-) definiteness of a°(A). 

In the rest of this chapter, we shall always assume: 

ASSUMPTtON 3.2. ,4 is a closed realization of A, corresponding to T: V ~  W 

by Proposition 3.1. 

LEMMA 3.2. Let uED(A) A ~ ° ' - " ( f ~ ) .  With u = v +  A~-X(Tz + f ) +  z ac- 

cording to (3.5) in Proposition 3.1, and 

(3.10) u = u.~, + u;,, where u¢, = pr~z, 

according to Definition 2.3 and Proposition 2.5, one has 

(Au, u) = (Au, u~,) + (Tz,  pr~z) + (f, pr¢'z). (3.11) 

PROOF. 
(Au, u) = (Au, u;) + (Au, u~,) 

t = (Au, u~.) + (Av + Tz  + f, pr~z) 

= (Au, u~,) + (Tz,  pr~z) + (f ,  pr~z), 

where (Av, pr~z) = 0 since Av ~ R(Ao) J_ Z(A~), cf. (2.15). 

THEOREM 3.1. Let U be a linear space with HZm(£~) c U ~ Hm(~). Then the 

following statements (3.12) and (3.13) are equivalent: 

(3.12) 32 Rs.th. Re(Au, u)>= - 41ul12, Vu D( ) U 

[(i) pr~(D(T) n U) ~ W 

(3.13) l t(ii) B2'~Rs. th .  Re (Tz ,  p r ~ z ) > - ) J [ l z [ l ~ ,  V z ~ D ( T ) A U .  

PROOF. We use the decomposition 

(3.5) u = v + A ~ I ( T z  + f )  + z. 

Note first of all that u runs through D(-~) n U exactly when Iv, z , f ]  runs through 
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2 ° (3.13) ~ (3.12). 

u eD(A) n U 
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D(Ao) x (D(T) n U) x (Z (AOQ W), since v + A ~ I ( T z  + f ) ~ D ( A s )  c n TM (~) 

c U .  

1 ° (3.12) ~ (3.13). Let u ~D(.4) n U, decomposed by (3.5). Let {w"},~N 

be a sequence in D(Ao)= Ho2m(~), converging to - v -  A-~I(Tz + f )  in H~'(f~). 

Then u " =  u + w" belongs to D ( A ) n  U, and 

n u s = u s + w " ~ 0  in H~'(f~), 

U~ : Z G U c / _ / m ( ~ , ) ) ,  

u~, = pr~ z e n"(f~) (cf. (2.25)), 

n n t t and u s, = u s + pr~z ~ prsz in H~(f~). (3.12) and Lemma 3.2 give 

(3.14) Re[(Au", u~,) + (Tz ,  pr~z) + (f ,  pr~z)] = - ~11 u. I?.. 
Here [(Au", u:,)[ = I(Au~, usn)[ < cll u~ll~ II u~, I1, (cf. (2.20)), and therefore goes 

to zero as n ~ oo. Thus, using that  u" ~ z in Hr"(f~), 

' ' II II~ (3.15) R e [ ( r z ,  pr;z) + (f ,  pr~z)] >= - 2 z . 

For each fixed pair [ z , f ]  ~ (D(T) n U) x (Z(A'I)O W) we find by inserting kf, 

k e C, in (3.15), that  one must have 

! 
(3.16) (f,  pr~z) = O, 

i.e., since pr'~(D(T) n U) c Z(A~), 

(3.17) pr~(D(T) n U) c W. 

Inserting (3.16) in (3.15) we now also have 

Re (Tz ,  pr~z)>= - ~.llzll~, z~D(Z)~U. 

When (3.13) holds, we have, by Lemma 3.2, for 

Re (Au, u) = Re (Au s, uw)+Re  (Tz ,  pr~'z) 

>= - el  I1 us I1., I[ us, [I o - ~' Ilz II ~, 

cf. (2.20). Here, I[ us II, < e:ll u [I-, II us. lira ~ c3 I[ u II, and [[z Jim < C4[I U lira for 
u ~ Hm(f~), by various applications of Theorem 2.1(b) (with s = m, t = - m), so 

that  finally 

Re (Au,u)  > - c, II u I1~, when u ~ D(.4) n U, 

for some c5 e R. This proves the theorem. 
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REMARK 3.1. Note, for one thing, that (3.12) does not require strong ellipticity 
of A, in fact it holds on H2m(fl)n  H~'(I)) for any smooth 2m-order operator, 

cf. (2.20). Secondly, for the normal boundary problems considered in Chapter 4, 

(3.13) (ii) is automatically satisfied. Then the above theorem singles out the exact ro- 

le of (3.13) (i), as a necessary and sufficient condition for the rather weak inequality 

(3.12). 

COROLLARY 3.1. Let U be as in Theorem 3.1; then, when T belongs to the 

class of operators satisfying I(Tz,  pr~z) l ~ cll z I] 2 on D(T) n U (some c > 0), 

(3.19) I(Au, v) l <=c,llull~llVllm, Vu, v e D ( A )  A U  

is equivalent with 
pr~(D(r) n U) ~ W. 

PROOF. Apply Theorem 3.1 to e~°A, all 0~[0,2rc],  noting the equivalence 

between (3.19) and 

I(Au, u)l<=c'l[ullL VueD( ) n V. 

The next inequality is also independent of requirements on a°(A), however, it 

gives a nontrivial condition on T, also when _~ is as in Chapter 4 ((3.21) (ii)' below). 

THEOREM 3.2. Let U be a linear space with H2m(~) c U c A"o',-"(f~). I f  

there exists ).e R such that 

Re (Au ,  u) > - 2(I I u 112 + II A'u libra) on D(A) n U, (3.20) 

then 

I( i)  pr~(D(T) n U) c W; 

(3.21) j ( i i )  Re (Tz ,  pr'¢z) > - 2([1 z [[o 2 + ][ A'z  ][_2m), Vz e D(T) n U; 

L (ii)' Re (Tz ,  pr~z) > - 2ll pr~z I} z > - 2cl} z 112, Vz e D(T) n c ,  

for a certain c > O. 

PROOF. In analogy with (3.14) we now have 

(3.22) R e [ ( A u " , u ~ , ) + ( T z ,  pr ' ; z )+( f ,  Pr~z)] > - 2(ll u" + II A'u" 

where ueD(A)  A U ,  and u " = u + w " ,  w"eD(Ao).  Letting w " ~ - u r = - v  
r l  t i - A~ l (Tz  + f )  in H~(f~), we have that u~ ~ 0 in H~(f~), u r, = u~ + prrz ~ prrz 

in H~(f~) (since z~ wo;-m(f~)),, and u " ~  z in H°(f~), with A'u" = Aur,, n 

A'  pr'rz = A ' z  in H-m(f~). Altogether, this gives 

Re [(Tz, pr~z)+ ( f ,  pr~z)] >= -- 2(1[ z ]1 ~ + IIA'zilZ-m), 
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for [ z , f ] ~ ( D ( T ) n  U)×  (Z(A~)GW),  from which (i) and (ii) follow as in 

Theorem 3.1. 
t To obtain (ii)', we let instead w " - ~ -  u s, = -  u s - p r r z  in H~(f~). Then 

n n t H o ( ~ - ) )  ' n , A , U  n , n u s, ~ 0 in H"~(~)), u~ ~ - pr~z in " in H°(f~) and A u ~ , ~ 0  u ~ pr~z = 

in H-m(f~). Altogether, (3.22) gives by passing to the limit (and using (i)) 

t ! 2 
Re ( r z ,  pr~z) > - 211 pr~z]l o. 

The remaining part follows by using that pr~ is continuous from Z°(f~) to Z°,(V~), 

cf. Proposition 2.5. 

We now turn to inequalities of the kind treated in Proposition 3.2. 

DEFINITION 3.1. Let s > 0, and let U c L2(~). An operator S in L2(f~) will be 

said to be s-coercive on U if there exist e > 0, 2 ~ N such that 

(3.23) Re __> cll u - 4 1 .  I1 ,. D(S) n u 

The case s = 0, where the terminology is somewhat unjustified, has been 

included for convenience. Note that (3.23) in particular means that D ( S ) n  U 

c/-r(n). 
By Proposition 2.3 (iii), s-coerciveness of a realization .4 requires at least semi- 

definiteness of a°(A), and then Assumption 3.1 becomes trivial, cf. Proposition 

2.3(ii). But Re G°(A) > 0 does not (to our knowledge) imply even 0-coerciveness of 

A o. (According to a theorem of H6rmander [17], Re a2m(C) _>- 0 is necessary and 

sufficient for the inequality Re (Cu, u) > -211 u [12_+ on ~(fg) ,  each fi '  c f~, when 

C is any 2m order operator.) In our search for simultaneously necessary and 

sufficient conditions for s-coerciveness of realizations, we shall let this aspect lie 

and simply assume strong ellipticity of A. We shall also assume a sufficiently 

large constant added to A such that 

(3.24) Re (Au, u) >= emil u I1.2, e~ > 0, VuED(Ao). 

Let H2"(f~) c U ~ ~'t~o:-~(f~), then when pr~(D(T) n U) c W, we have found 

that for u e D(A) n U 

(3.25) (Au, u) = (Au~, u~,,) + (Tz ,  pr~'z) 
! ! 

= (Au v us) + (Au~, pr~z) + (Tz,  pr~z). 

! 
In the case A -- A', pry z = 0, so (Au, u) is split by (3.25) into a quadratic form in 

u s and a quadratic form in z; this led to Proposition 3.2 by use of (3.24). How- 

ever, when A ~ A', the mixed term (Au~, pr~ z) prevents us from getting truly 
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necessary and sufficient condition for s-coerciveness of .4 on U in terms of similar 

estimates on (Tz ,  pr~z). This necessitates the following development: 

Recall that A ~= ½(A + A') is strongly elliptic and satisfies (3.24) when A 

does, and recall Definition 2.3. Note that 

(3.26) D(AO n ~o;-m(f~) = D(A~) n ~O,-m(~) .  

LEMMA 3.3. Let A be strongly elliptic satisfying (3.24). For 

. e O(A n 

(3.27) Re (Au, uw) = Re(A uy,, uy,) + Re(A u~,, pr~ u~,), 

the sharp brackets denoting the duality between H-"(f~)  and H'~(~). 

PROOF. Set uy, = x, u;r = y, then x E n~(f l )  and y E Z°r(~) n ~O;-m(fl), 
by Theorem 2.1(b). Then 

uy = pryx + pry y = x + prry 

t t ! u s, = pryx + pryy = x + pryy, 

' Ho(f~), and thus where also pry y and pry y lie in m . 

Re(Auy, uw) = Re (A(x + pryy), x + pr]y) 
! 

= Re ( A x  + A pryy, x + pryy) 
! 

= Re (Ax ,  x )  + Re [(Ax,  pryy) + ( A  pryy, x)]  

? 

+ Re (Aprry ,  prry ). 

We now observe that Aprry  = Ay (~H-m(f~)) and that the term in [ ] equals 

Re[(Ax,  pry'y) + (Ay ,  x)]  = Re[(A'pr'~y, x )  + (Ay ,  x)]  

= Re[ (A 'y ,  x )  + (Ay ,  x) ]  = Re(2A'y,  x )  = 0, 

since y e Z°r(g)). Thus finally 

Re (Auy, uy,) = Re(Ax ,  x )  + Re(Ay, pr~y), 

as was to be shown. 

By use of Lemmas 3.2 and 3.3 and the fact that pr~ u = pr[ pr;u = pr'~z (cf. 

Proposition 2.5) we then obtain 

PROFOSITION 3.3. Let A be strongly elliptic satisfying (3.24). For 

u eD(.4) n ~o , - , , (~ ) ,  with u = v + A ~ I ( T z  + f )  + z according to Proposition 

3.1, 
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Re (Au, u) = Re (Aurr, urr) + Re (f, pr~z) (3.28) 
+ Re [(Tz, pr~ z) + <A pr~'z, pr~ pr;~z)] 

(the sharp brackets denoting the duality between H-"(f~) and H'~(f~)). 

REMARK 3.2. Whereas Lemma 3.2 extends easily to (Au,v), for u and v 

different elements of D(.d), it is essential in Proposition 3.3 that we have u on 

both places and take the real part. 

THEOREM 3.3. Assume that A is strongly elliptic, satisfying (3.24). With 

se  [0, m] and U a linear space satisfying H2m(~')) c U c o4~/gaO:-m(~"~), we consider 

the two statements 

(3.29) 3 c > 0 , 2 e  ~ s.th. Re(Au ,  u)>c[lull~-2t[u[12o, VueD(.4) r3U. 

I(i) pr'~ (D(T) n U) c W 

(3.30) ~( i i )  3c'  > 0, )J ~ Ns.th.  f o r a l l z ~ D ( T )  C3U, 

Re [(Tz, pr~z) + (A  pr[z, pr; pr~z)] > c'll z [Iz~ -- 2't[ z ? .  

Here, (3.29) implies (3.30)for  all s t  [0, m], and (3.30) implies (3.29) when 

s e ] m -  1, m]. When s e [ O , m -  1], (3.30) implies (3.29) i f  furthermore 

2'~ < m(Ao) , where 

(3.31) c~ = sup{ [I zllg : z ~ D ( T )  N U  with [Ipr~zl[o= 1}. 

(Here - 2 > 0 or - 2 > 0 implies - 2' > 0 resp. - 2' > 0 and vice versa.) 

PROOF. We use the decompositions u = v + A~-l(Tz + f )  + z and u = ur, 

+ u~,, where u~, = pr'~ z, as in Proposition 3.3. It is already known from Theorem 

3.2, that (3.29) implies (3.30) (i). To obtain (ii), let z e D(T) n U and let 

u"=- w" + A~I Tz  + z, 

where w" is a sequence in D(Ao) converging to - A [ I T z -  pr~z in H~(f~). 
/ I  - -  r m Then urn= w"+A~ ~ T z + p r ~ z ~ O  in Ho(O), and, since u"eH~(f~), u " ~ p r ~ z  

in H~(Y~). By use of (3.28), the inequality (3.29) applied to u" then gives by passage 

to the limit 

Re[(Tz, pr~ z) + (A  pr;z,  pr; pr';z)] > c[[ prfz - xl[ pr~z 112" 

In view of Proposition 2.5, that pr f i s  an isomorphism of Z~(f~) onto Z~,(f~), all 

t, this implies (3.30)(ii). 

In the converse direction, we have that (3.30) (i)-(ii) imply 

(3.32) Re (Au, u) > Re(Au , . ,u , . )  + c,l l  z - z IIo 



56 GERD GRUBB Israel J. Math., 

for u ~ D(A) ~ U, decomposed by (3.5), hence by use of Proposition 2.5 and an 

easy extension of (3.24) 

Re (A., u) __> c.l[ ..~ II~ + c"!l u,r 11.2 - ~2'11 u,~ I1o ~ 

(cf. (3.31)). If  - ~2' >= 0, we are through (and the last statement of the theorem is 

ensured). Otherwise, we proceed as in [12, Proposition 2.7]: 

1 °. s e ]rn - 3, m]. Choose t e ] m  - 3, s[, then 

2 J_ 2 II.¢r IIo ~ __< c, 11 ~. II,-J-~, =< c2ll ~. [I,,-J-~ --< c~ll. 11,2 
<= ell u I1~ + c(e) 11 u 11 z, for any given e > 0; 

here we used Theorem 2.1 and Proposition 2.1 and a well known inequality. Now 

Re(Au,  u) > ½min(c , , , e" ) l lu l l : -~ ;11"~11o  ~ 

> ¼min(c,,, e")II ,, I!: - ~,2, c(~)II u IIo ~, 

when we choose e = (40~2') -lmin(c,,, c"). 

2 ° • s e [ O , m - ½ ] , ~ 2 ' < m ( A o ) .  Let h~ ]0 ,1 [ .  Then since we also have, 

besides (3.24), that 

Re(Aue., u~,,.) > m(Ao)Ilu,,ll ~, 
(3.32) also leads to 

Re(Au,  u) > hcmllU~,,.l]2m + (i  -- h)m(Ao) }]urr}}Zo + c"][u ~, }]~-o¢2"]lu;,}}Zo, 

whence by use of the inequality 

(1 + ,~)11 x II 2 -11Y I12 => - ( 1  + o- ' ) I I  x + y II ~, v,~ > o, 

follows that 

Re(Au,  u )> zmin(hcm, C )I1"11: C(h)ll"!lg, 

when h is chosen such that ~2' < (1 - h)m(Ao). 

REMARK 3.3. It is still an open question to the author (cf. [12, Remark 2.9]) 

whether the bound on 2' for s ~ [0, m - 3] may be removed in general, as it may 

be in certain cases of constant coefficients, f~ = ~ .  In Fujiwara [9], [10] (which 

concerns a class of normal boundary problems), this difficulty is circumvented by 

use of a technique (related to a device in Agmon [3]) of introducing an extra 

variable. Fujiwara studied the case s = m - 3; however, his method seems likely 

to work in other cases where s > 0. 

The above study can of course be continued in several directions. For one 
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thing, one may study the numerical range of _~ by applying Theorem 3.3 to 

rotations ei°X of A, as in [11]. Secondly, one may on the basis of Proposition 3.3 

investigate inequalities like (3.t2) with other norms appearing on the right, e.g. the 

norms in Hm-x~(~), or in more general H'(f~), or in J/ggA0r-m(~r'~); which give in- 

teresting results. We shall not go further into this in the present paper. 

Let us conclude this section with the following observation: As might be 

expected by comparing the methods of Theorem 3.2 and 3.3, the "new"  term in 

(3.30) (ii) is always non-positive; 

PROPOSITION 3.4. When  y e Z°r(£}) ~ Jt~a°'-'(O), 

(3.33) Re(Ay, pr'ey ) < O. 

PROOF. Since (A + A')y = 0, 

t t 

Re ( A y ,  prey ) = - R e ( A ' y ,  prey ) 

' II ' I?m = - Re(A'prey , prey ) < - Cm prry < O, 

by a simple extension of (3.24). 

3.3. The  new results f o r m u l a t e d  for  general  boundary  problems.  

We recall from [11, Chapter III] the definition 

DEFINITION 3.2. Let V c Z(A1) , W ~ Z(A1),  closed subspaces, and let Tbe an 

operator with D(T)  c 1/, R ( T )  c W. We denote 7(V) by X, y(W) by Y, and by 

7v resp. 7w the isomorphisms fi'om Vto X resp. from Wto Yobtained by restriction 

of 7. Identifying the spaces V and W with their duals, and denoting the dual 

spaces of X and Y by X'  resp. Y', we introduce the adjoint isomorphisms 

7 * : X ' ~ V a n d  *" ' y w . Y  ~ W. Then we denote by L the operator from X to Y' 

defined by 

(3.34) D(L) = 7D(T), L = (7*)- 'T?v 1. 

Here, L may equivalently be defined as the operator L: X ~ Y' for which 

(3.35) (LTv , ~w) = (Tv,  W)w , all v E D(T), w ~ W, 

where the sharp brackets denote the duality between Y' and Y. 

REMARK 3.4. As it stands, Y', the (strong anti-) dual of the Hilbert space 

Y c I]j~MoH-J-~(F), has a somewhat abstract character; however, as soon as 

we choose a fixed norm in l-[j~Mo H-~-~(F), we have therewith an isometry E of 
-] r a - i -~  ~.Vto~ (F) onto its dual space I~J~MoHJ++(F) (SO 11 q~ II,'-J--~ = <EqS'qS>½), 

which places Y' as the subspace E Y  of I-Ij~oHJ+~(F). For instance, when 
[Ij~,vtoH - j - +  (F) is given the norm with which 7: Z(A~) ~ I ] j~MoH-J-~(F) i s  an 
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isometry, the associated isometry from [L~uoH - j -~  (F) to I-Ij~MoHJ+~(F) is 

the ps.d.o. R'  described in Example 6.3; then we identify Y' with R'Y.  This 

identification has some advantages (e.g. when one wants to define the numerical 

range of L) but on the other hand the disadvantage that, when Y is a "p roduc t "  

subspace Y = 1-Ij~joH-J-~(F) (Jo c Mo) , R ' Y  is generally not a similar product 

subspace of 1-Ij~MoHJ+~(F); this could be obtained by a different choice of 

norm. We shall simply refrain from fixing a norm on beforehand. 

With a slight abuse of notation, we introduce 

DEFINITION 3.3. The adjoint i* of the injection i t :  Y ~  [-IjeMoH-J-'}(F) will 

be denoted pry,, it maps 1-]j~MoHJ+~(F) onto Y'. Similar definitions of i x and prx,. 

Here, as soon as I-]J~MoH-J-~(F) is provided with a Hilbert space norm etc., 

pr r, (resp. prx, ) becomes a true projection. 

Since 7v and ?w are isomorphisms, Definition 3.2 introduces a 1-1 corre- 

spondence between all operators T:  V--, W with closed V ~ Z(A1), W c Z(A1), 

and all operators L: X--,  Y' with X and Y closed subspaces of I-L~oH-J-&(F).  

The correspondence translates in a straightforward way all the properties we shall 

be concerned with; let us just note the following: 

When HE"(fl) c U c o~O:-m(f~), then 

pr~(D(T) ~ U) = ~ (~ ) -~ (D(T)  ~ U) 

(3.36) = ~(D(T) ~ [U ~ Z(A0]  ) = ?D(T) C~ 7[U n Z(A~)] 

= D(L) ~ ~[U ~ D(A1) ]. 

Therefore, 

(3.37) pr~(D(r) t~ U) ~ W ¢:. D(L) ~ ?[U c~ D(A,)] ~ Y. 

When this holds, one has for z ~D(T), w~ D ( T ) ~  U 

(3.38) (Tz, prow) = (LTz, ?w>, 

the sharp brackets denoting the duality between Y' and Y. 

Now Proposition 3.1 may be translated as follows (see [11, III§2] for the 

proof;  cf. also section 2.5 for changes in notation): 

PROPOSITION 3.5. There is a 1-1 correspondence between all closed realiza- 

tions .4 of A and all operators L: X --* Y', where X and Y denote closed subspaees 

of I-IJ~Mo H-J-¢(F) ,  and L is densely defined in X and closed; the correspondence 

being determined by 
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(3.39) D(A) = {u ~ D(A1) [ ?u ~ D(L), LTu = prr,pu). 

In this correspondence, D(L) = 7D(.4) and X = 7D(,4); moreover, the realization 

.4" oj A'  corresponds to L*: Y ~ X '  by 

(3.40) D(.4*) = {u E D(A~) [ Tu ~ D(L*), L*Tu = prx,#'u),  

and D(L*) = 7D(.4"), Y = 7D(.4"). 

REMARK 3.5. It is the surjectiveness of { 7 , p } : D ( A I ) ~ I ] j ~ m H - J - ~ ( F )  

x [-Ij~MoH j+~ (F)that  permits us to characterize ~ and L by each other in this 

way, cf. the discussion in [11, III §2]. 

In the rest of this chapter we assume (in addition to Assumption 3.2) 

ASSUMPTION 3.3. A corresponds to L: X--+ Y' by Proposition 3.5. 

Now Theorems 3.1-3.2 translate into the following results, by use of the iso- 

morphism in Theorem 2.1(c) together with the above remarks: 

THEOREM 3.4. (No particular assumption on cr°(A).) Let U be a linear space 

with H2m(~)~ U ~H"(f2) .  Then (3.41) and (3.42) are equivalent: 

(3.41) ~Z~ffCs.th. Re(Au,  u) > - ZII u I[ 2, Vu ~ D(.~) ~ U; 

D(L) n y [ U  riD(A1) ] ~ Y 

(3.42) 

(i) 

(ii) ~Z'~g~s.th. Re<Lq$, 4b> > 2'[I q$ 

Vd? ~ D(L) f3 7Eu t'3 D(A1) ]. 

COROLLARY 3.4. Assumptions of Theorem 3.4. Identify Y'  with a subspace of 
2 ± I-Ii~McHJ+~(F) as in Remark 3.4. I f  Lhas  the property: I(L~b,(~>] < ClldPl[{m-j-2) 

on D(L) ~ 7EU ~ D(A1)], then 

I(Au, v) I c'll u II,.llVllm for V 

is equivalent with 

D(L) ¢3 ~,[U ("l D(A1) ] c Y. 

THEOREM 3.5. (No particular assumption on a°(A).) Let H2"(f~)c  U 

c ~O'-r~(f2). I f  there exists 2 ~ R  such that 

(3.43) Re (Au, u) >__ - 2(ll u H g + ]l A'u l]2,,), u e D(A) n U, 

then 
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I(i)  

(3.44) 1 (ii) 

t 

REMARK 3.6. 

D(L) A?[U n D ( A 1 ) ]  c Y 

2 

D(L) n  ,[ts n O(A 0]. 

One may actually define X, Y and L without the assumption 

that A has a uniquely solvable Dirichlet problem, and prove corresponding versions 

of Theorems 3.4 and 3.5, and Corollary 3.4 on the basis of the techniques of 

Chapter 5. To limit the article we shall not reproduce it here. 

REMARK 3.7. Recall that D(L) is dense in X; then of course, when D(L) 

n 7[U n D(A1)] is also dense in X, (i) means that 

X c Y .  

Before translating Theorem 3.3 we shall look more closely at the "new"  term. 

DEFINITION 3.4. Assume that A is strongly elliptic satisfying (3.24). For 

(3.45) q~ e ?[3/fAO'-"(~q) n ~po,-,,(f~)] 

we define the quadratic form q(4, 4) by 

(3.46) q(qS, ~b) = Re(A(2~)- 14, pr; (Y~z)- i d?), 

the sharp brackets denoting the duality between H-"(f~) and H~'(f~). 

The expression (3.46) is well defined when (3.45) holds, since 

(3.47) 7[~"°'-m(f~) (h Jt°O'-m(f~)] = ?[,gt°O'-m(f~) n fa°'-m(f~)] 

= n 

Recall also tliat, by (3.33) 

(3.48) q(qS, qS) < 0, Vq5 s y[~o,-m(.Q) n jfo,-,,(f~)] 

DEFINmON 3.5. When A is strongly elliptic satisfying (3.24), we denote by Q 

the ps.d.o, in F of type ( -  k, - 2m + j  + 1)i,k~M o defined by 

(3.49) Q = - Pr.x" + Re Pr.x [ = _ , 1 , r P~,x" + ~(Pr,z + Pr r.')]" 

(Cf. Corollary 2.7.) 

PROPOSITION 3.6. Let A be strongly elliptic satisfying 

q~ ~ ?[D(A 0 n D(A'0], then Q(o ~ I~IJ~MoHJ+~(F) and 

(3.50) q(q~, q~) = (Qq~, q~ ). 
{j+~} {--j--~} 

(3.24). When 
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PROOF. Let ¢ e 7[D(A,) C~ D(A;)] = y[D(A~) ('3 D(A1) ] = 7[Z°~(f~) (3 D(Ai) ]. 

Let y = (y))-i  ¢, it belongs to Z°(f~) and satisfies Ay = - A ' y  ~ LZ(f~), so pryy 
t and pr~y are well defined elements of H'~(D) ~ H2m(~). Then 

q(¢, qS) = Re(Ay ,  pr~y) = Re (Ay, pr'yy) 

1 t ! = ~[(A pryy, pryy) + (pr r y, A pry y)J 

1 ! t = ~[(A pry y, pry y) + (A' pry y, pry y)] 

= k[(Ay, y -- pr~y) + (A ' y , y  -- pr~y)] 

1 t = ½((A + A ' )y ,y )  - -~[(Ay, prcy) + (A'y,  prcy)]. 

Here (A + A')y = 0, moreover, we find by Proposition 2.7, that  

q(¢, ¢) = _ ~ [ ( ~ y ,  ¢> + <~'y, ¢>]  = < -  ½(, + ~')y, ¢>, 

where (/~ + #')yeI-lj_:uoH~+~(F). Now, (cf. (2.44) and (2.34)) 

= d ' i~d - Py,z]¢' PY = ZY - Py.zTY [ MoM1Py,v + 2 MoMo 

since y ~ Z°,(f~) with 7y = ¢. Similarly, 

! r .~ i ! 

#'Y = [~dMoM,PY,* + 2~¢MoMo -- Py,z']¢" 

Altogether, 

- ½(I~ + # ' ) Y  = [ - -2( MoM, + MoM,) Py, ,  --  ~( MoMo + MoMo) 

1 p  + 7( y.z + P,.z')]q 5 

~ / '  o '  1 ~ , ,  1 p , = [ - UoM,--y.~ -- ~" UoMo + ~( ,,~ + Py z')]¢ = [ -- Pr.z ~ + Re Py z]¢, 

by Corollary 2.7; so that  

q(¢, ¢) = ( ( -  P[z~ + RePy z)¢, ¢ ) ,  

which shows the proposition. 

Using these considerations, we finally obtain from Theorem 3.3 

THEOREM 3.6. Assume that A is strongly elliptic satisfying (3.24). With 

s ~ [0, m] and U denoting a linear space satisfying H2m(~"~)~ U ~ 3/t°°:-m(f~), 

we consider the two statements 

(3.51) 3 c > 0 , 2 6 R s . t h .  Re(Au, u)>=cllu[]Z~-2tlu[lg, a l l u6D( .d )  n U ;  

~ (i) D(L) (37[U ~D(A1)  ] ~ Y, 

(3.52) ~ (ii) 3 c ' > 0 , 2 ' e ~ s u c h  t h a t f o r a l l ¢ 6 D ( L )  Cqy[UC3D(A~)], 
/ 

2 ± 2 ± (Re(LqS,~b) + q(qS, qS) > c'lt ¢]]{~_j_ } - 2,1l ¢[1{-~'-~} 
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(where q(c~,c~) takes the f o rm  <Qcb, dp> when U c D(A;)) .  Here (3.51) implies 

(3.52) for  all s~[0,  m], and (3.52) implies (3.51) when s e ] m - ½ , m ] .  When 

s e [0, m - 1], (3.52) implies (3.51) if  fur thermore  2'~' < m(Ao), where 

2 a_ 
~'=suP{l IcPl]~_j_~[49eD(L)  n ? [ U  nD(A1)] with 1[(7~)-l~b[Io 1}. 

(Here - 2 > 0 or - 2 > 0 implies - )~' > 0 resp. - 2' > O, and vice versa.) 

4. Application to normal boundary problems 

4.1. Reduction of  the boundary condition to a special Jbrm. We assume Assump- 

tion 3.1, and now furthermore 

ASSUMPTION 4.1. J and K denote two complementing subsets, each consisting 

of m elements, of the set M = {0, 1,-.., 2m - 1}. For each pair {j, k} e J × K, 

F~k denotes a ps.d.o, in F of order j - k, such that F~k = 0 when k > j. 

With J, K and (Fjk)j ~J,k ~ K given in this way, we consider the system of boundary 

conditions 

(4.1) ~,ju - ~ FjkTkU = O, j e J, 
kE  K , k < j  

and shall study the realization _4 of A defined by 

(4.2) D(.4) = {u e D(A1) ] u satisfies (4.1)}. 

(4.1) is a reduced version of the usual homogeneous normal boundary condition, 

generalized to include ps.d.o.'s in the boundary. 

Recall the definitions (2.1), (2.2) of the sets of integers Mo, Mx,Jo ,  J1 , J  ~ 

etc .... ; note that they form the disjoint unions 

M o = J o u K o = J ~ u K ' l ,  M I = J , U K ~ = J ~ u K ~ .  

We set 

(4.3) Fo = (Fjk)j~Jo,k~go, F1 = (Fjk)j~S,k~ro, and F2 = (Fjk)j~S~,k~g~; 

here (Fjk)j~S,,k~K~ is a ps.d.o, in F of type ( - -k , - -J ) j~S , ,k~K¢ for ~ , f l = 0 , 1  

(cf. Definition 2.1). (Note that (Fjk)j ~Jo,k ~ r~ is zero.) Then, with the notations of 

Section 2.2, (4.1) may be written 

(4.4) 7jo u = Fo?KoU; vs,u = FI~Ko u -1- FZVKlU. 

(We use the convention that empty index sets give zero terms). Recall the boundary 

operator defined in Section 2.5 

1 (4.5) Z = ~¢MoM~V + 7'JMoUoT- 

Our first step will be to reduce (4.4) to the form 
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(4.6) Dou = FoYroU; Xs;U = G~YroU + GzZK'IU, 
where G~ and G2 are suitable ps.d.o.'s in F. It is fairly evident that this may be 

done. To do it in a precise and explicit form, we introduce some notation: 

DEFINITION 4.1. With Fo as in (4.3) we define @ as the Mo ~ Ko-matrix of 

ps.d.o.'s in F for which ~roKo = IKo~o and ~Jo~o = Fo. Briefly written, 

(Iroro t 

q b = \ F o / ;  

it sends ~ e 1-Ik ~ KoH~-k(V) into ~ ~ H j  ~ Mo H ~-J(F), where ~bKo ---- ~, '!0o = Fo~. 

In a similar way, we define O and • as the M 1 × J~--resp. M o x J~-matrices 

of ps.d.o.'s satisfying 

[J1J1 ( )  OJ1Y, = IJNt, ( ~ K t J ,  = - -  f 2 ;  in short ® = - F *  ' 

resp. 

( IJ~d'l ] 
~tlj~j~ = I j i j ~ ,  ~K1J'I  = --  G*; in short W = \ _  G*/  ; 

F2 and G2 being J1  × K t -  resp. J~ × K~-matrices of ps.d.o.'s. 

For the inverse of 

(~MoMo ~MoM,) 
(4.7) .4  = 

(cf. (2.32)) we introduce the notation d - l - - ~ ,  so 

0 4 -1 

(4.8) ~ = ~tolM, -d~toiM, ~MoMo ~4M~Uo 

in particular, ~o lM,  = ~M,Mo" Then, by (4.5), 

(4.9) v = ~M~MoZ -- ½~M,ModMoMo7 • 

PROPOSITION 4.1. Let (F o, F1, F2) denote a triple of  ps.d.o.'s, in F of  types 

( - k, - j)j  ~So,k ~ Ko, (--  k, - j ) j  ~Sj,k ~ro resp. (--  k, - j ) j  ~Jl,k ~ r , ,  with (Fi)jk = 0 

when k > j.3 Let (Fo, Gt, G2) denote a triple of  ps.d.o.' s. in F with Fo as before, 

and G 1 and G 2 of types (k, -- 2m + j + l)jeS,,keKo resp. ( k , j ) j e j ' l , k ~ K ~  , with 

(Gz)jt = 0 when j > k. 

3 In [13] the operators were said to be subtriangular when having this property. 
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There is a 1-1 correspondence between the class of triples ((Fo, Fx,F2) } and 

the class of triples {(Fo, G1, G2)}, in which (Fo, F1, F2) corresponds to (Fo, GI, G2) 
if and only if (4.10)~,(4.11) for all u ~ ~((~), where 

(4.10) ~So u = FOTKo u ,  Vj U = F17KoU "-}- FEVKxU , 

(4.11) 7jou = FoTroU, Zj~u = G~VroU + G2ZK~U. 

In this correspondence, G1 and G2 are expressed by (Fo, F1,F2) by 

(4.12) G~ = (O*~M,f,)-~(F~ + ½®*~,Mo~'MoMoO) 

(4.13) G2 = - (®*~M,jI) -1 O*MM~K;; 

and F 1 and F 2 are expressed by (F o,G I,G2) by 

(4.14) F~ = (W'riM®j,)- ~(GI - ½W*dUoMoqb) 

(4.15) F 2 = - -  ( t ~ / * d ~ M o J , ) -  I K ] / * , - ~ M o K , .  

PROOF. We note first that a triple (Fo, FI,F2) is uniquely determined by the 

boundary condition (4.10) on ~(~)  that it gives rise to, since p :~  (f~)-~ I-L. ~ M ~ (F) 

is surjective, and since a ps.d.o, is determined by its action on smooth functions. 

Also, a triple (Fo, G1, G2) is uniquely determined by the boundary condition (4.11) 

that it gives rise to. 

Let (Fo, F 1, F2) be given. Then (4.10) may be written in the form 

(4.16) 7u = ~TKo u, ®*VU = F~:oU, 

(cf. Definition 4.1). Let u belong to ~ (~ )  and satisfy (4.16). By use of (4.9) we find 

1 * 
0 = ®*VU --  FI~)Ko u = ® * ~ M , M o ) ~ U  - -  ~ 0  ~;JM,Mo.~CMoMoYU - -  F~yr, o u 

= ®*~t ,~Z~u  +®*~U~K~ZK~U -- (½®*~4,uo~eUoUo ~ + F~)~roU, 

whence 

(4.17) 1 * d ~  II - -  ~ ) * ~ M I K I Z K I U .  ®*,~M1AZjiU = (F1 + ~® ~i~M1M 0 Mo~,kfo(l))~go 

Here, ® BMIJ1--Ms,J1-F2MK,S'I where Bs,j'~ is skew-triangular invertible with 

zeroes above the second diagonal, and F2~K~j'~ is skew-triangular with zeroes in 

and above the second diagonal (since (Fz)jk = 0 for k > j  and ~ u  = 0 for 

k + l < 2 m -  1, such that (Fz,-~r,j'~).i I = Ek ~ K 1 F j k ~ k ,  = 0 when {j , l}  ~ J1 x d~ 

with j + l  < 2m - 1). Thus 

(4.18) ®*~M~J~ is invertible, 

so that we get from (4.17) 
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4.1, then 

(4.22) 

Vol. 10, 1971 BOUNDARY PROBLEMS 65 

Xs',U = (®*~Mjl ) -  1(F1 + ½®*MM1ModMom@)YKo u 

(4.19) -- (®*MM,S;)- I®*MM,K',ZK~U" 

Thus when u satisfies (4.]0), it satisfies (4.11) with Gx and G 2 defined by (4.12)- 

(4.13). Conversely when u satisfies (4.11) with (4.12)-(4.13), backwards calculations 

give that it satisfies (4.10). 

Now let (Fo, G1, G2) be given, and write (4.11) in the form 

(4.20) 7u = 07Ko u, ~*ZU = G17Ko u. 

Using (4.5) we now find that when u satisfies (4.20), 

0 = ~*SC'MoM,VU + ½~*~'MoMoYU -- Gl~roU 

= qJ*dms~vs~u + ~*~zC-MoK, VK~U -- (G: ± * 
- -  2q j dMo~o~)TKo u. 

Here q~*~CMoS~ =.~'slsl --Gzo~'ri~ is invertible by arguments analogous to those 

establishing (4.18). So we find that 

(4.21) vs~u = (~P*'~'~oS~)- l (G1 - ½~rg*~/Mo~oqb)TroU -- (tr~*"ClMoS~)- ItP*~C~oK~VK ~U, 

and obtain that (4.20) is equivalent with (4.10), when Fx and F2 are determined 

by (4.14)-(4.15). 

There is an alternative description of Ga and G2 in terms of (Fo, F~, F2) that 

will be useful later. 

When (Fo, F~, F2) corresponds to (Fo, G~, G2)as in Proposition 

G2 = (dS~K 1 + dS'IjIF2)(dK'aK 1 q- ~¢K~slF2)-1 

and, with q~* defined from this, 

(4.23) G 1 = ~P*dMoslF1 + ½W*dMoMod~. 

PROOF. Multiplication with qJ*JMos~ in (4.15) gives 

u/*dMoslF z = - ~ * d ~ o r l  
or  

"~¢J;jIF2 -- G2dK; j ,F2  -~ -"~J~K1 -~ G2'5~KIK1 

Then 

G2(,~ZK~tt I + ~¢r~slF2) = d j [K 1 + ds;siF2,  

and, since d r ' i t  , +~K;ztF2 is invertible by the usual argument, we get (4.22). 

(4.23) is then obtained straightforwardly from (4.14). 
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We shall also need 

COROLLARY 4.1. Let (Fo,F1,F2) correspond to (Fo, G l, G2) as in Proposition 

4.1. Then 
@ = u ?  

or, equivalently, 

(4.24) 

if and only if 

(4.25) 

J ~ = K o  and - G ~ = F o ,  

J; = Ko and F 2 = -- (f~*d~MoJ1)- lf~*d~MoKl. 

PROOF. When @ = W, formula (4.15) takes the form (4.25). Conversely, when 

(4.25) holds, it reduces as in the proof of Lemma 4.1 to 

- F *  = (d j~K,  + ~ 4 j ~ f ~ ) ( d , O , ,  + ~ ' , o , F ~ )  -1 

whence, by comparison with (4.22), - F *  = G 2. 

4.2. The description oJ X, Y and L. In view of Proposition 4.1, we may now 

restrict our attention to boundary conditions in the form (4.11), or, with Defi- 

nition 4.1, of the equivalent form (4.20) 

(4.11) (i) ~jou = FoTro u, (ii) Zj~u = Gl~ro u + G2ZK~U, 

(4.20) (i) ~u = @~rou, (ii) ~*Zu = G17Ko u. 

So now D(.4) = {u e D(Ax) I (4.11) holds}. Since 7~o u varies freely, at least among 

smooth functions, when u e D(.4), we see from (4.20) (i) 

(4.26) X = ,D(A~)= @ ( kHroH-k-~(F)). 

To determine Y, we need some information on -d*. 
Recall that 

(4.27) D(-4*) = {u e D(A;) l(Au, v) - (u, a'v) = 0, Vu e D(_4)}. 

For each s e [ 0 , 2 m ]  one has for ueD(A)nHS( fO,  veD(X*)r3H2"-s(~2) 

(of. section 2.5) 

0 = (Au,  v) - (u, A 'v )  = <Xu, rv> - <ru, X'v> 

= (Z~:~u, 7t~v) + (GlYro u + GzZr~ u, Z~ v) - (~Y~o u, Z'v); 

(4.28) 0 = (ZKIu, 7fly + G*~s~v) + (yro u, G*Tslv - rb*Z'v). 

Introduce the "adjoint"  boundary condition 
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(4.29) ?,K;V = - G*~Av , cb*)~'v = G*?s;v, 

i.e., using Definition 4.1, 

(4.30) ~v = qJ?s;V, cb*X'v = G*?~jv, 

and define the realization .d' of A' by 

(4.31) D(~') = {v e D(A~ )[ v satisfies (4.30)}. 

Then (4.28) gives, by varying s in [0,2m-I, that 

(4.32) D(.~') O /]2m(~) C D(.d*) c B(.4'). 

This suffices to conclude (like for X) 

(4.33) Y =  ?D(.~*) = • ( ~ H-J-~(F))) .  
J 

(A* will be precisely characterized later). 

We proceed to determine L. 

67 

Consider the three spaces [Ii~KoH-J-~(F),  X=q~(I-Ii~KoH-i-~(F)), and 

[Ij~MoH-J-~(F). We denote by ~x the restriction 4 of the ps.d.o, qb with domain 

space I-Ij~KoH-J-~(F) and range space X; then, with i x denoting the injection 

ix: X C  I-L ~Mo//-J-~(r), 
(4.34) c b = i x ~ l  (on~Ir  ° H- i -~ (F) ) .  

By taking adjoints, we obtain the formula 

(4.35) O # * = ~ * p r  x, (on I~ HJ+~(F)), 
jGMo 

here i * = p r x , : I - I j ~ M o H i + ~ - ( F ) ~ X  ', as defined in Definition 3.3, and qb~ 

sends X'  into I-[j~ KoHJ+÷(F) • Now, since X is a graph, ~1 is evidently a bijection 

with I~:oMo as inverse, or, more precisely 

(4.36) (I)~- 1 = IroMoiX. 

This gives us the formula for (~*)-  1 : I ] j  ~ roll1+½(F) ~ X'. 

(4.37) (¢~)-x (qb~-x), . ,  , = = IX IKoMo = prX'IMoKo. 

In a similar way, defining ~1 as the restriction of the p.s.o. W with domain 

I - I i~s ;H - j - ~  (F) and range Y = qJ(I-lj~j;H -J-~(F)),  we have the formulae 

4 We use the word "restriction" in a general sense; the important part of the above res- 
triction takes place in the range space. 
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(4.38) 

(4.39) 

(4.40) 

(4.41) 

~P=ir~P~ on H ,  H-s-÷(F);  
j e J t  

W*=W*prr, on H HJ+&(F); 
j ~  Mo 

trlj - ~ 1 = i S ~ Mo i r ; 

( e e , ) -  1 = prr,IMos; on [I, 
jEJ1 

REMARK 4.1. Since X and Y are usually understood to be subspaces of  

zu - P~,xYU ~ H 
j~Mo 

Hj~MoH-J-~(F), we shall often omit i x and ir in formulae; on the contrary, 

pr  x, and pr  r, of course cannot be omitted. In continuation of Remark 3.4, let us 

mention that when HJ ~ Mo H- j -÷(F)  is provided with a norm (E¢,  ¢>~, for which 

the associated isometry E of ]-Ij~MoH-J-~(F) onto I-L~MoHJ+~(F) is a ps.d.o. 

(e.g. R, R'  or R r of Example 6.3, or A t-2j-l~ of [-12, Appendix]), then pr  r, (say) 

may be considered as the restriction of a ps.d.o. : Identify Y' with E Y ,  and consider 

the commutative diagrams representing (4.38) and (4.39), connected by E: Y ~ Y' 

and E : H j ~ , ~ o H - J - ½ ( F ) ~ I - L ~ M o H ] + ~ ( F ) .  It is seen that Ud*EU~=Ud*EqJl, 

which is composed of isomorphisms, so that q~*EW maps I - I j~s ;H-J -+(F)  
- + 1  3 ~- 

isomorphically onto Hj~j IH (F). Next, one finds that 

(4.42) prr ,  = E W I ( W * E ~ P ) - I W  * on 1--[ HJ+¢(F), 
j~Mo 

so that prr ,  may be considered a restriction (cf. 4) of the ps.d.o. EUd(Ud*E~d) - ~uL*. 

(All this is seen easily from the indicated diagram, which we omit drawing, since 

the remark is of minor importance.) 

LEMMA 4.2. W h e n  u e D(Aa),  u satisfies (4.20) i f  and  only  i f  

(i)  ?u = ¢~,Ko u 

(ii) (G~ - u~*P~,xq))V~oU belongs to l-I, HJ+~(F) 
jaJ1 

and  equals  q '*pu.  

PROOF. The lemma is evident from the fact that, when u ~ D ( A ~ ) ,  pu = 

Hi+÷(F) (Proposition 2.7). 

DEFINITION 4.2. Define the ps.d.o. S¢ 1 in F by 

(4.43) 5¢1 = Ga - W*Pr.x~, 

it is of type ( -  k, - 2m + j  + 1)jEa;,k~Ko- 
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We note that .~e~ in general sends c~ ~ 1-]k~ KoH-k-~(F) into 

~'~1~ ) if" H ,  H-2m+j+4~ (F), 
j~J~ 

so that (ii) in Lemma 4.2 puts a nontrivial requirement on ~ / ~ o u .  This is essential 

in the description of L. 

PROPOSITION 4.2. The operator L: X--* Y'  associated with A by Proposition 

3.5 is defined by 

(4.44) 
jEJ1 

(4.45) L~b = prr,Iuoj;.,~llKoMo d?, when (9 e D(L). 

PROOF. Let us compare the statement of Proposition 4.2 with the equation 

defining L in Proposition 3.5: 

(3.39) D(.4) = {u ~ D(A~) [ Tu ~ D(L), L~u = prr,pu }. 

When u ¢ D(_d), we have by Lemma 4.2 

(4.46) qJ*#u = ,,~TroU ~ 1-[, H~+~(F)" 
j~J1 

Inserting (4.39) in this, we find 

q~* pr r,pu = ~C~ I ~) Ko U,  

which, by application of (4.41), is equivalent with 

(4.47) prr,#U --- (~*) -  l~,('lTroU = prr,IMoS'l~'llroMoTU. 

This shows (4.45); and then another application of Lemma 4.2 shows (4.44). 

REMARK 4.2. When E is chosen as in Remark 4.1, L is a restriction of the ps.d.o. 

EtP(W * EtP) - z W*I~toj~oo~-ellKoMo. 

The following alternative definition of L is convenient in some questions. 

LEMMA 4.3. Let L 1 be the operator f rom l--[k~KoH-k-~(F) to I~j~j~HJ+~(F) 

obtained by restricting ~ to 

(4.48) D(L1) = {~be I~ H - k - ~ ( r )  l ~ l q  5e I-I, HJ+~(F)} 
k ~ Ko J ~J1 

Then 

(4.49) L = prr,I~tos~LllroMoix . 

PROOF. Evident, in view of Proposition 4.2. 

This gives, concerning L* (which defines ,4" by (3.40)) 
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COROLLARY 4.2. L* = pr x IMoroL*Is~Moir. 

From the definition of L 1 as a maximal operator for L,e I it is now seen by 

standard arguments that L* is a minimal operator for cp*: 

LEMMA 4.4. L*: I - / j~ j~H-J -~(F)~  k+~ I]k~Co H -(F) is the restricion of the 

ps.d.o. 

(4.50) ~ ' * =  G * -  * * 

with domain equal to the closure of l-[i~j~gF ) in the graphnorm. 

Hereby _~* is determined; moreover we find 

PROPOSrHON 4.3. With A' defined by (4.30)-(4.31), one has .4" = A' exactly 

when ~ 1  = G1 - ~'*Pr,x ~ has the property: 

~l-[k~ro.~(F) is dense in D(L1) (defined by (4.48)) with respect 
(4.51) 

lto the graph-norm (ll ~ + 11 

PROOF. ,~* = X' if and only if .4 = (A')*, so the proposition may be proved 

by applying the whole set-up to .4'. One may also observe that (4.51) and its 

analogue hold or do not hold for ~ and ~ *  simultaneously. 

In particular, we obtain a characterization of the selfadjoint realizations of 

normal boundary problems, without any ~t priori regularity assumptions. 

COROLLARY 4 . 3 . . ~ =  _4" if  and only if: A = A', • = tF (i.e. J'l = Ko and 

F2  = --  ( ~ * ~ M o l , ) -  ldP*'~'MoK,), and SF 1 is selfadjoint as a ps.d.o, a n d s a t i sfi e s 

(4.51). 

Density properties like (4.51) are often in the literature labeled "weak = 

strong" properties. They have been widely discussed, often in connection with 

regularity estimates, but they can also take place in cases without regularity. 

4.3. Application of the general theory. We continue in the terminology of 

Section 4.2, so ~ is the realization determined by (4.1) transformed into (4.11) or 

(4.20); X and Y are then given by (4.26) and (4.33), and L: X ~ Y' is determined 

by Proposition 4.2 (or Lemma 4.3). 

In order to apply Theorems 3.4-3.6 we shall identify some of the things appearing 

there. 

PROPOSITION 4.4. Let H2m(fl) ~ U ~ ~O;-rn(fl). 
The condition 

(4.52) D(L) n ?[U n D(A~)] ~ Y 
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is equivalent with 

(4.53) J~ = K o and F 2 = - (¢*d~oj~)-l@*dMoK,, 

and then also with 

(4.54) X = Y. 

PROOF. Recall X = ¢(I-b~KoH-J-½(F)), Y = W(I-Ij~s'IH-i-~r(F)). Evidently, 

x n I~ H 2 " - i - ~ ( r )  = D(I.) ~ X, 
j~Mo 

then, since y[U n D(A1)] =yH2m(f~) = I-Ij~MoH2"-~-~(F), D(L) ~ 7[U n D(A0] 

is dense in X, so that (4.52) is equivalent with 

Recall from Corollary 4.1 that (4.53) is equivalent with 

(4.56) ¢ = • (i.e., Ko = J~, Fo = - G*), 

and thus with (4.54); we shall therefore simply show that (4.55) implies (4.56). 

Both spaces in (4.55) are graphs (of Fo resp. -G*) and furthemore, because 

of the subtriangular property: (Fo)jk = 0 for j <k ,  { j ,k}eJo  x Ko, and 

(G*)jk=O for  j < k, { j , k } e K  i x J i ;  the elements ~b = {~bo,...,~bm_x} in each 

space have the property that for each l ~Mo, (o~ depends at most on all the 

preceding entries {~bo, ..., ~bl_1}. Then (4.55) implies successively, for each I e Mo 

Ko n {o, ..., l} c s ;  n {o, ..., l}, 

so that K o c J ; ,  whence, since [K o [ = l Jl'[, 

K o = J[ .  

Then also Jo = KI'; and the two spaces are now graphs of operators F o resp. - G* 

with same domain 1-Ij~KoH-J-~(F) and same range space 1-[~joH-J-~(F), 

thus (4.55) implies 

Fo = - 6*. 

REMARK 4.3. Note that the condition (4.53) is concerned not only with 

principal symbols or symbols but with the complete structure of the operators 

Fo and F 2. In this sense we call it a global condition. 

LEMMA 4.5. When • = qJ, and 0 and O ~D(L), then 

(4.57) (L~b, ~k) = (£~°lq~Ko , OKo), 
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the left bracket denoting the duality between X '  and X,  and the right between 

~ j  ~ KoHJ+*(r) and I~J~ KoH-J-~(r) • 

PROOF. We find by use of Lemma 4.3 and that X = Y, Ko = J~, 

(L¢,  ~)  = (prx,IMoKoL~IKoMoiX¢, ~t) = (LllroMoiX¢, IxcoMoiX~t), 

which we may write, omitting ix, as 

When • = iF, 

G1 = O*dMos~F1 + I * ~O~ ~¢MomO~ 

LEMMA 4.6. 

(4.58) 

and 

(4.59) 

here 

(4.60) 

~'1 = G1 - ¢*Pr,x ¢ = d P * ~ C M o j I F 1  - -  dP*'~CMoM,Pz,,v~; 

aO(~uoM~P~,v) = -- i A2,,I × S~, S~, 

in the notation of  the Appendix (for dMoSl cf. (2.32) or (6.28)). 

PROOF. (4.58) and (4.59) follow from (4.23), (4.43) and (2.43); (4.60) follows 

from (6.28), (6.25). 

With Q denoting the operator introduced in Definition 3.5, we have 

LEMMA 4.7. Assume A strongly elliptic. When • = ~J, and 

C e D ( L )  ~ [ I  Hm-J-~(F), then 
j eMo 

(4.61) Re(L¢, ¢ )  + (Q¢, ¢ )  = ((Re 5e 1 + ¢*QV)¢Ko, CKo) 

(the brackets denoting dualities between X '  and X,  1--Ii~MoH-"+s'+4(F) 

and l-Ij ~Monm-J-*(r), resp. I-b, ~oH-m+J+*(r) and l~J~ noHm-S-4(F))" 

PROOF. All expressions are well defined, in view of the types of £,e~, dp and Q. 

Using Lemma 4.5 and that ¢ = ¢¢Ko we have 

Re(L¢, ¢ )  + (Q¢, ¢ )  = Re(~lCKo, Cro) + (QcI)¢Ko,@¢Ko) 

= ((½(La 1 + £Z*) + ¢*Q¢)¢go, CKo) = ((Re £Z~ + ¢P*Q¢)¢Ko, Cro)" 

REMARK 4.4. When Se~ has the property (4.51), the validity of (4.61) extends 

to D ( L ) ~ ? [ D ( A ; ) ~ D ( A 1 )  ], cf. Proposition 3.6 and Lemma 4.4 (the brackets 

suitably interpreted). 

DEFINITION 4.3. When ¢ = ~,  we define the ps.d.o.gU in F by 
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(4.62) ~ = Re&Or + qb*QdO. 

It is o f  type ( - k ,  - 2 m + j + l ) j . k ~ r o .  

S(( is the real part  of  the ps.d.o, named ~ in [14]. REMARK 4.5. 

LEMMA 4.8. 

(4.63) 

73 

J;~ = Re[d~*dMos,F1] - c~*(d~o~,p~. + ~-#¢"2 Mo,Uo,~Cb', 

here, with the notation of the Appendix, 

a o r d ,  p .  _~ 1 ~ ,  h i I × [  (Re " ' I. MoM1 ~,.v 7 MoMoJ = -- A2m)SmSo 

(4.64) + zA2m---(S o ,  + Sm-- + S+So)] ' 

( fo r  dMoSl cJ. (2.32) or (6.28)). 

PROOF. Applying (4.59), (3.49) and (2.43) (noting (2.33)) to (4.62), we find 

W = Re [qb*S t~o j f  ' + ½~*dMoMoqb -- ~*nv.zq~] + ~ * [  -- P~:~. + Re P~.x]~ 

= R e [ q b * d M o s f l ]  * , - @ [P~,¢ - ½Re dMo.o]qb 

• " " l d  d '  
= Re[qb*dMos,F1] - qb [dMoM,p:,,, + ~( HoMo + ~aoMo) 

i s  ~, t 
- ~( Mo-o - ~¢MoMo)] o° 

= Re[~*z~eMos,F1] qb*r ~¢" o" l ~ t  l(I D - -  L ~ M o M f f t  7 , v  "It- ~ M o M o l  " 

Next,  an application o f  (6.25), (6.27) and (6.28) to A" resp. A'  (noting (6.21) and 

(6.22)) gives (4.64). 

Finally, note  the following immediate consequence of  the definition o f  ~ :  

LEMMA 4.9. For each s~E,  there exist constants c ~ > 0 ,  c j > 0  such that 

for all q~ e l~J ~ KoH~-i(F), 

We are now ready to apply Theorems 3.4-3.6. 

THEOREM 4.1. Let A be properly elliptic satisfying Definition 2.2, and let ~T 

be the realization of A determined by (4.2). Let H2m(I) )~  U c Hm(~). There 

exists 2 o R  such that 

(4.65) Re (Au, u) >= - 21l u [12m for all u ~ D(A) a U 

if  and only if, in the terminology of Section 4.1, 

(4.66) J~ = Ko, F 2 = - -  ((I)*g:~CMoj,)- lO*dJMoK, ; 

and then .4 represents the boundary condition 
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(4.67) yu = ¢~Yro u, qg*XU = GtYrou, 

_L xcb*d "~ where G t = dg*dUos~F I . 2 UoUo w. 

PROOF. Since U cH"( f l ) ,  ~[Uc3D(AO] c F [ j ~ u o H " - J - ~ ( F  ). Then, when 

(4.66) holds, we have for (gGD(L)t37[U r iD(A0]  

(4.68) : ~ + ~  { - J - S }  { - m +  j + ~ }  {m--j-~z} 

2 _-< cll =< 
where we used Lemmas 4.5 and 4.9, and the type of La~. Then Theorem 3.4 implies 

that (4.65) is equivalent with (4.66), in view of Proposition 4.4. The last statement 

is now seen from Corollary 4.1 and Lemma 4.1. 

Since (4.66) is independent of 2, we find 

COROLLARY 4.4. With the assumptions of Theorem 4.1, /~ satisfies 

(4.69) [(Au,~)[ == el[ u 11~1! ~ [l,, for u, v eD(X)  C~U 

if  and only if (4.66) holds. 

Here, Corollary 4.4 could also have been derived from Corollary 3.4, by use 

of  the notations in Remarks 4.1 and 4 2. 

When fl = R~_ and A = A 2, one finds that boundary conditions EXAMPLE 4.1. 

of the form 

ytu = FloYoU, 7au = F30]?oU -4- Fa2]~2u, 

satisfy Jl '  = Ko(= {0}); and that here the second part of (4.66) means exactly 

that F 3 2  = - FI* 0. 

REMARK 4.6. In continuation of Remark 3.6, we note that Theorem 4.1 and 

its corollary may be proved without the assumption that A has uniquely solvable 

Dirichlet problem, by use of techniques from Chapter 5; this will be done in 

Theorem 5.2. 

Application of Theorem 3.5 leads to 

THEOREM 4.2. Let A and .4 be as in Theorem 4.1. Let H 2m(f~) ~_ U ~ ~o,- , , (~))  

I f  there exists 2G~ such that 

(4.70) Re(Au,u)>=-2(llu[l~+llA'ul[2m), VuGD(.d)~U;  

then, with the terminology of Section 4.1 and Lemma 4.6, 
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[(i) J~=  Ko, F 2 = - (~*dMoJ1)-l~*dMoKj, 
/ 

t (ii) 32 ' e  ~ s.th. Re(LqS, ¢ )  => - 2' H ~b ]l~-J-~, V¢ E D(L) ~ r[U ND(A1)] (4.71) 
| 
[.(iii) Rep°(£,e0(y,~/) > 0, all (y,1t) e S(F). 

PROOF. That (4.70) implies (4.71) (i)-(ii) is immediate from Theorem 3.5 and 

Proposition 4.4. An application of Proposition 2.2 (i) then yields (iii): Choose a 
1 pseudo-differential isomorphism E of type ( - k - ½, j + ~)j,k~Mo as in Remark 

4.1, then (4.71) (ii) implies that for c ~ e D ( L ) n ~ j ~ M  o ~(F),  

0 < Re(L~b, ~b) + ~,'(EqS, ~b) = <(Re £('1 + 2'@*E@)(Oro, (Oro), 

1 whence, since ~ 1  is of type (m - k - ½, - m + j + z)j,k ~ Mo, 

a°( Re ~ 1  + 2'qb*Eqb) = a°(Re o~vx) = Re a°(~x)  _>__ 0 on S(F). 

Finally, we apply Theorem 3.6. 

THEOREM 4.3. Assume that A is strongly elliptic, and that .,~ is the realization 

of A defined by (4.2). Then there exists e > O, 2~E such that 

(4.72) Re (Au, u) >= cll u I1~- ~[I ulto ~ for all  u ~ D(.4) 

if and only iJ; with the terminology of Section 4.1 and Lemma 4.8, 

l(i) J; = Ko and F2 = - (fb*~CgoS~)-~*dUo~, 

(4.73) tOO a°( ~ ) ( y , q )  > 0 for all (y,t/)~ S(F). 

In the affirmative case D(.4) = H:"(Y~); and .4" is the realization of A' deter- 

mined by the adjoint boundary condition 

(4.74) ?v = ~rov ,  @*X'v = G*~'rov, 

and has the analogous properties. 

PROOF. When (4.72) holds, then (4.73) (i) holds by Theorem 4.1 ; and Theorem 

3.6 assures that 

2 <ZO, +> + <Q+,O> >= c'l[ ~ II,o-J-~- ?"1! 011~-,-~ 
(4.75) for q~ ~ D(L) n 1~ H2m-j-~(F)" 

j~Mo 

By Definition 4.3 and Lemmas 4.7-4.9, this implies 

2 

(4.76) all OKo e I I  H2m-j-~(F)" 
j e  Ko 
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Then, since ~ is of type (m k - ½, m + j + Mo, - -  -- ½)j,k, Proposition 2.2 (ii) 

gives that a°(~g ") > 0 on S(F). 

Conversely, assume (4.73). Then Proposition 2.2 (ii) (with the inequality 

extended by continuity to I~k~ ro H2''-J-'~ (F)) together with Theorem 3.6 gives 

that (4.73)(i) and (ii) imply 

(4.77) Re (An, u) > ell u II - u lit on n 2 " ( a )  

Now, since (Q~b, ~b)< 0 (cf. (3.48)), we have 

(4.78) a°(Q) < 0 on S(F), 

so that (4.73) in particular implies 

R e a ° ( ~ l )  = a°(J? ) - a°(O)*a°(Q)a°(e~) > 0 on S(F). 

This shows that .L~a 1 is elliptic, and then (cf. Proposition 4.2, where q5 = qbq~ro ) 

D ( L ) = ~  \ ~r H o  H2m-j -~(F)) )c  I-[ H 2 m - j - k ( F )  ' 
j - j e M o  

which implies D(T) c zEm(f~) and thus (c.f. (3.5)) 

O(,~) c Hzm(fl). 

Then (4.77) implies (4.72). The statements concerning A* follow by use of Pro- 

position 4.3, where (4.51) is valid by the ellipticity of ~ I -  

REMARK 4.7. When (4.73) holds, the ellipticity of ~ 1  assures in fact that for 

for all t > 0 

(4.79) u ~ D(.4), Au ~ Ht(t~) ~ u ~ H '+ Zm(fl), 

with the analogous property of-~*. This is so, because ellipticity of ~ is equivalent 

with the well known "complementing condition" (generalized to the ps.d.o.- 

case). We refrain from further discussion, since this aspect is so well covered in the 

literature (of. e.g. [5], [25]). 

EXAMPLE 4.2. For the boundary problem in Example 4.1 one finds, 

when F 3 2  = - -  F*o: a°(J{'0 = Rea°(~,e l )= -- lmfao(y,q) - 41 rll2Im/xo(y,r/) 
+ 21 tl] If, o(Y, q)I 2 + 21 t/13 on T.*(F) (denoting a°(F;~) by fj~); positivity of this 

function is necessary and sufficient for 2-coerciveness. 

Theorem 4.3 gives a concrete solution of the problem of characterizing the 

m-coercive realizations of normal boundary problems. For s < m we shall let 

do with Theorems 3.6 and 4.1, together with the explicit description of L: X --. Y" 

given above; except for the following remarks: 



THEOREM 4.4. 

(4.90) 

then 
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When s ~ ] m -  ½, m], s-coerciveness is equivalent with m-coerciveness. Fujiwara 

treated in [9], [10] the case s = m - ½ for a special class of boundary problems ; 

his results should be extendable to the general case by the techniques of the 

present paper (the relevant condition on the ps.d.o, in the boundary is related to 

H6rmander's subellipticity [17]). For s < m -  ½, some results on the required 

inequalities may be found in Calder6n [8]. Concerning "0-coerciveness", we note 

the consequence of Theorem 3.6 and Proposition 2.2 (i): 

Assumptions of Theorem 4.3. If, Jor some 2 ~ ,  

Re (au, u) >= - 211 u I1 , Vu ~D(~) ~H2~(a) ,  

((i) J~ = K o, F2 = - (@*dMoS,)- ~O*Se'MoK~ ; (4.91) 
l 
t(ii) a ° ( ~ )  > 0 on S(F). 

As a corollary we find Agmon's result I-2]: 

COROLLARY 4.5. In addition to the assumptions of Theorem 4.3, assume that 

D(A) = H2m(f~) and that .4 is selfadjoint. Then (4.90), (or just (4.91) (ii)) implies 

that A is m-coercive. 

PROOF. 0(.4) c H~"(f0 is equivalent with ellipticity of ~ 1  ; then in view of 

Corollary 4.3, ,4 is selfadjoint if and only if A = A', (4.91)(i) holds, and -L,q 1 = ~ *  

Now A = A' implies Q = 0, thus ~ = R e ~  1 = 5q 1. By Theorem 4.4, (4.90) 

implies a ° (~ l )  > 0 on S(F); this together with the ellipticity (i.e. a°(L~aa) ~ 0 on 

S(F)) gives a°(Svl) > 0, whence A is m-coercive by Theorem 4.3. 

REMARK 4.8. Note however, that (4.90) together with regularity do not in 

general imply m-coerciveness. As a counter example, let ~ 1  = S - ~*Q~, where 

S is skew-selfadjoint and elliptic with a large enough ellipticity constant such that 

06,°1 is also elliptic. Then D(,4) = H2"(fO, but ~ = Re S - O*Q~ + ~*QO = 0; 

and then, by Theorem 3.6, Re(Au, u) > 0 on D(.4) but .4 is not m-coercive. (The 

presence of Q plays no important r61e in this argument.) 

Finally, we have a curious observation: 

COROLLARY 4.6. Assumptions of Theorem 4.3. When Q is elliptic, then (4.90) 

implies D(.4) c H2"(I')). 

This follows by observing that (4.90) here implies Re a ° ( S C l ) = a ° ( ~ )  

- o-°(O*QO) > - cr°(~*Q~) > 0 on S(F). An example, where Q is elliptic: Let 
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n = 2, and let a(y, rh z) = "c z + 3#lz + 4r/e on a componen t  F o of  F. One finds on 

this componen t :  a+(y, rl, z ) = z  - itl when t / > 0 ,  and "r+4iq when r / < 0 ;  

a-(y ,q ,  z) = ~ + 4iq when q >  0, and z - iq when t / <  0; and ar(y,tl, Z) = ..f2 ..[_ 4q2 

= ( Z -  2it/) (Z + 2it/). This gives, by formulae  (6.20)-(6.22) and (6.29) tha t  

o°(P~,z) = - ~ [ r / [  and o , _ ; a ( P r , x r ) - - 2  It/I thus ~O(Q)= ½]t/I. I f  we take 

-~ F o x  ]0, 1[, we m a y  obtain  a similar result on the other componen t  of  F. 

5. Comparison with prior results 

The mos t  fundamenta l  previous result on m-coerciveness is due to A g m o n  [1] 

1958, who characterized those normal  boundary  problems,  associated in a certain 

way with sesquilinear forms,  that  determine m-coercive realizations. 

We assume in this chapter,  that  fi  = R" and is provided with the metric  of  R". 

We use the s tandard nota t ion  for  differential opera tors  in terms of  coordinates:  

With  x = ( x l , ' " ,  x,), let O~ = i - ~ ~/Ox~, and, for  any mult i- index p = ( P a , ' " ,  P,), 

where each pj denotes a non-negat ive integer, 

(5.1) O p =  nmnp2 p,, • -'1 "-'z "'" Dn ( = D~), 

here [pl = Pl + "'" + Pn is the order  of  D p. 

Let  us r emark  that  we as usual assume for  simplicity that  all our  differential 

opera tors  have C ° coefficients, which is much  more  smoothness  than  A g m o n  

required. To  present  his result, let us first recall 

LEMMA 5.1. Let there be given an integro-differential sesquilinear f o r m  

(5.2) c(u,v) = ( ~ cpq(x)Dqu Opvdx, 
.J n [Pl,lq[ < m  

where each cp~(x)e ~(G), so that cOl, v) is defined and continuous for  

{u ,v}~H'( f~)  x Hm(G). Furthermore, let there be given a normal system 

]~ = {]3j}j~M o of boundary differential operators of orders j, j~Mo.  Denote by C 

the differential operator defined on ~ ( ~ )  by 

(5.3) Cu = ~, DP(crqD~u). 
Ipl.tql_-<m 

Then there exists a unique system of boundary differential operators 

x = {xj}./~to, with tcj of order 2m - j  - 1, such that 

(5.4) c(u,v) = (Cu, v ) -  @u, flv), all u ,v~  ~(~) .  

When C is elliptic, ~c is furthermore a normal system. 
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HINT OF PROOF. Note  first that fl = ~), for  some invertible differential opera tor  

in F, so, by replacing ~: by ~ = ~*~: we may assume fl = ~. Now integration by 

parts gives (Cu, v ) -c (u ,  v) as an integral over F involving derivatives of  u up to  

order  2m - 1 and of  v up to order  m - t ,  this may be arranged in a form 

(xu ,  ? v ) . - F o r  the elliptic case, cf. e.g. [20, Section 2.2.4-]. 

In the following we denote by a(u, v) a sesquilinear form 

(5.5) a(u, v) = f Y, avqDqu DVv dx 
Jn I pl.I qJ<=m 

with a w ~ ~ ( ~ ) ,  for  which the associated differential operator  

(5.6) A = ~, D apqD q 
Ipl. Iql <=m 

(unders tood like (5.3) and then extended to ~'(f~)) is properly elliptic. Here 

(5.7) a°(A) (x, 4) = • apo(x)4 p~q. 
I vl = I q[ =m 

We recall that  A is determined by a, but not  vice versa; in fact this is central 
for  the discussion to follow. 

THEOREM 5.1. (Agmon [1]). Let a and A be given as above, with A strongly 

elliptic. Let Jo c Mo, and let fl = {flj}j~So be a normal system of d!fferential 

boundary operators of orders j ,  j ~ Jo, flj of the form 

(5.8) flj = ~ , j -  ~, B~k~k. 
k < j  

Then there exists c > O, 2 ~ R  such that 

(5.9) Rea(u,u)>=c]lull2-Rllu]12for allu~H"(F~) with flu = O, 

if  and only i f  the following condition is satisfied at each y ~ F: 

Introduce a local coordinate system (with generic point z e ~') where z n = 0 

on F, z = 0 at y, and the normal derivative D t at y goes into D, at O. With 

a2(A + A') denoted A ' ,  and (¢1," ' ,4 ,-1)  denoted 4', write in this coordinate 

system 

2m 

a°(X)  (0, 4) = £ a~(O, 4')4',, 
l = 0  

Ivl 
%~(O~)(O,~) = X d,,(O,~')~t~, 

/ = 0  

and 

aj_k(Bjk ) (0, 4') = bjk(4'). 
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Then, for each ~'~ E"-I/{0 }, the non-zero, bounded solutions of the ordinary 

differential boundary problem (where we denote (i-ld/dt)lv(t) by ¢1)(0) 

f l_~_o a~(O,~')vC°(t)=O for t > 0 ,  

Iv(J)(t) -- t~<~i bJk(~')v~k)(r)]t=o=O, eachjeJ; 
satisfy 

fo (! ) Re ]~ apq(O) dqt(0, ~')v(°(t) d pt(0, ~')v¢°(t) dt > O. 
1 p] = Iqi = m  t l = o  

In view of Lemma 5.l, Theorem 5.1 has the corollary 

COROLLARY 5.1. Assumptions of Theorem 5.1. Let K o = M o IJo, and choose 

normal boundary differential operators flj of orders j for j e K  o. Denoting 

{flj}j ~ Mo by fl, let tc be the system of boundary operators with which 

(5.9) a(u, v) = (Au, v) - <rcu, fly>, u, v E ~(~). 

Then the realization A of A with domain 

(5.10) O(.4) = {u6O(A,)[fiju = 0 for J6Jo; tcju = 0 for jEKo} 

is m-coercive if and only if the condition of Theorem 5.1 holds. 

PROOF. Under the given circumstances one finds from (5.9) (after an extension 

by continuity to H2"(f~)) 

(5.11) a(u,v) = (Au, v) for u ~ D(.4) n H2"(~). 

Then the statement follows from Theorem 5.1 by using (as Agmon pointed out) that 

the condition in Theorem 5.1 in particular implies that the system 

[(flj}j earo, (Kj}je Ko] 
satisfies the complementing condition (cf. [5]), whence D(.4) c H2m(~). 

This corollary indicates the applicability of Agmon's theorem. Although one 

may think of more general consequences of Theorem 5.1, there always remains 

the problem of finding a sesquilinear form a associated with A and with the 

particular boundary condition, such that (5.11) or a suitable generalization holds 

for functions satisfying the boundary condition. This puts a restriction on the 

class of realizations that may be tested by Agmon's theorem; a restriction that 

up until now does not seem to have been systematically characterized. (That 

there is really a restriction may be seen by noting that the condition in Theorem 
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5.1 concerns principal symbols, whereas we know from Theorem 4.3 that a global 

condition (like Theorem 4.3(i), cf. Remark 4.3) is necessary.) We shall go deeper 

into this question further below. 

The subsequent treatments of the coerciveness problem avoided involving a 

sesquilinear form. In [2], [3] (1960 and 1962) Agmon gave a simple necessary 

and suffient condition for m-coerciveness of selfadjoint realizations of normal 

boundary problems, the so-called "strong complementing condition". (It concerns 

only principal symbols, which is well in accordance with Agmon's remark in [2], 

that such selfadjoint realizations may, at least locally, be brought into the frame- 

work of the sesquilinear froms. See also Corollary 4.5. The "strong complemen- 

ting condition" may be defined generally for nonselfadjoint normal problems 

[3], for these however, the corresponding realizations are usually not semibounded, 

simply because our global condition need not be satisfied.) It has been known 

for a long time that the orders of the boundary operators must comply with the 

condition J'l = Ko in order for m-coerciveness to hold. Recently, Shimakura 1-26] 

aborded the problem again, giving a sufficient condition applicable to the boundary 

problems where 
¢ 

(5.12) Ko = J1 = (m - p,..., m - 1}, for some 0 < p < m. 

This was soon after improved to a necessary and sufficient condition by Shimakura 

and Fujiwara [27] (see also [9]), and (independently, for formally selfadjoint A) 

by Grubb [12]. (The condition again concerns only principal symbols, but then 

again Theorem 4.3 (i) is trivially satisfied: F0, F2 and ~*d~oKl are all zero 

because of (5.12) and the "subtriangular" property, cf.3.) Finally, Theorem 4.3 

of the present paper, announced for formally selfadjoint A in [13], and for 

general A in [14], characterizes m-coerciveness of normal problems completely. 

We shall now show how the problem of associating a sesquilinear form with 

fits into the general result. The fundamental step is expressed in Corollary 5.2, 

which is in a sense analogous to Lemma 2.2, but much more involved. 

LEMMA 5.2. Let a be associated with A by (5.5)-(5.6). Then 

(5.13) a(u,v) = (Au, v) - (Xu + S~u, ~v), all u, v~ ~ ( ~ )  

where S is a differential operator in F of type ( -  k, - 2m + j + 1)j.k~M o. 

PROOF. Define 

(5.14) a*(v, u) = a(u, v) for u, v ~ H"(~).  
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Then it is easily seen that a* is associated analogously with A' (for A' 

= ~,lvl,lal<_mDqavqDP). Now, by Lemma 5.1, 

(5.15) a(u ,v )  = (Au,  v) - <~u,~v>,  a* (v ,u )  = ( A ' v , u )  - <x'v,~,u>, 

for certain normal systems lc, x', and then by (5.14) 

(Au,  v) - (u, A '  v) = <~:u, ~v> - <~u, ~c' v>, 

for u, v e N(fi). Then Lemma 2.2 gives that x = • + S~ in the desired fashion. 

LEMMA 5.3. Let c and C be as in Lemma 5.1. I f  for some differential opera- 
tors ~1 and ~2 in F of types ( - k , - 2 m  + j + 1)j~Mo,k~M~ resp. 

(-- k, - 2m + j + 1)j. k ~ 1~o, 

(5.16) c(u, v) = ( ~ l v u  + ~2yu, ~v), all u, v ~ ~(~) ,  

then C = O and ~ I  = 0. 

PROOF. Use Lemma 5.1, then a comparison of (5.4) with (5.16) gives 

(5.17) (Cu, v) = @u + ~ lvu  + ~2 yu, yv), all u, v E N(~). 

In particular, for u,v e ~(~)), (Cu, v )= 0, whence 

(5.18) C = 0. 

For one thing, this implies x = - N~v - Mz:~, by the uniqueness of x. But also, 
the formal adjoint C ' =  0, whence, by applying Lemma 5.1 to c*(v, u )=  c(u,v), 

(5.19) c*(v,u) = - (x 'v,  yu), u ,v~  ~ ( ~ )  

for some x'. Together with (5.16) this gives the identity 

( ~ l v u  + ~2],u,~'v) = - (~u, ~'v), u, v e ~(fi) ,  

from which it follows, by letting u run through N(f i )n i le ( t2 ) ,  that &~=0. 

In contrast with this, ~2 may take any value, as will be shown now. 

PROPOSITION 5.1. When S is a differential operator in F of  type 

( - k ,  - 2m + j + 1)j,keM o, there exist cpqe~(~) such that, with c(u, v) defined 

by (5.2), 

(5.20) c(u, v) = (Syu, rv>, all u, vs  H~(f~) 

(then in particular C, defined by (5.3), is zero). 

Proof. Of course it suffices to verify (5.20) for u, v e ~(fi). 
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11 n n--I i 1 o. Consider the case where ~ = B + = R + n g"  and S = ~:k = lak(X )Dk + a o(x') ,  

each a k ( x ' ) e  ~ ( ~ " - 1 ) 5 .  
• n - - 1  Let ~(x,) denote a function in ~(R) ,  which is 1 near O, and for  whmh Uk=O 

(supp ak X supp () c B". Denote  ak(X')((X,) = 6k(X). NOW let u, v e N(~).  Then 

f B  ao(x')7oUyo---v dx '  = f yo(8oU 0 dx '  
n -  I , ] ~ n -  1 

fo fo - = - i D . ( a o u O d x  = ( -  iao(D.u)~ + iaouD.v  - i (D.ao)uO dx.  

To handle the first order terms we note that, when b u e ~ ( ~ )  c~ ~ ( a " ) ,  

k, l = 1, . . . , n ,  then 

c = - - , - 1  - bk,(X')DkToU -- ~" b..Tlu) ~'ov-- dx '  + Dl(bkl Dk u) fJ dx.  
~-1 k,l=l J B  

In particular, when bkl = 0 for k, / = 1, ..., n - 1, and bk. = -- b.k for  k = 1, .--,n 

then 
n n--1 n--1 

Dt(bkzD, u) = Y~ (D. bk.)D k u - • (D,  bk. ) D.u ,  
k , l = l  k = l  k = l  

so that  

n - l \ k =  1 

= i buDku D,v - i 2 (D.  bk,)Dku ~+ i ~, (D l bt . )D,u fJ dx  
k,l=l k = l  1=1  

This leads to the foHowi.g choiCe of the ~.~, I P I, I q ] =  < 1 (we denote the kth 
unit  vector by ek): 

c~,~ = 0 for  k , l = l , . . . , n - 1 ;  Ce ..... = 0 ;  

Ce~,~. = -- C~.,~ = iak for  k =  1, . - . ,n  - 1; 

Ce~,o = -  i D ,  8 k for  k - -  1 , . . . , n  - 1; Ce,,0 = i 
n - 1  

E D, St- iao; 
I = 1  

Co,e~ = 0 for  k = l , . . . , n - 1 ;  eo,e = i ~ o ;  Co,o = - i D . 8 o ;  

ident i f ied w i t h  B ~- ~. 
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with which one has 

f ~,,-a (nk~=] akDk'~ a°) 7°uy°vdx' = f  ~, %qDquDPvdx. 
n Ipl, lqlN1 

Israel J. Math., 

The idea in this proof  stems from Agmon [2], [4]. 

2 °. Let again f~ = •+, and let now Sjk denote a differential operator in N "-1 

with coefficients in ~(B"-1) ,  of  order 1 = 2m - j  - k, where j and k are two 

nonnegative integers < m - 1. We consider for u, v e ~( f i )  the integral 

f B "- Sjk ~u ?jr dx'. 

To treat this, write Sjk as a finite sum 

Sjk = Z QiRiTi, i 
where the Q~, Ri and T i are differential operators in R "-1, with coefficients in 

c~ (Bn- 1), and of orders respectively m - 1 - j, 1 and m - I - k. Then 

Here T~ykU = yolPiu, Q*yjv = yoQjv, for suitable smooth differential operators 

iFi, Qi of  orders m - 1 in •. This reduces the problem to 1 °, whereby one alto- 

gether finds functions cpq(x)e ~ ( ~ ) c ~  2 ( g  n) for which 

f SjkTku?'j--vdx'=~ ~ cpqDquDPvdx, [p[,lql<=m 
all u, v e 9(f i) .  When S = (Sik)j. k ~ ~o is a differential operator in ~"-1 of type 

( -  k, - 2m + j + 1)j.k E Mo with coefficients in ~ ( ~ ' -  ~), 

. I ~ . -  ' j ,k ~ g o  : g " -  1 

where each summand is handled by the above argument. 

3 °. The general case, where f~ is a smooth bounded domain in R" and S is a 

system of differential operators in the boundary F, is now reduced to 2 ° by use 

of  a finite system of local coordinates. (The arguments involved are standard, 

and will not be reproduced here.) 

Altogether, Lemmas 5.2 and 5.3 and Proposition 5.1 imply (after an extension 

by continuity, cf. Proposition 2.4): 

COROLLARY 5.2. When a(u,v) is a sesquilinear form associated with A, then 
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(5.21) a(u, v) = (Au, v) - (Zu + STu, Tv), all u e Jt°~'° (~), v e n " ( ~ ) ,  

where S is a differential operator in F of type ( -  k, - 2m + j +I)j,k~M o. 

Conversely, when S is such an operator, there exists a sesquilinear form a(u, v) 

associated with A, satisfying (5.21). 

We can now show that the differential boundary problems to which Corollary 

5.1 may be applied are exactly those which satisfy the "global" condition (4.66) 

(i.e., Theorem 4.3(i)). At the same time, we shall show how Theorem 4.1 may be 

proved (after reduction the case 0 c ~')  without the assumption that A has 

uniquely solvable Dirichtet problem, cf. Remark 4.6. 

THEOREM 5.2. Assume merely proper ellipticity of A. Let A be the realization 

of A determined by a boundary condition (4.1). Then there exist 2e  ~ such that 

(5.22) Re (Au, u) > - 21t u 1! 2, all u e D(.4) (3 H'~(fO 

if and only if (4.66) holds. 

I f  furthermore the operators Fik are differential operators, (4.66) is equivalent 

with the existence of a sesquilinear form a(u,v) (as (5.5)) such that 

(5.23) (Au, v) = a(u, v) for all u, v e D(.4) ~ 11 "(fO. 

PROOF. Pick an arbitrary sesquilinear form ao(u,v ) associated with A, it 

satisfies an equation (5.21). Inserting this in (5.22), we find that (5.22) is equivalent 

with the validity of an inequality 

(5.24) Re (Zu, 7u) > - 2, II u [1~, all u e D(.g) n H"(f0,  

since ao(u,u) and (Syu,  yu> are continuous on H ' ( f  0. 

To prove the first statement, let us begin with assuming that (5.24) holds. Let 

u o e D(A) n H"(f~), and let w run through ~(fl), then insertion of u = Uo + w in 

(5.24) gives 

t e (Zuo ,  TUo) > -2,11Uo + w Jl 2, all we >(fl),  whence (assuming 2, > 0) 

2 Re<zuo, yUo> >= - 2, inf HUo + wH2,,> - ~211~uoll~,,-~-~, 

(cf. Proposition 2.1). Now, using that Uo satisfies (4.1), written in the form (4.11), 
we have 

Re [(ZK',Uo, YK',Uo) + (GlTKouo + G2ZK~Uo, ]~a,~Uo)] 
2 

whence, using the type of G~, and the fact that yu o = @7~ouo, 
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u 2 
(5.25) Re (ZK~Uo, 7r~Uo + G~Ts'lUo) > . -  2311 7to o II~,,-J-~}" 

Here, Z~;Uo and 7KoUo independently run through all smooth values, when Uo 

runs through D(X) c3 H2"(O), and therefore (5.25) implies 

(5.26) 7K~Uo + G*Ts,,u = 0  for all uo ¢ D(X) nHZ"(f~). 

This means in particular that, with the notations of Definition 4.1, 

to which the proof of Proposition 4.4 may be applied to conclude that • = W, 

i.e., (4.66) holds (cf. Corollary 4.1). 

Conversely, assume (4.66). This means that the boundary condition has the 

form 

(5.28) 7u = ~7~o u, ~*Xu = G17Ko u. 

Then, for u, v e D(X) C3 H"(f~), 

(Au, v) = ao(U, v) + (ZU + STu, 70) 

(5.29) = ao(u,v) + (@*Xu + ¢b*STu,yt~ov) 

= ao(u, v) + ((G1 + ¢b*S~)~Ko u, 7KoV). 

Thus, in view of the type of  G~ + @*S@, 

<5.30) I(Au, v)l Jlmf°r allu,  vED(-~)(")nrn(~) , 

which in particular shows (5.22). 

For the second statement we proceed as follows: 

When (5.23) holds, (5.22) is an immediate consequence, so (4.66) holds by the 

first part. Conversely, when (4.66) holds and the Fjk are differential operators, 

the boundary condition is of the form (5.28), so that one has (5.29) for 

u,v~D(.,~) OHm(O), with G~ +d#*S¢ a differential operator of  type 

( -  k, - 2m + j + 1)3,k ~ to. 

By Proposition 5.1 there exists a sesquilinear form c(u, v) with C = 0 such that 

c(u, v) = <(al  + @*SO)?Kou, 7roV), all u, v ¢ H'(f~), 

then 

a(u, v) = ao(U, v) + c(u, v) 

fits together with ~ in (5.23). 
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REMARK 5.1. This theorem actually does not use the ellipticity of A, but 

rather that F is nowhere characteristic for A (cf. (2.26)). 

In the course of the proof we also found 

COROLLARY 5.3. Under the assumptions of Theorem 5.2, (4.66) is also equivalent 

with (5.30). 

Finally, we have 

COROLLARY 5.4. The normal differential boundary problems for A that may 

be brought into the framework of Corollary 5.1 are exactly those which satisfy 

(4.66). 

When .4 is a realization determined by such a boundary condition, and 

a(u, v) has been chosen to satisfy (5.23), and A is strongly elliptic, then Agmon's 

condition in Theorem 5.1 (on principal symbols) is equivalent with our condition 

(ii) in Theorem 4.3. 

6. Appendix. Further details on P. 

In this appendix, we consider ~ as an open subset of a compact manifold Z 

without boundary, as described in Section 2.1. We shall then also assume, as we 

may, that A is defined and properly elliptic throughout Z. Now ~j(j e M) is defined 

on smooth functions in E as usual as (D/u) I r, but for the extended definitions as in 

Proposition 2.4, there is a distinction between ?.+ = ~ t ( ~ ) - ~ H S - i - ~ ( F ) a n d  
J 

= 7± P~o ?} ' :3¢~] ' (Z\f i )~H~-J-~(F) ,  when s<2m.  We set p+ {?~:}~, ,  = 

and v + +- : PMI"  

We assume as usual that A in ~ has uniquely solvable Dirichlet problem 
(Definition 2.2) (but remark that all considerations may be carried through 

without it, with evident modifications); then in particular, {u e ~(Y) t Au = 0 in 

Z, pu = 0} = {0}. With this assumption, the result of Seeley [-24] (cf. also Cald6ron 

[7], HSrmander [17]) takes the form 

PROPOSITION 6.1. For each s ~ R 

(6.1) 1--[ H ' - J - ~ ( r )  = p+Z](n)  4 p-Z](~Z\fi), 
j e M  

topological direct sum; and the projections Q+ and Q- in  1-[j~MH'-i-~(F) 

defined by (6.1) with ranges p+Z](f~) resp. p -Z j (Z \~)  are ps. d. o.'s in F of 

types ( -  k, -J)i,k ~M. Moreover, their principal symbols are determined by the 

analogous construction for the ordinary differential operator 
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(6.2) a y,r/,-f- ~ =t=o'E at(y,~l) -i ~ ' t sR ,  

at each fixed (y, rl)e T*.(F): here f~,F and E are replaced by R+, {0} and ~, 
respectively, and p+ and p- map 

{ ( ~ t )  }6 1 z(t) = 0 on ~+ Z,,(I~+)= z(t)~SP(~+)[a Y ' q ' T  

resp. 

into 1 - I j ~  c ( =  c2"*), which decomposes 

(6.3) I-I C = p+Z,(R+) + p-Za(R_ ), 
j e M  

such that the projection M x M-matrices q+(y, tl) and q-(y, tl) determined by 
(6.3) are the principal symbols of Q+ resp. Q- at (y, tl). 

Seeley proves this by showing that, when A is an invertible operator on 

~(Z), Q+ = - p+A-Ip*sJ -1 and Q- = p-A-ap*d  -1 (el. (2.31)-(2.32)), which 

he modifies to the general case where A has an index in the appendices of [24] 

and [25]. 

We shall now rapidly indicate how Proposition 2.6 is proved on the basis of 

this. 

Recalling (2.29)-(2.30), we define for each (y, t/) ~ T.*(F) the differential operators 

in R 

(6.4) 

Then 

(6.5) 

: 

1=0 

l=O 

d + 1 d d 
a (y, t l ,+ ~-)=A2m(y)a (y, ,? ,~-  - d T ) a - [ , ,  1 [Y ' T 

= A2,.(y)a- (y, rl, + -~)a+ (y,q,-~ • 

6 ~9o(it~ 4-) denotes the spaee of functions u~ C~(~t:k) for which t~d~/dt~u(t) is bounded on 
N ÷ resp. II~-, for all k ~ 0, l => 0. 
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(We shall omit the dependence on (y, t/) whenever convenient). The following 

lemma is well known. 

LEMI~{A 6.1. A function u~C~(~+)  belongs to Z~(~+) if and only if 

(6.6) + a+ ( +  d ) u ( t ) = O  on ~+_. 

(The " i f "  part follows from the fact that a solution of (6.6) + is a linear combination 

of exponentials exp(iz~t), where the r~ are the roots of a+(r), and thus belongs 

to 5~(~+). The "only i f"  part uses the Paley Wiener theorem.) 

Now, a solution u of (6.6) + is uniquely determined by the value of 7u, therefore 

we may introduce 

DEFINITION 6.1. p+ is the M~ x Mo-matrix sending 7u into vu for u ~ Z,(R+). 

Furthermore, Lemma 6.1 reduces the computation of p+ to an algebraic 

manipulation: 

LEMMA 6.2. p+ isthematrix(Pjk)i~M~,k~Mo Whoseelementsaretheeoefficients 
in the rest polynomials of the division equations 

T j =  ( ~ Cjk Tk) a+(z) - Y~ pj~z k, j e MI 
(6.7)+ \~MR o / k~Mo 

(i.e.,z j -  E ±k pjkz (moda-+(z)), for each j6M1). 
keMo 

By use of the identities (6.7) + one easily shows 

LEMMA 6.3. p+,p- and p+ -- p-  are invertible matrices. 
This leads to the construction of q+ from p+: Let ¢ c ~ j ~ t C ,  and denote 

elements of l~L ~ Mo C by x, y, then the equation 

(6.8) {¢Mo,¢M,} = {x,P +x} + {Y,P-Y} 

(where evidently {x,p+x}epZ,(R+) and {y,p-y}epZ~(R_)) has the unique 

solution 

(6.9) 

This gives that 

(6.10) 

and 

(6.11) 

x = (p+ - p- ) -  i (_  P-~/)Mo + (aM,) 

y (p+ p- ) -~  (p+¢~,,o - ¢M,). 

( _ ( p +  p - ) - l p -  (p+_ p - ) - i  ) 
q+ = 

\ _  p+(p+ _ p-)-~p-  p+(p+ _ p - ) - i  

|[ (p+_ p-)-ip+ _ (p+_ p-)-l\=] 
q- = \p-(p+_ p-)-lp+ _ p-(p+ p - ) - ,  IMM q+. 
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The observation that we shall use is that, by application of Lemma 6.3 again, 

each of the four m × m-blocks in q+ and q -  is invertible, and that p+ and p -  

may in fact be derived from q ÷ or q - .  More precisely, we shall use 

LEMMA 6.4. In the M x M-matr ix  q+, each of the minors qM,M~ (i, j  = 0, 1) 
is invertibIe, and 

(6.12) P+ = (q+oM1) -~ (IMoMo -- q+oMo). 

This lemma leads immediately to an analogue in the non-symbolic set-up: 

PROPOSmON 6.2. In the M x M-matr ix  of ps.d.o.'s Q+, each of the minors 
+ 

= QMoM1, QuiMj (i,j  0,1) is e l l i p t i c ,  and, with T denoting a parametrix of  + 

(6.13) Pra,, T(I~oM o + = - Q z o u o )  + S ,  

where S is of order - o o .  

PROOF. The invertibility of q+,Mj(Y, r/) for each (y,~/)~ T.*(F) means exactly 

that Q~,Mj is elliptic. Now, the elements q5 e p+ Za(~) satisfy 

(6.14) qSM1 a = Pr,vqSMo, where qSMo runs through I ]  H~-i-~(F),  
j e M o  

and on the other hand Q+~b = ~b, which may be written 

(6.15) + + 

Q~,~-o~Mo + Q , ~ , M ~ ,  = ~ ; (6.16) + + 

then an insertion of (6.14) in (6.15) gives 

+ pA :. iMoMo, Q+oMo + QMoM, r,v 

from which (6.13) follows by composition with T. 

In view of (6.12) and Lemma 6.2, this proves Proposition 2.6: that p a,~ is a 

ps.d.o, of type ( -  k, - j)j  ~M,,k ~ Mo with principal symbol p+(y, ~/). (Computation 

of the complete symbol of  p , t  may also be based on (6.13).) 

REMARK 6.1 The convenient aspect of this proof of Proposition 2.6 is that it 

never moves outside of ps.d.o.'s and standard boundary operators (and their 

adjoints), as would be required if one tried to generalize the considerations 

behind Lemma 6.2 directly; it seems hard to associate with a+(y, ~/, z) a workable 

global operator in ~ .  

Definition 2.5 of Pr,p = flTz ~ may be extended to arbitrary fl, of the form 

fl = ( f l j ) j  e j  where J is any finite subset of N w (0), (mj)j ed is any real J-vector, 

and 
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i 

(6.17) flj = Z Bjl?l, j e J ,  
l = 0  

with each Bj~ denoting a (scalar) ps.d.o, in F of order m j -  l; by use of the identity 
D~"u - 1 2 m -  1 l = -Azm(]~z= o AzDtu ) near F when u EZ~(~)) (of• (2.26)). Then one finds 

easily 

PROPOSITION 6.3• With fl as above, P~p is a ps.d.o, in F of type 

( - k , -  mj)i~S,k~Mo with principal symbol (Pjk)j~J,k~Mo consisting, at each 

(y, ~/)e T*. (F), of  the coefficients pik in the polynomials determined by 

J 

(6.18) ~, a°(Bjz)zz - Z Pjkzk(moda+(z)), j e J .  
I = 0  k ~ M o  

REMARK 6.2. When/~ is in particular a normal system of m differential boundary 

operators of  orders j ~ J ~ M, ellipticity of  P~,p means exactly that the "comp- 

lementing condition" is satisfied (cf. [5]); this is equivalent with well-posedness 

of the boundary problem Au = 0 in f~, flu = ~ on F; which is here also seen using 
A 

Pr,t~ = flTz 1. 

When p a, p is an isomorphism, and 7~ is another system of boundary operators, 

we may of course define 

(6.19) p~,,~ .4 .4 -x = P~,k(Pr,B) 

(and corresponding modifications when we admit a finite index). 

We shall now describe some concrete examples. To do this, we introduce the 

matrices S~(y, ~) + ± = (S~+k-j(Y, tl))i,k ~ Mo and S~(y, q) " here the = ( s k _ j ( y ,  rl))j,k ~ Mo, 

s~ are the coefficients in a+(z) resp. a-(r) (cf. (2.30)) and we put s~ = = 0 for 

l ¢ [0, m]. So 

(6.20) Sm ~ = ii 000)I:  i!:1 m-~ Sm ; s y  = sg: 2 

Ls? s~ s Lo o s~ j 

Noting that a(z) = A2m a-(z) a+(z), we have 

(6.21) S + ( A  ') = S T ( A ) ,  p = O, m ;  

furthermore, since Rea(z) = a'(z) = (ReA2m)a"+(z)ar'-(z), 

= a"+(z), we denote: 

where a " -  (T) 
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(6.22) S+(A r )=S  v, S; (A ' )= . p=O,m. 

EXAMPLE 6.1" 0 a a (G-)" 

Solving the equation (6.7) + is equivalent with solving the matrix equation 

(6.23) (0 I ) = C ( S  + S +) + (r, 0), 

where 0 and I temporarily denote the ( m x  m) zero resp. identity matrix, and C 

and T are the unknown (m x m)-matrices. (6.23) splits up in 

(6.24) 0 = C S~- + T, I = C S L 

+ 1), whence, since S + is invertible (in fact Sm = 

This shows that 

(6.25) 

r = - ( & + ) - ' S o .  

O.0 p a  (v.v)  (Y, q) = (S+(y, tl))-lS'~(y,q). 

EXAMPLE 6.2. 0 a o (Pr,x)" 

Comparison of (2.27) and (2.29) gives 

) Y~ a°(Al)zl=Azm if2 s~z p + Sq "~q 
1=0 ~,p=O q=O 

whence (cf. (2.32)) 

=A2m ~ ~ s-p s "C 1, 
/ = 0  p+q=l 

+ 
O°(djk) = iAzm ~. S; Sq . 

p+q=j+k+l 

Denoting the (m x m) skew-unit matrix by I × 

(6.26) I × = 

we thus find that 

tTo(d)= iA2m ( lxSo I×S~, ) (  S+m 

~I ~sT. o \ sg  

o o  

0 . . . 1  

'oJ [. 1 . . . 0  

In particular, 

× -- -- -- + / 
0 .__ [ 1  ( S o S  m of- S m S o )  IXSmS,+n 

= ~A2m [ 
s +. ~ z×s;s+~ o .  

(6.27) a°(~Cmomo) = iA2mI×(So S+ + S~S+), 
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~ o ( d M o M ,  ) - × - + = zA2mI S m S m ,  

93 

whence, by (6.25), and (2.43) 

0 A a (P~,z) o d o a = a ( MoM,)a (P~,,) + -~a°(dUoMo) 

= iA2mlX[S~nS+m(__ ¢+.~-1~+ 1 - + ~,.,~ ~,o + ~(So S m +  ST. Sg)] 

= 1 "  x -- + ~tA2mI (So S m -  SINS+). 

We have proved 

(6.29) 0 A 1" o (P~,z)= ~z A2mI×(So S+ - StaSh).  

EXAMPLE 6.3: The isomorphism R. 

By the isomorphism y: Z(A1)--~I~j~MoH-J--~(F), the LZ(fl)-inner product in 

Z(A1) induces an inner product in IIj~MoH-J-¢(F); thereby giving rise to an 

isomorphism R: I-Ij~MoH-J-¢(F)~Flj~MoHJ+¢(Y), with which 

(2"1,2"2) = < R T z I , Y Z 2 > ,  all Z1, 2.2 ~ Z(A1). 

It may be shown that R is a selfadjoint positive definite elliptic ps.d.o, in I- of 
1 type ( - k - - } , j  + ~) j ,~ to ;  that it is the operator 

DAA' I (6.30) R = t t T , y A , } ,  Z ,  M M 1  

(in the notation of Remark 6.2, of. (6.19)), and that 

(6.31) a°(R) = i I×[S~(S  +) -1 _ Sm(S,~)~ + - ,So+~m]- 1. 

Since R is not essential for the present paper, we omit proofs and further 

details. Note that, as should be expected, a°(R) depends only on a +. 

R'  and R '  are defined analogously relative to A' and A r. 

A f i n a l  remark.  In the article [12] we used some results, for which the proofs 

were deferred to a later paper with the provisional title "On  the regularity of a 

general class of boundary problems". These results were in part concerned with 

with the operators P~,p, for which the present Appendix provides the proofs; in 

part they were concerned with the connection between the regularity of .4 and of 

L. For the latter part, Remark 4.7 of the present paper covers what is used in 

[12]; a more systematic study is easy to set up, and may be included in a future 

paper. 
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