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Singular Green operators G appear typically as boundary correction terms in
resolvents for elliptic boundary value problems on a domain � ⊂ �n, and more
generally they appear in the calculus of pseudodifferential boundary problems.
In particular, the boundary term in a Krein resolvent formula is a singular
Green operator. It is well-known in smooth cases that when G is of negative
order −t on a bounded domain, its eigenvalues or s-numbers have the behavior
�∗�sj�G� ∼ cj−t/�n−1� for j → �, governed by the boundary dimension n− 1. In
some nonsmooth cases, upper estimates �∗∗�sj�G� ≤ Cj−t/�n−1� are known.

We show that �∗� holds when G is a general selfadjoint nonnegative singular
Green operator with symbol merely Hölder continuous in x. We also show �∗�
with t = 2 for the boundary term in the Krein resolvent formula comparing
the Dirichlet and a Neumann-type problem for a strongly elliptic second-order
differential operator (not necessarily selfadjoint) with coefficients in W 1

q ��� for some
q > n.

Keywords Elliptic boundary value problems; Krein resolvent formula;
Leading spectral asymptotics; Nonsmooth coefficients; Nonsmooth domains;
Pseudodifferential boundary operators; Singular Green operator.
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Introduction

Singular Green operators arise typically as boundary correction terms in solution
formulas for elliptic boundary value problems. For example, if A is a strongly elliptic
second-order differential operator with smooth coefficients on �n, with inverse
Q, and � ⊂ �n is smooth bounded, then the solution operator for the Dirichlet
problem Au = f on ��u��� = 0, has the form
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Spectral Asymptotics 531

A−1
� = Q+ +G�� (i)

where Q+ is the truncation of the pseudodifferential operator (�do) Q to � and
G� is a singular Green operator. Another typical singular Green operator is the
difference between the solution operators for two different boundary value problems
for A,

G = Ã−1 − A−1
� � �ii�

In the study of the spectral behavior it is found that whereas the eigenvalues
or singular values (s-numbers) of Ã−1 and A−1

� have the behavior sj�Ã
−1� ∼

cAj
−2/n, the s-numbers of G� and G behave like sj�G� ∼ cGj

−2/�n−1� (cf. e.g. Grubb
[14, 15], Birman-Solomyak [8]). Here the boundary dimension n− 1 enters since
these operators have their essential effect near the boundary.

This spectral behavior of G is well-known for operators A with smooth
coefficients, whereas in cases with nonsmooth coefficients, generally only upper
estimates sj�G� ≤ Cj−2/�n−1� are known (from Birman [6], when coefficients are
continuous with bounded first derivatives and the boundary is C2).

We shall here address the question of showing asymptotic estimates for singular
Green operators in cases with nonsmooth coefficients. The main tool will be the
calculus of nonsmooth pseudodifferential boundary operators (�dbo’s) developed
by Abels [1, 2] (as a generalization of the smooth �dbo’s, Boutet de Monvel [10],
Grubb [15, 16]). Our results will deal both with general selfadjoint nonnegative
singular Green operators with C	-smoothness in the x-variable, and with the
special, not necessarily selfadjoint operators in (i), (ii), with W 1

q -smoothness of the
coefficients of A (q > n), building on the resolvent construction in Abels et al. [4].

Contents. In Section 1 we recall the Krein resolvent formula in the smooth
setting and show a precise spectral asymptotic estimate in the selfadjoint case.
Section 2 deals with spectral asymptotic results for nonsmooth �do’s, recalling
an early result of Birman and Solomyak, and proving a result for C	-smooth
�do’s of negative order (any 	 > 0), based on the calculus for such �do’s by
Marschall. In Section 3 we recall the theory of nonsmooth �dbo’s by Abels, with
some supplements. Section 4 gives the proof of spectral asymptotic estimates for
nonsmooth selfadjoint singular Green operators of negative order and class 0,
defined on �n

+ or on a smooth bounded set � ⊂ �n. In Section 5, similar results
are obtained for the singular Green term in the Dirichlet resolvent (i), and for the
singular Green term in the Krein formula (ii), by a different method based on work
of Abels, Grubb and Wood; here nonselfadjointness is allowed. In Section 6, the
results of Section 5 are extended to the case of domains � with B

3
2
p�2-boundary; this

includes C
3
2+
-domains. Finally, the Appendix written by Abels gives the proof of

one of the theorems used in Section 3.

1. Results in the Smooth Case

1.1. Some Notation

For x ∈ �n we denote x′ = �x1� � � � � xn−1�, so that x = �x′� xn�, and we denote �n
± =

�x � xn ≷ 0�. Moreover, 
x� = �1+ �x�2� 1
2 .

When � is a smooth open subset of �n with boundary �� = , we use the
standard L2-Sobolev spaces, with the following notation: Hs��n� (s ∈ �) has the
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532 Grubb

norm �v�s = ��−1�
��s�v��L2��n�; here � is the Fourier transform and 
�� = �1+
���2� 1

2 . Next, Hs��� = r�H
s��n� where r� restricts to �, provided with the norm

�u�s = inf��v�s � v ∈ Hs��n�� u = r�v�. Moreover, we denote by Hs
0��� the space

�u ∈ Hs��n� � suppu ⊂ ��; it is a closed subspace of Hs��n�, and there is an
identification of the antidual space of Hs��� (the space of antilinear, i.e., conjugate
linear, functionals), with H−s

0 ��� for any s ∈ �, with a duality consistent with
the L2��� scalar product. Spaces over the boundary, Hs��, are defined by local
coordinates from Hs��n−1�� s ∈ �. Here there is an identification of H−s�� with
the antidual space of Hs��.

Occasionally we shall also refer to some Lq-based Sobolev spaces, 1 < q < �,
namely the Bessel-potential spaces Hs

q���; for s = k ∈ �0 they are also denoted
Wk
q ���. They are defined in a similar way as above from Hs

q��
n�, provided with

the norm �v�s�p = ��−1�
��s�v��Lq��n�. One has for k ∈ �0 that H
k
q ��� = Wk

q ��� =
�u ∈ Lq��� � D�u ∈ Lq��� for ��� ≤ k� (allowing also q = �).

For 	 ≥ 0, we denote by Cr��� the space of continuous functions f�x� such that
when �	� is the largest integer ≤ 	,

�f�C	 ≡
∑

���≤�	�
sup
x

�D�f�x�� + ∑
���=�	�

sup
x �=y

�D�f�x�−D�f�y��
�x − y�	−�	� < �� (1.1)

For 	 = k ∈ �0, they are also denoted Ckb���; when 	 = k+ � with k ∈ �0 and � ∈
�0� 1� , they are the Hölder spaces Ck�����. We denote

⋂
	≥0 C

	 = C�
b .

1.2. The Krein Resolvent Formula

As a point of departure, consider the Krein resolvent formula comparing the
resolvents of the Dirichlet realization A� and a Neumann-type realization Ã. The
operators are defined from a second-order strongly elliptic operator A with smooth
coefficients on a smooth bounded or exterior domain � with boundary  (cf.
Section 5) by the boundary conditions, assumed elliptic,

�0u = 0� resp. �u = C�0u� on �

with a first-order tangential differential operator C; here �0u = u� and �u is the
conormalderivative (5.12).Thenonehaswhen0 ∈ ��A�� ∩ ��Ã� (the resolvent sets) that

Ã−1 − A−1
� = K�L

−1�K′
��

∗� (1.2)

where K� and K′
� are the Poisson operators for the Dirichlet problem for A resp.

A′� L is the realization of the first-order elliptic �do C − P��� with D�L� = H
3
2 ��,

and P��� = �K�, the Dirichlet-to-Neumann operator. Cf. Grubb [13, 14], and
formulas (2.10), (2.15), (3.45) in Brown-Grubb-Wood [9] (based on [13, 14]); see
also e.g. [17]. Abstract versions have been known for many years and various
concrete applications to elliptic PDE given recently, cf. e.g. Malamud [27], Gesztesy-
Mitrea [11], and their listings of other contributions.

Consider for precision in this introductory section the case where the operators
A� and Ã are selfadjoint; then so is L, as an operator from H− 1

2 �� to H
1
2 ��. Then

also K� = K′
�. (Nonselfadjoint cases, where principal estimates of s-numbers can be

obtained, are treated in [20], Sect. 10.)
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Spectral Asymptotics 533

The operator G = K�L
−1K∗

� is a singular Green operator of order −2, and its
spectral asymptotic behavior can be found in the following way: Denote the positive
resp. negative eigenvalues by �±j , monotonely ordered and repeated according to
multiplicity (one of the sequences may be finite and then needs no treatment, we
leave this aspect out of the explanation). Then we have, since �±j �B1B2� = �±j �B2B1�:

�±j �G� = �±j �L
−1K∗

�K�� = �±j �L
−1P1�� (1.3)

where P1 = K∗
�K� is a selfadjoint positive �do on  of order −1 (it is also used

in [11] Th. 3.4, which gives more information). Let P2 = P
1
2
1 , positive selfadjoint of

order − 1
2 , then we have furthermore:

�±j �G� = �±j �L
−1P2

2� = �±j �P2L
−1P2� = �±j �P3�� P3 = P2L

−1P2� (1.4)

Estimates of the eigenvalues �±j are connected in a known way with estimates of the
corresponding counting functions N ′±�t�G� = N ′±�t� P3�; here N

′±�t� S� indicates the
number of positive, resp. negative eigenvalues of S outside the interval �− 1/t� 1/t� .

For the counting functions we apply the results of Hörmander [23] and Ivrii [24]
to the selfadjoint elliptic �do P−1

3 of order 2. This gives:

Theorem 1.1. In the smooth selfadjoint case one has for the operator Ã−1 − A−1
� =

K�L
−1K∗

� = G that the eigenvalues satisfy

N ′±�t� Ã−1 − A−1
� � = C±t�n−1�/2 + O�t�n−2�/2� for t → �� (1.5)

where C± are determined from the principal symbol p03�x
′� �′� of P3 (defined

through (1.3)–(1.4)). Moreover, if �p03�
−1 satisfies Ivrii’s condition from [24] (the

bicharacteristics through points of T ∗�� \ 0 are nonperiodic except for a set of measure
zero), there are constants C±

1 such that

N ′±�t� Ã−1 − A−1
� � = C±t�n−1�/2 + C±

1 t
�n−2�/2 + o�t�n−2�/2� for t → �� (1.6)

The estimate (1.5) follows from Hörmander [23] in the scalar case, Ivrii allows
arbitrary elliptic systems and has the precision in (1.6). (The result does not seem to
have been formulated with this precision before.)

Note that in the scalar case, if  is connected, the selfadjointness and ellipticity
prevents the principal symbol of L from changing between positive and negative
values, since it must be real. So in that case only one of the sequences �+j or �−j is
infinite.

In rough cases, we do not expect to get the fine remainder estimates, but will
aim for principal asymptotic (Weyl-type) estimates, as obtained in [15] for general
singular Green operators in the smooth case.

2. Spectral Estimates for Nonsmooth Pseudodifferential Operators

2.1. Weak Schatten Classes

As in [15] we denote by �p�H�H1� the p-th Schatten class consisting of the compact
operators B from a Hilbert space H to another H1 such that �sj�B��j∈� ∈ �p���.
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534 Grubb

Here sj�B� = �j�B
∗B�

1
2 , where �j�B

∗B� denotes the j-th positive eigenvalue of B∗B,
arranged nonincreasingly and repeated according to multiplicities. The so-called
weak Schatten class consists of the compact operators B such that

sj�B� ≤ Cj−1/p for all j� we set Np�B� = sup
j∈�

sj�B�j
1/p� (2.1)

the notation ��p��H�H1� was used in [15] for this space. (The indication �H�H1� is
replaced by �H� if H = H1; it can be omitted when it is clear from the context.)
Different notation is used in some other works; �p is sometimes called �p, and ��p�

is also sometimes called p, �p or �p��. To avoid confusion, we shall in the present
paper use the notation �p�� for the p-th weak Schatten class.

We recall (cf. e.g. [15] for details and references) that Np�B� is a quasinorm on
�p��, satisfying

Np�
k0∑
k=1

Bk� ≤ Cp��

k0∑
k=1

Np�Bk�k
��

with � = 0 if p > 1� � > p−1 − 1 if p ≤ 1�

(2.2)

here Cp�� is independent of k0. Recall also that

�p�� ·�q�� ⊂ �r��� where r−1 = p−1 + q−1� (2.3)

and

sj�B
∗� = sj�B�� sj�EBF� ≤ �E�sj�B��F�� (2.4)

when E� H2 → H and F� H1 → H3 are bounded linear maps between Hilbert spaces.
Moreover, we recall that when � is a bounded open subset of �m and

reasonably regular, then the injection Ht��� ↪→ L2��� is in �m/t�� when t > 0. It
follows that when B is a linear operator in L2��� that is bounded from L2��� to
Ht���, then B ∈ �m/t��, with

Nm/t�B� ≤ C�B���L2����Ht����� (2.5)

2.2. Results of Birman and Solomyak

We shall study pseudodifferential operators with C	-smoothness in the x-variable
further below, but let us first consider some results of Birman and Solomyak [7].
They show an asymptotic result under weak smoothness hypotheses both in the
x-and the �-variable:

Theorem 2.1. [7] On a closed manifold � of dimension m, let P be defined in local
coordinates from symbols p�x� �� that are homogeneous in � of degree −t < 0. Denote
m/t = �.

1� One has that P ∈ ���� (i.e., sj�P� is O�j
−t/m�) under the following hypotheses

on the symbol in local coordinates:
If � ≤ 1 (i.e., t ≥ m), assume that the symbols restricted to � ∈ Sm−1 = ���� = 1�

are in L��Sm−1
� � C
x � for some 
 > 0.
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Spectral Asymptotics 535

If � > 1 (i.e., t < m) assume that the symbols at � ∈ Sm−1 are in L��Sm−1�W l
p�,

where

p ≥ 2� pl > m� 1/p > 1/2− 1/q1� (2.6)

for some 2 < q1� q2 ≤ � with q−1
1 + q−1

2 = �−1, l ∈ �+.
2� There is an asymptotic estimate

sj�P�j
t/m → c� (2.7)

when the properties under 1� hold with L� replaced by C0.

The constant c is the same as described further below in Theorem 2.5.
It is particularly interesting here that these estimates allow nonsmoothness in �,

namely just boundedness or continuity, with no requirement on �-derivatives.
Also some nonsmoothness in x is allowed, best in low dimensions. Let us see

what it means for t = 2.
Here 1� applies when when � ≤ 1, i.e., m ≤ 2, so only C
-smoothness in x is

needed then.
When 2 < m ≤ 4, so that 1 < � ≤ 2, 1/2 ≤ 1/� < 1, we can in 2�

take 1/q1 = 1/2− � with a small positive � (hereby q1 > 2) and 1/q2 = 1/� −
1/q1 = 1/� − 1/2+ � (which is < 1/2 for � < 1− 1/�, hereby q2 > 2). Then the
requirement 1/p > 1/2− 1/q1 allows taking 1/p arbitrarily close to 0. Now pl > m
can be fulfilled for arbitrarily small l by taking p sufficiently large, so Wl

p can be
taken to contain C
, for a given small 
.

When m > 4, the inequalities will put a positive lower limit on the possible l
that can enter in (2.6). For example, for m = 5, � = 5/2 and 1/� = 2/5, then we can
at best take q1 = 5/2 and q2 = �, which restricts p by

1/p > 1/2− 1/q = 1/2− 2/5 = 1/10�

so that p < 10. Then pl > m is at best obtained with l > 1/2.
So already for m = 5, hence for the boundary of a set of dimension 6, the

Birman-Solomyak result will not give asymptotic estimates for the most general
situation in [4] where the symbols are only C	 in x with a 	 < 1/2.

It should be noted that our symbol classes have a high degree of smoothness in
� in contrast to those of Birman and Solomyak; we do not need their generality for
the present purposes, and have to find another point of view.

2.3. Approximation of �do’s by Operators with Smooth Symbols

We now turn to the symbol classes with Hölder smoothness in x and full smoothness
in �, as defined in Kumano-go and Nagase [25], Marschall [28], Taylor [31] and
other places:

Definition 2.2. Let d ∈ �, 	 > 0, m ∈ �, N ∈ �0. The space C	Sd1�0��
m ×�m� N�

consists of the functions p�x� �� of x� � ∈ �m such that

�D�
�p�x� ���C	 is O�
��d−���� for ��� ≤ N� (2.8)
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536 Grubb

We denote
⋂
N∈�0

C	Sd1�0��
m ×�m� N� = C	Sd1�0��

m ×�m�.
The symbol p�x� �� is said to be polyhomogeneous (with step 1), when there is an

asymptotic expansion in symbols pd−j�x� �� homogeneous of order d − j in � for ��� ≥
1, in the sense that each pd−j ∈ C	Sd−j1�0 ��

m ×�m� N�, and for all J , p−∑
j<J pd−j is

in C	Sd−J1�0 ��
m ×�m� N�. For the subspaces of polyhomogeneous symbols we use the

notation C	Sd instead of C	Sd1�0.

Our convention for the Fourier transform is: �x→�u = ∫
�m e

−ix·�u�x� dx; then
�−1
�→xf = ∫

�m e
ix·�f��� d–�, with d–� = �2��−nd�.

A symbol in C	Sd1�0��
m ×�m� defines a �do P by

Pu = OP�p�x� ���u =
∫
ei�x−y�·�p�x� ��u�y� dyd–�� also called p�x�Dx�u� (2.9)

with a suitable interpretation of the integral (as an oscillatory integral). We recall
in passing that one can also define operators “in y-form” resp. “in �x� y�-form” by
formulas

OP�p�y� ���u =
∫
ei�x−y�·�p�y� ��u�y� dyd–�� resp.

OP�p�x� y� ���u =
∫
ei�x−y�·�p�x� y� ��u�y� dyd–��

(2.10)

the latter is in some texts said to be defined from a double symbol. We say that (2.9)
is “in x-form”.

It is well-known that P in (2.9) satisfies

P� Hd��m�→ L2��
m� and hence P∗� L2��

m�→ H−d��m�� (2.11)

(More information is given below in Theorem 2.3.) Hence when d is a negative
number −t, and P is defined on a compact m-dimensional manifold from such
symbols in local coordinates, P ∈ �m/t�� in view of (2.5).

This gives upper spectral estimates, and we shall obtain the asymptotic spectral
estimates by approximation of the �do symbols by smooth polyhomogeneous
symbols for which the estimates are known. The so-called symbol smoothing, where
p is written as p� + p�, p� ∈ Sm1�� and p� of lower order, is not useful here, since the
polyhomogeneity is lost in this decomposition. What we do is in fact simpler, namely
approximation by convolution in the x-variable with an approximate unit.

There is one small obstacle here, namely that C�-functions are not dense in C	

when 	 is not integer. For example, if one compares a C�-function u�t� on �−1� 1�
with the function �t�	 ∈ C	��−1� 1�� for some 	 ∈ �0� 1� , one finds that

sup
t �=s

��u�t�− �t�	�− �u�s�− �s�	��
�t − s�	 ≥ sup

t �=0

�u�t�− u�0�− �t�	�
�t�	 ≥ 1�

However, it is well-known (cf. e.g. Lunardi [26] Ch. 1) that the so-called little-Hölder
space h	��m�, consisting of functions u�x� ∈ C	��m� such that

lim
h→0

sup
0<�x−y�≤h

�u�x�− u�y��
�x − y�	 = 0� (2.12)
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Spectral Asymptotics 537

is a closed subspace of C	��m� for 0 < 	 < 1 that equals the closure of C�
b ��

m� in
the C	-norm. Here, when �k is an approximate unit, i.e., �k�x� = km��kx� for k ∈ �,
for some � ∈ C�

0 ��
m� with ���L1��m� = 1, one can check that if u ∈ h	��m�, then

�k ∗ u→ u in h	��m� for k→ �.
Now for 0 < 	 < 	1 < 1,

C	1��m� ↪→ h	��m� ↪→ C	��m�� (2.13)

so a function u ∈ C	1��m� is approximated in C	-norm by �k ∗ u for k→ �.
Similarly, one can check that when p�x� �� is a symbol in C	Sd1�0��

m ×�m� N�,
then

�k�x� ∗ p�x� ��→ p�x� �� in C	
′
Sd1�0��

m ×�m� N�� when 0 < 	′ < 	 < 1� (2.14)

here �k ∗ p ∈ C�
b S

d
1�0��

m ×�m� N�.
There are analogous definitions of symbol spaces where C	 is replaced by Hr

q -
spaces (Bessel-potential spaces), that we shall refer to in Section 5 below; �do’s
defined from such symbols were studied by Marschall in [29]. When p�x� �� ∈
Hr
qS

d
1�0��

m ×�m� N�, then �k ∗ p ∈ C�
b S

d
1�0��

m ×�m� N�, and

�k�x� ∗ p�x� ��→ p�x� �� in Hr
qS

d
1�0��

m ×�m� N�� (2.15)

One can also define symbols valued in Banach spaces. Let X be a Banach space,
then C	Sd1�0��

m ×�m� N�X� consists of the functions p�x� �� from �x� �� ∈ �m ×�m

to X such that

�D�
�p�x� ���C	��m

x �X�
is O�
��d−���� for ��� ≤ N� (2.16)

where C	��m
x � X� is provided with the norm in (1.1) with absolute values replaced by

X-norms. X can in particular be a space of bounded linear operators X = ��X0� X1�
between Banach spaces X0� X1. The use of special Fréchet spaces such as �+ in the
place of X is discussed below in Section 3.

The following result was shown (in a greater generality) in Marschall [28]
Th. 2.1:

Theorem 2.3. For d ∈ �� �s� < 	, one has that when p�x� �� ∈ C	Sd1�0��m ×�m� N�
with N > m/2+ 1, then OP�p� is continuous:

�OP�p����Hs+d��m��Hs��m�� < �� (2.17)

In other words, the linear map OP from the Banach space C	Sd1�0��
m ×�m� N�

to the Banach space ��Hs+d��m��Hs��m�� is bounded for each �s� < 	, when N >
m/2+ 1. Then also

�OP�p�−OP�pk����Hs+d��m��Hs��m�� → 0 for k→ �� when pk = �k ∗ p� (2.18)

This holds for each �s� < 	, since there is room for a 	′ ∈ �0� 	� such that �s� < 	′,
and the symbol convergence holds in C	

′
Sd1�0.
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538 Grubb

To show spectral asymptotic estimates, we shall use what is known in smooth
cases and extend it to nonsmooth cases by use of suitable perturbation results for
s-numbers:

Lemma 2.4.
1� If sj�B�j

1/p → C0 and sj�B
′�j1/p → 0 for j → �, then sj�B + B′�j1/p → C0 for

j → �.
2� If B = BM + B′

M for each M ∈ �, where sj�BM�j
1/p → CM for j → � and

sj�B
′
M�j

1/p ≤ cM for j ∈ �, with CM → C0 and cM → 0 for M → �, then sj�B�j
1/p →

C0 for j → �.

The statement in 1� is the Weyl-Ky Fan theorem (cf. e.g. [12] Th. II 2.3), and
2� is a refinement shown in [15] Lemma 4.2.2�.

We have the following result for nonsmooth �do’s on closed smooth manifolds.

Theorem 2.5. LetE be anM-dimensional smooth vector bundleE over a smooth compact
boundaryless m-dimensional manifold �. Let t > 0 and 0 < 	 < 1, and let P be a C	-
smooth�do acting inE, with symbol defined in local trivializations from symbols p�x� �� in
C	S−t��m ×�m�⊗���M�. Then the s-numbers of P satisfy the asymptotic estimate

sj�P�j
t/m → c�p0�t/m for j → �� (2.19)

where

c�p0� = 1
m�2��m

∫
�

∫
���=1

tr
(
�p0�x� ��∗p0�x� ���m/2t

)
d dx� (2.20)

Proof. Using the approximation (2.14) in localizations, we can approximate P by
a sequence of operators Pk with polyhomogeneous C�-symbols (locally in C�S−t),
converging in the topology of symbols in C	

′
S−t for 0 < 	′ < 	. Then the norm of

P − Pk in ��H−t���� L2���� goes to 0 for k→ �. The statement of the theorem
holds for the Pk, as a corollary to Seeley [30], cf. [15], Lemma 4.5ff. Moreover, since
�P − Pk�∗ → 0 in ��L2����H

t����,

sup
j

sj�P − Pk�jt/m → 0 for k→ ��

cf. (2.5). We also have that c�p0k�→ c�p0� for k→ �, since the symbol sequence
converges in C	

′
. Then the conclusion follows for P by Lemma 2.4 2�. �

3. Nonsmooth Pseudodifferential Boundary Operators

3.1. Boundary Symbols with Hölder Smoothness

We want to generalize the results of [15] on singular Green operators to nonsmooth
symbols. This takes a larger effort, since the continuity from H−t��� to L2���, when
G is of order −t and class 0 on the manifold � with boundary, only implies G ∈
�n/t��, not G ∈ ��n−1�/t�� as is known in the smooth case.

We denote by �± = � ��±� the space of restrictions r± to �± of functions
in � ���, and by �++ = � ��

2

++� the space of restrictions to �
2

++ = �+ ×�+ of
functions in � ��2�; here � ��n� is the Schwartz space of rapidly decreasing C�-
functions.
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Spectral Asymptotics 539

Singular Green operators of class 0 are defined in the smooth case on �
n

+ from
functions g̃�x′� xn� yn� �′� ∈ Sd1�0��n−1 ×�n−1��++� by

Gu =
∫
�n−1

eix
′ ·�′

∫ �

0
g̃�x′� xn� yn� �

′��y′→�′u�y
′� yn� dynd

–�′�

The tool that we shall use to invoke the effect of the boundary dimension is
a decomposition of the spaces �+ and �++ in terms of (a variant of) Laguerre
functions, using expansions in such functions not only for the symbols but also on
the operator level (Section 3.3).

Let us briefly recall the Laguerre expansions (introduced in [10], their role being
further explained in [15, 16, 18]). Define

when k ≥ 0� !k�xn� �� =
{
�2��

1
2 �� − �xn�k�xkne−xn��/k! for xn ≥ 0�

0 for xn < 0�
�

when k < 0� !k�xn� �� = !−k−1�−xn� ���

Here � can be any positive number. In the considerations of symbols, we shall take
it as

���′� = ��′�� a smooth positive function of �′ that equals ��′� for ��′� ≥ 1. (3.1)

The functions form an orthonormal basis of L2���; those with k ≥ 0 span L2��+�,
and those with k < 0 span L2��−�. Their Fourier transforms are

!̂k��n� �� = �2��
1
2
�� − i�n�k
�� + i�n�k+1

� where we denote !̂′
k��n� �� =

�� − i�n�k
�� + i�n�k+1

� (3.2)

forming orthogonal bases of L2���.
The point is that the !k�xn� ��, k ≥ 0, belong to �+ and span its elements in

rapidly decreasing series, in the sense that the following two systems of seminorms
on the Fréchet space �+ are equivalent:

�xlnDl′
xn
u�xn��L2��+�� l� l

′ ∈ �0� resp.

��
j�Mbj���2��0�
� M ∈ �0� where u�xn� =

∑
j∈�0

bj!j�xn� ��� (3.3)

cf. e.g. [16], Lemma 2.2.1, or [18], Lemma 10.14. This holds in such a way that an
estimate in one of the systems is dominated by a fixed finite set of estimates in the
other system. (A sequence �bj� is called rapidly decreasing, when supj
j�M �bj� < �
for all M .)

Similarly, the products !j�xn� ��!k�yn� �� belong to �++, and here there is
equivalence of the systems of seminorms

�xlnDl′
xn
ymn D

m′
yn
u�xn� yn��L2��2++�� l� l

′�m�m′ ∈ �0� resp.

��
j�M
k�M ′
cjk���2��0×�0�

� M�M ′ ∈ �0� where u�xn� yn�

= ∑
j�k∈�0

cjk!j�xn� ��!k�yn� ��� (3.4)
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540 Grubb

again with finite interdependence.
There are the following rules for differentiations in �′ and �n, when � is as in

(3.1) (then ��j� = �j�
−1 for ��′� ≥ 1):

��j !̂k��n� �� =
(
k!̂k−1 − !̂k − �k+ 1�!̂k+1

)
�2��−1��j�� j < n�

��n !̂k��n� �� = −i(k!̂k−1 + �2k+ 1�!̂k + �k+ 1�!̂k+1

)
�2��−1� (3.5)

Let us also recall that, with e± denoting extension by zero for xn ≶ 0, Fourier
transformation gives the space 	+ = �xn→�n

�e+�+�; its conjugate space is 	−
−1 =

�xn→�n
�e−�−�; and both are contained in 	 = 	++̇	−

−1+̇��t�, where ��t� consists
of the polynomials on �. The projections of 	 to the components 	+ resp. 	−

−1 are
denoted h+ resp. h−−1. We refer to the indicated books for more information; this
complex notation will not be important in the present paper.

We are now ready to give the technical definitions of the nonsmooth symbol
spaces (that may be taken lightly in a first reading). Boundary operator symbols
with C	-smoothness are defined as in Abels [1], and we in addition formulate the
estimates in terms of Laguerre expansions.

Definition 3.1. Let d ∈ � and 	 > 0. The space C	Sd1�0��
n−1 ×�n−1��+� consists of

the functions f̃ �x′� xn� �′� of x′� �′ ∈ �n−1, xn ∈ �+, such that

�xlnDl′
xn
D�
�′ f̃ �x

′� xn� �
′��C	��n−1�L2��+�� is O�
�′�d+

1
2−l+l′−���

�

for l� l′ ∈ �0� � ∈ �n−1
0 � (3.6)

Equivalently, with f = �xn→�n
�e+f̃ �,

�h+�l′nDl′
�n
D�
�′f�x

′� �′� �n��C	��n−1�L2����
is O�
�′�d+ 1

2−l+l′−���
� for l� l′ ∈ �0� � ∈ �n−1

0 �

Likewise equivalently, with f̃ �x′� xn� �′� =
∑

k∈�0
bk�x

′� �′�!k�xn� ���′��,

��
k�MD�
�′bk�x

′� �′���C	��n−1��2��0��
is O�
�′�d+ 1

2−���
� for M ∈ �0� � ∈ �n−1

0 � (3.7)

i.e., the coefficient sequence �bk�x
′� �′��k∈�0

is rapidly decreasing in C	S
d+ 1

2
1�0 ��

n−1 ×
�n−1�.

Introduce also for N ∈ �0 the notation C	Sd1�0��
n−1 ×�n−1� N��+� for the space

of functions f̃ �x′� xn� �′� satisfying the estimates (3.6) for l� l′ ∈ �0, ��� ≤ N ; then
C	Sd1�0��

n−1 ×�n−1��+� =
⋂
N∈�0

C	Sd1�0��
n−1 ×�n−1� N��+�.

The functions f̃ and f are said to be polyhomogeneous, when there moreover is
an asymptotic expansion of f in functions fd−j�x′� �� homogeneous of degree d − j
in ��′� �n� for ��′� ≥ 1, in a similar way as in Definition 2.2. For the subspaces of
polyhomogeneous symbols we use the notation C	Sd instead of C	Sd1�0.

The functions f̃ and f serve as symbol-kernels resp. symbols of Poisson
operators of order d + 1, here they are usually denoted k̃ resp. k. First there is the
definition of an operator with respect to the xn-variable:

OPKn�k̃�v = k̃�x′� xn� �
′� · v� also denoted k�x′� �′� Dn�v� (3.8)
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Spectral Asymptotics 541

going from � to �+ for each �x′� �′�; this is the boundary symbol operator. Then the
full operator is defined for v ∈ � ��n−1� by using the pseudodifferential definition
with respect to �x′� �′� (denoted OP′):

OPK�k̃�v = OP′OPKn�k̃�v =
∫
�2n−2

ei�x
′−y′�·�′ k̃�x′� xn� �

′�v�y′� dy′d–�′� (3.9)

(One also writes OPK�k̃� as OPK�k�, and OPKn�k̃� as OPKn�k�.)
The same classes of functions f̃ serve as symbol-kernels for trace operators of

order d and class zero; here they are usually denoted t̃. The associated symbol t is
the conjugate Fourier transform of e+ t̃ in xn, t�x′� �′� �n� =

∫ �
0 eixn�n t̃�x′� xn� �′� dxn =

� xn→�n
e+ t̃. The definition of an operator with respect to the xn-variable is, for

u ∈ �+:

OPTn�t̃�u =
∫ �

0
t̃�x′� xn� �

′�u�xn� dxn� also denoted t�x′� �′� Dn�u� (3.10)

going from �+ to � for each �x′� �′�; the boundary symbol operator. Then the full
operator is defined for u ∈ � ��

n

+� = � ��n���n
+ by:

OPT�t̃�u = OP′OPTn�t̃�u =
∫
�2n−2

∫ �

0
ei�x

′−y′�·�′ t̃�x′� yn� �
′�u�y′� yn� dyndy

′d–�′� (3.11)

Definition 3.2. Let d ∈ � and 	 > 0. The space C	Sd1�0��
n−1 ×�n−1��++� consists of

the functions g̃�x′� xn� yn� �′� of x′� �′ ∈ �n−1, xn� yn ∈ �+, such that

�xlnDl′
xn
ymn D

m′
yn
D�
�′ g̃�x

′� xn� yn� �
′��C	��n−1�L2��

2++�� is O�
�′�d+1−l+l′−m+m′−���
� (3.12)

for l� l′�m�m′ ∈ �0� � ∈ �n−1
0 .

Equivalently, with g = �xn→�n
� yn→"n

�e+xne
+
yn
g̃�,

�h+�nh−−1�"n
�l

′
nD

l
�n
"m

′
n D

m
"n
D�
�′g�x

′� �′� �n� "n��C	��n−1�L2��2�� is O�
�′�d+1−l+l′−m+m′−���
��

for l� l′�m�m′ ∈ �0� � ∈ �n−1
0 .

Likewise equivalently, with g̃�x′� xn� yn� �′� =
∑

j�k∈�0
cjk�x

′� �′�!j�xn� ��!k�yn� ��,

��
j�M
k�M ′
D�
�′cjk�x

′� �′���C	��n−1��2��0×�0��
is O�
�′�d+1−���

�� (3.13)

for M�M ′ ∈ �0� � ∈ �n−1
0 , i.e., the coefficient sequence �cjk�x

′� �′��j�k∈�0
is rapidly

decreasing in C	Sd+1
1�0 ��

n−1 ×�n−1�.
Introduce also the notation C	Sd1�0��

n−1 ×�n−1� N��++� for the space of functions
g̃�x′� xn� yn� �′� satisfying (3.12) for l� l′�m�m′ ∈ �0, ��� ≤ N .

The functions g̃ and g are said to be polyhomogeneous, when there moreover is
an asymptotic expansion of g in functions gd−j�x′� �′� �n� "n� homogeneous of degree
d − j in ��′� �n� "n� for ��′� ≥ 1, in a similar way as in Definition 2.2.
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542 Grubb

The functions g̃ and g serve as symbol-kernels resp. symbols of singular Green
operators of order d + 1 and class zero. The definition of an operator with respect to
the xn-variable is

OPGn�g̃�u =
∫ �

0
g̃�x′� xn� yn� �

′�u�yn� dyn� also denoted g�x′� �′� Dn�u� (3.14)

acting in �+ for each �x′� �′�; the boundary symbol operator. Then the full operator
is defined for u ∈ � ��

n

+� by:

OPG�g̃�u = OP′OPGn�g̃�u =
∫
�2n−2

ei�x
′−y′�·�′

∫ �

0
g̃�x′� xn� yn� �

′�

u�y′� yn� dyndy
′d–�′� (3.15)

The operators defined as in (3.9), (3.15) can for precision be said to be in x′-form,
to distinguish this from the case where the functions k̃� t̃� g̃ in the integrals depend
on y′ in the place of x′. Such cases also define Poisson, trace and singular Green
operators; the operators are said to be in y′-form, denoted OPK�k̃�y′� xn� �′��, etc.
Also �x′� y′�-forms can occur. The adjoint of the Poisson operator OPK�f̃ �x′� xn� �′��
is the trace operator OPT�f̃ �y′� xn� �′��.

In the following we often leave out �n−1 ×�n−1 from the notation for the
symbol spaces.

For the consideration of the full operators as operator-valued �do’s, the
following properties of the boundary symbol operators will be very useful:

Lemma 3.3. Let k̃ ∈ C	Sd−1
1�0 ��

n−1 ×�n−1��+�, t̃ ∈ C	Sd1�0��n−1 ×�n−1��+�, and
g̃ ∈ C	Sd−1

1�0 ��
n−1 ×�n−1��++�. Then the boundary symbol operators k�x′� �′� Dn�,

t�x′� �′� Dn� and g�x′� �′� Dn� (cf. (3.8), (3.10), (3.14)) satisfy, for s′� s′′ ≥ 0:

k�x′� �′� Dn� ∈ C	Sd−
1
2+s′

1�0 ��n−1 ×�n−1����� Hs′��+���

t�x′� �′� Dn� ∈ C	Sd+
1
2+s′

1�0 ��n−1 ×�n−1���H−s′
0 ��+������ (3.16)

g�x′� �′� Dn� ∈ C	Sd+s′+s′′1�0 ��n−1 ×�n−1���H−s′
0 ��+��H

s′′��+���

Here, when M ∈ �0, the Poisson boundary symbol operator seminorms

sup
�′


�′�−d+ 1
2+���−s′ �D�

�′k�x
′� �′� Dn��C	��n−1�����Hs′ ��+���� ��� ≤ N� s′ ≤ M� (3.17)

are dominated by the system of symbol seminorms

sup
�′


�′�−d+ 1
2+���−l�Dl

xn
D�
�′ k̃�x

′� xn� �
′��C	��n−1�L2��+��� ��� ≤ N� l ≤ M� (3.18)

They are also dominated by the system of seminorms in terms of Laguerre expansions
k̃�x′� xn� �′� =

∑
j∈�0

bj�x
′� �′�!j�xn� ���′��:

sup
�′


�′�−d+ 1
2+�����
j�M+1D�

�′bj�x
′� �′��j∈�0

�C	��n−1��2��0��
� ��� ≤ N� (3.19)
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Spectral Asymptotics 543

Likewise, the trace and singular Green boundary symbol operator seminorms

sup
�′


�′�−d− 1
2+���−s′ �D�

�′ t�x
′� �′� Dn��C	��n−1���H−s′

0 ��+������ ��� ≤ N� s′ ≤ M� resp.

sup
�′


�′�−d+���−s′−s′′ �D�
�′g�x

′� �′� Dn��C	��n−1���H−s′
0 �+�Hs

′′
��+���� ��� ≤ N� s′ ≤ M�

(3.20)

are dominated by the systems of symbol seminorms

sup
�′


�′�−d− 1
2+���−l�Dl

xn
D�
�′ t̃�x

′� xn� �′��C	��n−1�L2��+��� ��� ≤ N� l ≤ M� or

sup
�′


�′�−d− 1
2+�����
jM+1D�

�′bj�x
′� �′��j∈�0

�C	��n−1��2��0��
� ��� ≤ N� resp.

sup
�′


�′�−d+���−l�Dl
xn
Dm
yn
D�
�′ g̃�x

′� xn� yn� �′��C	��n−1�L2��
2++��� ��� ≤ N� l�m ≤ M� or

sup
�′


�′�−d+�����
�j� k��2M+1D�
�′cjk�x

′� �′��j�k∈�0
�C	��n−1��2��

2
0��
� ��� ≤ N�

(3.21)

Here t̃ = ∑
j∈�0

bj!j�xn� �� and g̃ =
∑

j�k∈�0
cjk!j�xn� ��!k�yn� ��.

Proof. This is a variant of a result shown (in more generality including Lp-spaces
and weighted norms) in Abels [1], Lemma 4.6, as a generalization of [21], Th. 3.7.

The present L2-version is straightforward to show. Consider k̃. The estimates


�′�−d+ 1
2−l�Dl

xn
k̃�x′� xn� �

′��C	��n−1�L2��+�� = O�1�� l ≤ M�

imply


�′�−d+ 1
2−M�k̃�x′� xn� �′��C	��n−1�HM��+�� = O�1��

so since k�x′� �′� Dn� is multiplication by k̃, the finiteness of (3.17) follows for � = 0,
s′ = M . A similar treatment of D�

�′ k̃ includes general �. Noninteger values s′ ∈ �0�M�
are included by interpolation, since Hs′ interpolates between H0 and HM ; here the
symbol seminorms for l ≤ M suffice for the estimates. This shows the statement on
domination of the seminorms (3.17) by those in (3.18).

The second statement on domination follows from the fact that by [16], (2.2.20),


�′�−d+ 1
2−l�Dl

xn
k̃�x′� xn� �

′��L2��+� ≤ c��
j�l+
bj�x′� �′��j∈�0
��2��0�

�

The proofs for the other types of operators are similar (for t̃ one can simply
note that t�x′� �′� Dn� is the adjoint of the Poisson operator v �→ t̃�x′� xn� �′�v, and
H−s′

0 ��+� is the dual space of Hs′��+�). �

One of the consequences derived in [1] is that the operators of order d have the
Sobolev space continuities:

OPK�k̃� � Hs+d− 1
2 ��n−1�→ Hs��n

+� for �s� < 	�
OPT�t̃� � Hs+d��n

+�→ Hs− 1
2 ��n−1� for �s − 1

2 � < 	� s + d > − 1
2 � (3.22)

OPG�g̃� � Hs+d��n
+�→ Hs��n

+� for �s� < 	� s + d > − 1
2 �
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544 Grubb

when k̃� t̃ and g̃ are as in Lemma 3.3. We return to the proof below in Theorem 3.8.

Remark 3.4. The special case where the operators map from Hs-space to Hs-space
for �s� < 	, is particularly convenient in composition rules:

OPK�k̃� � Hs��n−1�→ Hs��n
+� for �s� < 	� when d = 1

2 �

OPT�t̃� � Hs��n
+�→ Hs��n−1� for �s� < 	� s > − 1

2 � when d = − 1
2 � (3.23)

OPG�g̃� � Hs��n
+�→ Hs��n

+� for �s� < 	� s > − 1
2 � when d = 0�

here k̃ and t̃ ∈ C	S− 1
2

1�0 ��+�, g̃ ∈ C	S−1
1�0��++�. (For the statement on OPT�t̃� we

replaced s − 1
2 in (3.22) by s.) We say that these operators are of neutral order.

The order conventions, introduced originally by Boutet de Monvel in [10],
may seem a little confusing. They respect the principle that a composition of two
operators of orders d1 resp. d2 is of order d1 + d2, but the order is not preserved
when one passes from a Poisson operator of order d to its adjoint, which is a trace
operator of order d − 1 and class 0. To compensate for this phenomenon, one might
think of redefining the orders by adding or subtracting 1

2 , but this is not really
helpful, since in considerations of mappings between Lp-based Sobolev spaces, the
role of 1

2 is taken over by 1
p
and 1

p′ .

3.2. Rules of Calculus

Let us now recall some composition rules. We here let a�x′� �′� Dn� play the role of
any of the boundary symbol operators introduced above, such that the resulting full
operator can be written as A = OP′a�x′� �′� Dn�. We also include functions s�x′� �′�
that are symbols of �do’s on �n−1, and on the boundary symbol level simply act
as multiplications. The composition of two boundary symbol operators a1 and a2 is
denoted a1 �n a2. The compositions can of course only be applied when A1 is defined
on the range of A2 (which can be a Sobolev space over �n−1 or �n

+). The notation
ã1 �n ã2 = ã3 is sometimes also used with the ãi denoting the corresponding symbol-
kernels. Full details are found in [16, 18] or [1]; some examples are:

k̃ �n t̃ = k̃�x′� xn� �
′�t̃�x′� yn� �

′��

t̃ �n k̃ =
∫ �

0
t̃�x′� xn� �

′�k̃�x′� xn� �
′� dxn�

g̃ �n k̃ =
∫ �

0
g̃�x′� xn� yn� �

′�k̃�x′� yn� �
′� dyn�

t̃ �n g̃ =
∫ �

0
t̃�x′� xn� �

′�g̃�x′� xn� yn� �
′� dxn� (3.24)

g̃ �n g̃′ =
∫ �

0
g̃�x′� xn� zn� �

′�g̃′�x′� zn� yn� �
′� dzn�

k̃ �n s = k̃�x′� xn� �
′�s�x′� �′��

s �n t̃ = s�x′� �′�t̃�x′� xn� �
′��
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Spectral Asymptotics 545

As usual, OP′�a1 � a1� is a good approximation to A1A2; the following theorem
gives more information on this for the Hölder-smooth symbol classes.

Theorem 3.5. For i = 1� 2, let k̃i�x
′� xn� �′� be Poisson symbol-kernels of order di + 1

2 ,
let t̃i�x

′� xn� �′� be trace symbol-kernels of order di − 1
2 and class 0, let g̃i�x

′� xn� yn� �′�
be singular Green symbol-kernels of order di and class 0, and let si�x

′� �′� be �do
symbols on �n−1 of orders di, with 	i-smoothness, respectively, defining operators
Ki� Ti�Gi� Si. Let d = d1 + d2 and 	 = min�	1� 	2�, and let # ∈ �0� 1� with # < 	. Then
the composed operators satisfy

A1A2 −OP′�a1 �n a2�� Hs+d−# → Hs�

when �s� < 	� s > #− 	2� #− 	2 < s + d1 < 	2�
(3.25)

in addition the class condition s + d − # > − 1
2 must be satisfied if A2 is a trace or

singular Green operator. (The Ht stand for Sobolev spaces over �n−1 or �n
+ depending

on the context where they are used.)

The rule in the case where a1 and a2 are �do’s on �n−1 is known from
Taylor [31], Prop. I 2.1D. The other rules (on �dbo’s) are proved in Abels [1],
Th. 4.13, by use of an extension of Taylor’s result to vector-valued operators, cf.
also [2]. The above statement differs from the formulation in [1] by referring to
orders di ± 1

2 for Poisson and trace operators; this allows a unified formulation. One
can also describe rules where a trace operator or singular Green operator contains
standard traces �j (i.e., has positive class); they can be deduced from the above by
combination with mapping properties of the �j .

We moreover need rules for compositions with �do’s P on �n satisfying the
transmission condition at xn = 0, and truncated to �n

+ as P+ = r+Pe+ (where r±

denotes restriction to �n
±, e

± stands for extension by zero on �n \�n
±). Here the

composition rules are more complicated, already on the symbol level. Moreover,
the symbol p�x� �� of P is in general xn-dependent, whereas the boundary symbol
operator p�x′� �′� Dn�+ is defined from the symbol at xn = 0. When one of the factors
Ai in a composition is of the form P+, it is the true operator that enters as Ai and the
xn-independent boundary symbol operator that enters as ai. It is proved in Section
5 of [1] that the statement in Theorem 3.5 is valid also for these cases:

Theorem 3.6. The conclusion of Theorem 3.5 holds also when G1 or G2 is replaced by
a C	i -smooth �do Pi�+ of order di satisfying the transmission condition at xn = 0.

We here view the truncated �do’s as being of class 0. There is a refinement
allowing operators of negative class, but we shall not need it here and refer to the
quoted works for details on this.

For a composition of two truncated �do’s P1�+ and P2�+ one uses the formula

P1�+P2�+ = �P1P2�+ − L�P1� P2�� (3.26)

where the composition P1P2 follows a rule as for S1S2 in Theorem 3.5, and
the singular Green term L�P1� P2� is treated by use of other rules in Theorem
3.5, supplied with considerations of standard trace operators �j . The outcome is
essentially as in (3.25) (more details are given in [1], Sect. 5.3).
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546 Grubb

For the purpose of spectral estimates we need a sharpening of the information
in (3.22), (3.23), taking into account how many symbol seminorm estimates are
needed for the operator norm estimates. This uses the following generalization of
Marschall’s result Theorem 2.3:

Theorem 3.7. Let H0 and H1 be Hilbert spaces, and consider operator-valued symbols
p ∈ C	Sd1�0��m ×�m� N���H0� H1��, where the symbol seminorms (2.8) are taken in
C	��m���H0� H1��. For N ≥ m+ 1�OP�p� is continuous

OP�p�� Hs+d��m�H0�→ Hs��m�H1� for �s� < 	�

The proof is given in the Appendix (written by Helmut Abels). We use the
theorem to show that a fixed finite set of symbol seminorms suffices for estimates
of operator norms.

Theorem 3.8. Let 	 ∈ �0� 1� . Let k̃, t̃ and g̃ be as in Lemma 3.3.
1� For each �s� < 	, the norm of OPK�k̃� in (3.22) is bounded by a finite system of

seminorms:

�OPK�k̃��
��Hs+d−

1
2 ��n−1��Hs��n+��

≤ Cs sup
�′


�′����−d+ 1
2 �Dl

xn
D�
�′ k̃�C	��n−1�L2��+��� l = 0� 1� ��� ≤ n� (3.27)

The symbol seminorms in (3.27) are estimated by the following Laguerre symbol
seminorms, where k̃�x′� xn� �′� =

∑
k∈�0

bk�x
′� �′�!k�xn� ���′��,

sup
�′


�′����−d+ 1
2 ��
k�2D�

�′bk��Cr ��n−1��2��0��
� ��� ≤ n� (3.28)

2� For each �s′ − 1
2 � < 	, resp. �s� < 	, the norms of OPT�t̃� and OPG�g̃� in (3.22)

are bounded by finite systems of seminorms:

�OPT�t̃��
��Hs′+d��n+��H

s′− 1
2 ��n+��

≤ Cs′ sup
�′


�′����−d− 1
2 �Dl

xn
D�
�′ t̃�C	��n−1�L2��+��� l = 0� 1� ��� ≤ n� (3.29)

�OPG�g̃����Hs+d��n+��Hs��n+��

≤ Cs sup
�′


�′����−d�Dl
xn
Dm
yn
D�
�′ g̃�C	��n−1�L2��

2++��� l�m = 0� 1� ��� ≤ n�

The operator norms can also be estimated in terms of finite systems of Laguerre
seminorms, as in Lemma 3.3.

Proof. The proof follows that of [1], Th. 4.8 in a simplified version, but taking the
dependence on specific finite seminorm systems into account.

Consider K = OPK�k̃� = OP′�k�x′� �′� Dn��. By Lemma 3.3, k�x′� �′� Dn� is in

C	S
d− 1

2+s′
1�0 ��n−1 ×�n−1����� Hs′��+�� for all s′ ≥ 0. Applying Theorem 3.7 with
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Spectral Asymptotics 547

N = �n− 1�+ 1 = n, we see that K is continuous

K� Hs+d− 1
2+s′��n−1�→ Hs��n−1� Hs′��+�� (3.30)

for �s� < 	, s′ ≥ 0. Here we let s′ ∈ �0� 1�, then the operator norm is estimated by
(3.18) or (3.19) with N = n and M = 1. If s ∈ �0� 	� , observe that

Hs��n
+� = Hs��n−1� H0��+�� ∩H0��n−1� Hs��+�� for s ≥ 0� (3.31)

and apply this to (3.30) with �s� s′� of the form �s� 0� and of the form �0� s�; then we
find that

K� Hs+d− 1
2 ��n−1�→ Hs��+� (3.32)

holds for s ≥ 0. If s ∈ �− 	� 0�, we obtain (3.32) by taking s′ = 0 in (3.30) and
using that

Hs��n−1� H0��+�� ↪→ Hs��n
+� if s ≤ 0� (3.33)

Since s′ ∈ �0� 1�, the operator norm is estimated as asserted in the theorem.
The proofs for T and G are adapted from [1] Th. 4.8 in a similar way. �

Also rules in Theorems 3.4 and 3.5 may be sharpened to a dependence on only
finitely many symbol seminorms, by an extension of results of Marschall [28] to
vector-valued operators, but since we do not need them in the present paper, we
shall not pursue this here.

Remark 3.9. Let us mention one more rule, namely that the difference between
operators defined in x′-form resp. y′-form from the same symbol is of lower order;
it is not included in [1, 2]. Since the result is not essential for the present work, we
only indicate some ingredients in a proof: A special case of Corollary 4.6 of [28] is:
If a�x� �� ∈ C	Sd1�0��m ×�m� N���H0� H1��, with H0 = H1 = �, then

OP�a�x� ���−OP�a�y� ���� Hs+d−#��m�H0�→ Hs��m�H1� (3.34)

is bounded, provided that N > 3
2m+ 2, # ∈ �0� 1�, 	 > #, �s� < 	 and �s + d − #� < 	.

(This allows d and s + d to run in a small interval around 0.)
One needs a generalization of the statement to general Hilbert spaces H0� H1,

and then one can prove by use of Lemma 3.3 that when K = OPK�k̃�x′� xn� �′�� and
K′ = OPK�k̃�y′� xn� �′�� are Poisson operators defined in x′-form resp. y′-form from

a symbol k̃�x′� xn� �′� ∈ C	S−
1
2

1�0 ��
n−1 ×�n−1��+�, 	 < 1, then

K − K′� Hs−#��n−1�→ Hs��n
+� for − 	+ # < s < 	� (3.35)

There are similar statements for trace and singular Green operators.
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548 Grubb

3.3. Laguerre Boundary Operators

Let us introduce a notation for the special Poisson and trace operators on �n
+—

Laguerre boundary operators—defined from Laguerre functions with k ≥ 0 (as in
Grubb and Schrohe [22]):

$k = OPK�!k�xn� ���
′���� $∗

k = OPT�!k�xn� ���
′���� (3.36)

here $k is a Poisson operator of order 1
2 , and the adjoint $∗

k is a trace operator of
order − 1

2 and class 0 (note that they are of neutral order as defined in Remark 3.4).
The operator $k maps L2��

n−1� continuously, in fact isometrically, into L2��
n
+�.

Moreover, because of the orthonormality and completeness of the !k,

$∗
j $k = �jkI�n−1�

∑
k∈�0

$k$
∗
k = I�n+� (3.37)

where I�n−1 resp. I�n+ stands for the identity operator on functions on �n−1 resp.
�n

+. Denoting by Hj the range of $j in L2��
n
+�, we have that the Hj are mutually

orthogonal closed subspaces, and that

L2��
n
+� =

⊕
j∈�0

Hj� with isometries $j� L2��
n−1�

∼→→ Hj�

$∗
j � Hj

∼→→ L2��
n−1�� (3.38)

the latter acting as an inverse of $j .

Lemma 3.10. When G is a singular Green operator on �n
+ of order d and class

0, defined from a symbol-kernel g̃�x′� �′� xn� yn� ∈ C	Sd−1
1�0 ��

n
+ ×�n−1��++�, it can be

written in the form

G = ∑
k∈�0

Kk$
∗
k� Kk = OPK�k̃k�x

′� xn� �
′��� (3.39)

with Poisson operators Kk of order d + 1
2 , their symbol-kernels �k̃k�k∈�0

forming a

rapidly decreasing sequence in C	S
d− 1

2
1�0 ��

n−1 ×�n−1��+�. Here

k̃k�x
′� xn� �

′� =
∫ �

0
g̃�x′� xn� yn� �

′�!k�yn� ���
′�� dyn� Kk = G$k� (3.40)

Proof. The symbol-kernel g̃ of G has a Laguerre expansion:

g�x′� xn� yn� �
′� = ∑

j�k∈�0

cjk�x
′� �′�!j�xn� ���

′��!k�yn� ���
′��� (3.41)

with �cjk�j�k∈�0
rapidly decreasing in C	Sd1�0, i.e., the relevant symbol seminorms on


k�M
j�M ′
cjk are bounded in j� k for any M�M ′ ∈ �0. Set

k̃k�x
′� xn� �

′� = ∑
j∈�0

cjk�x
′� �′�!j�xn� ���
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Spectral Asymptotics 549

It is a rapidly decreasing sequence of symbols in C	S
d− 1

2
1�0 ��

n−1 ×�n−1��+�, in view
of the estimates of the cjk and the (x′-independent) !j . Then

G = ∑
k∈�0

OPK
(
k̃k�x

′� xn� �
′�
) �OPT

(
!k�xn� ��

) = ∑
k∈�0

Kk$
∗
k�

where Kk = OPK�k̃k�. The Poisson operators Kk and their symbols satisfy (3.40) in
view of the orthonormality of the !k and (3.37).

This shows the assertion. �

4. Spectral Estimates for Nonsmooth Singular Green Operators

4.1. Upper Estimates

We now turn to eigenvalue estimates for s.g.o.s. First we establish upper spectral
estimates. (Both here and in the proof of Theorem 4.3 below, the ideas from Ch.
4 of [15] are used wherever convenient.) Let � and �1 be functions in C�

0 ��
n�,

supported in a ball BR. Denote BR ∩�
n

+ = BR�+, BR ∩ ��n−1 × �0�� = B′
R.

Theorem 4.1. Let G be as in Lemma 3.10, of negative order d = −t. Then �G�1 ∈
��n−1�/t��. Moreover, when G is written as a series

∑
k∈�0

Kk$
∗
k ,

N�n−1�/t��G�1� ≤ C
∑
k∈�0

k�N�n−1�/t��Kk$
∗
k�1� < �� (4.1)

where � = 0 if t < n− 1, � > t/�n− 1�− 1 if t ≥ n− 1.

Proof. The crucial step is to show that each �Kk$
∗
k�1 is compact as an operator

in L2�BR�+�, with the desired estimate of s-numbers. To see this, note that Kk is
bounded from H−t��n−1� to L2��

n
+�, where �Kk maps into functions supported in

BR�+, with a bound depending on the symbol estimates and �. Then the adjoint K∗
k�

is bounded from L2�BR�+� to Ht��n−1�. But we cannot conclude from this that �Kk
and K∗

k� would be in ��n−1�/t��, since there is no support restriction in �n−1.
Instead we take �1 into the picture, and moreover insert a cutoff function % ∈

C�
0 ��

n−1� that is 1 on B′
R, to the right of Kk. Write

�Kk$
∗
k�1 = �Kk%$

∗
k�1 + �Kk�1− %�$∗

k�1� (4.2)

The first term will have the ��n−1�/t��-property, since �Kk% has it and the $∗
k are

bounded from L2��
n
+� to L2��

n−1� with norm 1. For the second term, we focus
instead on �1− %�$∗

k�1. As shown in [15], proof of Prop. 4.7, it is of order −� in
such a way that for its estimates as a mapping of a fixed low order, the symbol
seminorms that enter have a polynomial growth in k (in view of the formulas (3.5)).
Then for a fixed large a, the norm of �1− %�$∗

k�1 from H−a
0 ��

n

+� to H−t��n−1�

grows at most polynomially with k. Let B̃ be a smooth bounded open subset of
�n

+ containing BR�+. The operator �Kk�1− %�$∗
k�1 is bounded from H−a

0 �B̃� to
L2�B̃�, and its adjoint is bounded from L2�B̃� to Ha�B̃�, hence belongs to �n/a��.
We can take a so large that n/a ≤ �n− 1�/t, then we can conclude that �Kk$

∗
k�1 ∈

��n−1�/t��.

D
ow

nl
oa

de
d 

by
 [

C
op

en
ha

ge
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

5:
35

 1
3 

Fe
br

ua
ry

 2
01

4 



550 Grubb

We have shown in Theorem 3.8 that the norm on operators Kk from a fixed
Sobolev space to another can be estimated in terms of a specific finite subset of
the symbol seminorms. Then since the symbol seminorms of the Kk go to zero
rapidly for k→ �, and the estimates of the operators �1− %�$∗

k�1 grow at most
polynomially in k, the quasinorms N�n−1�/t��Kk$

∗
k�1� go to zero rapidly for k→ �,

so the series in (4.1) is convergent. This completes the proof. �

Corollary 4.2. When G is a C	-smooth singular Green operator of negative order −t
and class 0 on a bounded smooth subset � of �n with boundary , then G ∈ ��n−1�/t��.

Proof. Let ��1� � � � � �J0� be a partition of unity subordinate to a relatively open
cover �U1� � � � � UI1� of �, with coordinate maps &i� Ui → Vi to relatively open subsets
Vi of �

n

+, such that any two �j1� �j2 have support in some Ui� i = i�j1� j2�. (More on
partitions of unity subordinate to covers e.g. in [18], Lemma 8.4.) We can then write

G = ∑
j1�j2≤J0

�j1G�j2� (4.3)

where each piece �j1G�j2 carries over to an s.g.o. �
j1
G�

j2
on �n

+ of the type
considered in Theorem 4.1, by the coordinate change for Ui. We apply Theorem
4.1 to the localized pieces. Since the coordinate change gives rise to L2-bounded
mappings (for compact subsets of Ui resp. Vi containing supp�j1 ∪ supp�j2 resp.
supp�

j1
∪ supp�

j2
), we see in view of (2.4) that �j1G�j2 ∈ �p�� if and only if �

j1
G�

j2
∈

�p��, with equivalent quasinorms Np. It follows that the operators �j1G�j2 are in
��n−1�/t��, then so is their sum by (2.2), and the quasinorm can be estimated in terms
of the quasinorms of the localized pieces. �

4.2. Asymptotic Estimates in Selfadjoint Cases

Next, we shall show Weyl-type spectral estimates in polyhomogeneous selfadjoint
cases.

Theorem 4.3. Let G be a C	-smooth polyhomogeneous singular Green operator on �n
+

of order −t < 0 and class 0, selfadjoint and ≥ 0, and let ��x� = �0�x
′��n�xn�, where

�0 ∈ C�
0 ��

n−1���, and �n ∈ C�
0 ����� equals 1 on a neighborhood of 0. Then the

eigenvalues of �G� satisfy the asymptotic estimate

�j��G��j
t/�n−1� → c��2

0g
0�t/�n−1� for j → �� (4.4)

where

c��2
0g

0� = 1
�n−1��2���n−1�

∫
�n−1

∫
��′ �=1

tr���0�x
′�2g0�x′� �′� Dn��

�n−1�/t� d dx′� (4.5)

Proof. In addition to the decomposition of G as in Lemma 3.10 using Laguerre
operators to the right, we can decompose by Laguerre operators to the left, writing
G in the form

G = ∑
l�m∈�0

$lClm$
∗
m� by defining Clm = $∗

l G$m = $lKm� (4.6)
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Spectral Asymptotics 551

for each l�m. For with this definition,∑
l�m∈�0

$lClm$
∗
m = ∑

l�m∈�0

$l$
∗
l G$m$

∗
m = G�

in view of (3.37). Note that

C∗
lm = $mG

∗$∗
l = Cml�

since G = G∗.
Each Clm is an operator of pseudodifferential type on �n−1, of the form $lKm

with Km as defined in Lemma 3.10; here since we compose with $l to the left, we
get from the composition rules that

Clm = C0
lm + C ′

lm� C0
lm = OP′�clm�x

′� �′�� with

clm = !l�xn� �� �n km�x′� �′� Dn� ∈ C	S−t��n−1 ×�n−1��

C ′
lm � H

s−t−#��n−1�→ Hs��n−1� for �s� < 	�−	+ # < s < 	�

The symbol clm�x
′� �′� is a polyhomogeneous C	-smooth �do symbol on �n−1 of

order −t.
We shall also consider finite sums

GM = ∑
l�m<M

$lClm$
∗
m�

Defining


M = �$0 $1 · · · $M−1� � �M = (
Clm

)
l�m=0�����M−1

� (4.7)

a row matrix of Poisson operators, resp. an M ×M-matrix of �do-type operators,
we can write

GM = 
M�M

∗
M�

it ranges in
⊕

j<M Hj and vanishes on
(⊕

j<M Hj
)⊥
, cf. (3.37)–(3.38). Since

GM = 
M

∗
MG
M


∗
M�

the nonnegativity of G implies that of GM ; �M is likewise ≥ 0.
Denote

G−GM = G†
M� G†

M = ∑
l or m≥M

$lClm$
∗
m�

The first thing we show is that the contribution from �G†
M� to the spectral

asymptotics of �G� comes from a contributing term where the constant goes to
0 for M → �, plus a term in a better weak Schatten class. Write

∑
l or m≥M =∑

l∈�0�m≥M +∑
l≥M�m<M , and note that
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552 Grubb

∑
l∈�0�m≥M

$lClm$
∗
m = ∑

m≥M
Km$

∗
m�

and, since C∗
lm = Cml,

�
∑

l≥M�m<M
$lClm$

∗
m�

∗ = ∑
l≥M�m<M

$mC
∗
lm$

∗
l =

∑
m<M�l≥M

$m$
∗
mKl$

∗
l = 'M

∑
l≥M

Kl$
∗
l �

with 'M = ∑
m<M $m$

∗
m = 
M


∗
M a selfadjoint projection singular Green operator

in L2��
n
+�. Thus

G†
M = ∑

l or m≥M
$lClm$

∗
m = ∑

m≥M
Km$

∗
m + �'M

∑
m≥M

Km$
∗
m�

∗�

By the calculations in the proof of Theorem 4.1,

N�n−1�/t��
∑
m≥M

Km$
∗
m�� ≤ C

∑
m≥M

m�N�n−1�/t��Km$
∗
m��→ 0 for M → ��

This takes care of the first term in �G†
M�, and for the last term we insert a cutoff

function ", equal to 1 on a ball containing supp�, leading to:

�'MKm$
∗
m� = �'M"Km$

∗
m!+ "�'M�1− "�Km$∗

m��

Here the first term defines a sequence that is rapidly decreasing in m with respect
to the N�n−1�/t-quasinorm, since �'M has bounded L2-norm independent of M . So
the N�n−1�/t-quasinorm of the sum over m ≥ M goes to 0 for M → �. In the second
term, �'M�1− "� is of order −� and the norm estimates from H−a to L2 are at
most polynomially growing in M for each fixed a, so the summation in m is in �p��
for all p > 0. Thus

�G†
M� = G†

M�1�� +G†
M�2��� (4.8)

where N�n−1�/t�G
†
M�1���→ 0 for M → �, and G†

M�2�� ∈ ⋂
p>0 �p�� for all M . We view

the operators as perturbations of �GM�, where Lemma 2.4 1� can be used for
GM�2��, and Lemma 2.4 2� will later be used for GM�1��.

Now consider �GM�. Let B
′
R be a ball containing supp�0, and let % ∈ C�

0 ��
n−1�

be such that %�x′� = 1 on B′
R. Then �0 = %�0, and we write

�GM� = ∑
l�m<M

�$l%Clm$
∗
m�+ ∑

l�m<M

�$l�1− %�Clm$∗
m��

Here each �$l�1− %� is of order −�, so �$l�1− %�Clm$∗
m� is continuous from

H−t��n
+� to Ha��n

+� for any a ∈ �, hence is in �p�� for all p > 0 (note the
compactly supported factor � to the right). Similarly, we can insert % between Clm
and $∗

m, making an error in
⋂
p>0 �p��, and this leaves us with having to show the

asymptotic estimate for ∑
l�m<M

�$l%Clm%$
∗
m��
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Spectral Asymptotics 553

As a next step, we observe that

�1− �n�xn���′�x′�$l%Clm%$
∗
m�

has the factor �1− �n�$l which is also of order −�, so that the operator it enters
in, contributes with a term in

⋂
p>0 �p��. Then �n can be omitted from the operator

we have to study. The same holds to the right. In both cases we use that a factor %
inside the expression assures that the composed map passes via a compact set.

Now the problem is reduced to studying a sum of terms

�0$l%Clm%$
∗
m�0�

Here we note that

�0$l%Clm%$
∗
m�0 = ��0�$l�%Clm%$

∗
m�0 +$l�0Clm%$

∗
m�0

since �0% = �0; here the commutator ��0�$l� is of 1 step lower order than $l, so
the operator is in ��n−1�/�t+1��� and will not contribute to the asymptotic formula.
Doing a similar commutation to the right, we end up with having to study

GM��0
= ∑

l�m<M

$l�0Clm�0$
∗
m�

With the notation (4.7),

GM��0
= 
M�M��0


∗
M� where �M��0

= (
�0Clm�0

)
l�m=0�����M−1

�

The operator is selfadjoint ≥ 0, so we can use that eigenvalues are preserved under
commutation, to calculate:

sj�GM��0
� = �j�GM��0

� = �j�
M�M��′
∗
M� = (4.9)

�j��M��0

∗
M
M� = �j��M��′� = sj��M��0

��

since 
∗
M
M equals the identity matrix in view of (3.37).

We have now arrived at the consideration of the operator of �do-type �M��0
. It

is of the form

�M��0
= OP′�cM��0

�+ R� cM��0
= ��0�x

′�2clm�x
′� �′��l�m<M�

where R� H−t−#��n−1�→ H0�B′
R�, hence is in ��n−1�/�t+#��� (for some # > 0). A

spectral asymptotics formula is obtained for OP′�cM��0
� by application of Theorem

2.5, and it extends to �M��0
by Lemma 2.4 1�, giving:

sj��M��0
�jt/�n−1� → c�c0M��0

�t/�n−1� for j → �� (4.10)

where the constant is defined as in (2.20) and c0M��0
is the principal part of cM��0

.
Hence sj�GM��0

� likewise has this behavior (cf. (4.9)), and so has sj��GM��, since
GM��0

− �GM� was shown above to be in ��n−1�/�t+
��� for some 
 > 0.
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554 Grubb

Since trc0M��0
�x′� �′� = ∑

m<M �
2
0c

0
mm�x

′� �′� = tr�2
0g

0�x′� �′� Dn� (since these
symbols are related in a similar way as the operators), and a similar rule holds for
traces of powers of these nonnegative selfadjoint operators, we have that

c�c0M��0
� = c��2

0g
0
M�

defined as in (4.5) from the symbol of �0GM�0. So we can now write

sj��GM��j
t/�n−1� → c��2

0g
0
M�

t/�n−1� for j → �� (4.11)

Finally we combine this with the information we have on G†
M . It gives that

�G� = �GM�+G†
M�1��0

+G†
M�2��0

�

where N�n−1�/t�G
†
M�1���→ 0 for M → �, and G†

M�2�� ∈ ⋂
p>0 �p�� for all M . By

Lemma 2.4 1�, �GM�+G†
M�2��′ likewise has the spectral asymptotic behavior (4.11).

Moreover, c��2
0g

0
M�→ c��2

0g
0� for M → � (using that g0M → g0 in the appropriate

symbol norms). Then since supj sj�G
†
M�1��0

�jt/�n−1� → 0 for M → �, an application
of Lemma 2.4 2� gives (4.4) with (4.5). �

We have a similar result in the curved domain situation:

Theorem 4.4. Let G be a selfadjoint nonnegative C	-smooth polyhomogeneous singular
Green operator of negative order −t and class 0 on a bounded smooth subset � of �n

with boundary . Then the positive eigenvalues of G satisfy an asymptotic estimate

�j�G�j
t/�n−1� → c�g0�t/�n−1� for j → �� (4.12)

where

c�g0� = 1
�n−1��2���n−1�

∫


∫
��′ �=1

tr�g0�x′� �′� Dn�
�n−1�/t� d dx′� (4.13)

Proof. On a tubular neighborhood of  we can construct a family of C�-
smooth Poisson operators $̃l, l ∈ �0, such that their symbol-kernels at  in local
coordinates have principal part equal to !l�xn� ���

′�� at each x′ ∈ .
Define

C̃lm = $̃∗
l G$̃m for l�m ∈ �0�

G̃M = ∑
l�m<M

$̃lC̃lm$̃
∗
m� (4.14)

G̃†
M = G− G̃M�

Note that C̃∗
lm = C̃ml, since G is selfadjoint. We shall show that these operators act

in a similar way as in the case studied in Theorem 4.3.
First consider G̃M . Defining


̃M = �$̃0 $̃1 · · · $̃M−1�� �̃M = (
C̃lm

)
l�m=0�����M−1

� (4.15)
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Spectral Asymptotics 555

a row matrix of Poisson operators, resp. an M ×M-matrix of �do-type operators,
we can write

G̃M = 
̃M�̃M
̃
∗
M�

Then since it is selfadjoint ≥ 0:

sj�G̃M� = �j�GM� = �j�
̃M�̃M
̃
∗
M� = �j��̃M
̃

∗
M
̃M��

Here �̃M is selfadjoint nonnegative, since for u = �u0� � � � � uM−1� ∈ L2��
M ,

��̃Mu� u�L2��M = ∑
l�m<M

�C̃lmum� ul�L2�� =
∑

l�m<M

�G$̃∗
mum� $̃

∗
l ul�L2��� ≥ 0�

Moreover, 
̃∗
M
̃M a selfadjoint nonnegative M ×M-matrix of C�-smooth �do’s

with principal part IM (the identity matrix). Since it is elliptic nonnegative, its square
root PM is well-defined (Seeley [30]). Then we can continue the spectral calculation
as follows:

�j��̃M
̃
∗
M
̃M� = �j��̃MP

2
M� = �j�PM�̃MPM� = �j��̃M + R� = sj��̃M + R��

where R is selfadjoint of the form R = �̃M�PM − IM�+ �PM − IM��̃MPM . Since �̃M ∈
��n−1�/t��, PM − IM ∈ ��n−1��� and PM is bounded, R ∈ ��n−1�/�t+1��� by (2.3), (2.4).
To �̃M we can apply Theorem 2.4 getting a spectral asymptotics formula, and to
�̃M + R we can apply the perturbation rule Lemma 2.4 1� for s-numbers. This gives,
in view of the above identifications of eigenvalues:

sj�G̃M�j
t/�n−1� → c�c0M�

t/�n−1� for j → �� (4.16)

where the constant is defined as in (2.20) and c0M denotes the principal symbol of �̃M .
Now we turn to the study of G̃†

M . Here we use a localization as in the proof of
Corollary 4.2, leading to the study of finitely many localized pieces

G̃†
M�i�j = �

i
�G− ∑

l�m<M

$̃lC̃lm$̃
∗
m��j�

acting in �n
+. Consider one of these pieces. We can assume that G is defined on all

of �n
+ although it only enters with cut-off functions around it. Write

G = ∑
l�m∈�0

$lClm$
∗
m� G†

M = ∑
l or m≥M

$lClm$
∗
m�

as in the proof of Theorem 4.3, then

G̃†
M�i�j = �

i
�
∑

l�m∈�0

$lClm$
∗
m − ∑

l�m<M

$̃lC̃lm$̃
∗
m��j

= �
i
�G†

M + ∑
l�m<M

�$lClm$
∗
m − $̃lC̃lm$̃

∗
m���j�

D
ow

nl
oa

de
d 

by
 [

C
op

en
ha

ge
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

5:
35

 1
3 

Fe
br

ua
ry

 2
01

4 



556 Grubb

Here

�
i
�$lClm$

∗
m − $̃lC̃lm$̃

∗
m��j = �

i
��$l − $̃l�Clm$

∗
m + $̃l�Clm − C̃lm�$∗

m

$̃lC̃lm�$
∗
m − $̃∗

m���j�

which is in ��n−1�/�t+#��� with # > 0. This is seen by inspecting each term, e.g.,

�
i
�$l − $̃l�Clm$

∗
m�j = �

i
�$l − $̃l�%Clm$

∗
m�j + �i�$l − $̃l��1− %�Clm$∗

m�j�

with % ∈ C�
0 ��

n−1� equal to 1 on B′
R� BR ⊃ supp�

i
, where the first term is composed

of operators in �n−1�� and ��n−1�/t��, and the second term goes from H−t��n
+� to

Ha�BR�+�, any a > 0. We also use that Clm − C̃lm is of order −t − 1, since the two
operators have the same principal symbol.

Finally, �
i
G†
M�j is of the type already analyzed in the proof of Theorem 4.3;

�
i
G†
M�j = �

i
G†
M�1�j + �iG

†
M�2�j�

where �
i
G†
M�2�j ∈ ��n−1�/�t+#��� and N�n−1�/t��iG

†
M�1�j� goes to 0 for M → �. Carrying

the operators back to � and summing over i� j, we find that

G̃†
M = G̃†

M�1 + G̃†
M�2

with similar properties. The proof can now be completed in the same way as the
proof of Theorem 4.3. �

For a nonselfadjoint singular Green operator G one gets the result of Theorem
4.3 when G∗G can be brought on the form G1 + R with G1 as in Theorem 4.3 and R
of order < −tn/�n− 1�. This holds for 	 large, in particular when G is C�-smooth,
and hereby provides another proof of Theorem 4.10 in [15].

5. Results for Boundary Terms Arising from Resolvents

5.1. The Dirichlet Resolvent

As we saw in Section 4, a severe difficulty in the discussion of spectral asymptotics
formulas for C	-smooth singular Green operators of order −t is that although
the remainders in compositions are of lower order, say −t − #, they only gain an
�n/�t+#���-estimate, which is generally not better than the estimate in ��n−1�/t�� one
is aiming for.

In the treatment of singular Green terms coming from resolvents of differential
boundary problems, we shall use another strategy that is based on the special
product form of the s.g.o.-terms. This will even allow nonselfadjointness.

Consider a second-order strongly elliptic differential operator A in divergence
form

A = −
n∑

j�k=1

�jajk�x��k +
n∑
j=1

aj�x��j + a0�x�� (5.1)
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Spectral Asymptotics 557

where the ajk and aj are functions in H1
q ��� = �u ∈ Lq��� � Du ∈ Lq���n� and a0 ∈

Lq���, for some q > n. Let 	 ∈ �0� 1− n/q�; recall that H1
q ��� ↪→ C	���.

In the present section we consider a smooth �; this will be relaxed in Section 6
where there are additional bounds on 	 adapted to the boundary regularity as in [4].

It follows from [4] that the solution operator for the nonhomogeneous Dirichlet
problem for A (which exists uniquely, by a variational construction, when a
sufficiently large constant has been added to A) maps as follows:

� =
(
A
�0

)
has the inverse  = (

R� K�
)
�

Hs���
×

Hs+ 3
2 ��

→ Hs+2����

for − 	 < s ≤ 0� (5.2)

belonging to the nonsmooth �dbo calculus in the sense that R� and K� have the
form of C	-smooth �dbo’s composed with order-reducing operators, plus lower-
order remainders. Moreover, K� extends to a bounded mapping from Hs′− 1

2 �� to
Hs′��� for s′ ∈ �0� 2�, belonging to the calculus in a suitable sense.

Furthermore, when A is extended to a uniformly strongly elliptic operator on
�n with positive lower bound, the inverse Q there is the sum of a C	-smooth �do
composed with an order-reducing operator, plus a remainder of lower order. Let Q+
be the truncation to �, i.e., Q+ = r�Qe�, where r� restricts to � and e� extends by
zero. Then the resolvent can be written

R� = Q+ +G�� G� = −K��0Q+� (5.3)

Here the product structure of G�, passing via the �n− 1�-dimensional manifold
, will be useful in Schatten class considerations.

The choice of the space H1
q for the coefficients in (5.1) is governed by the fact

that a result of Marschall in [29] shows that this allows a comparison with the x-
form operator A× = −∑n

j�k=1 ajk�x��j�k, assuring that A− A× is continuous from
Hs+2−#��� to Hs��� for −	+ # < s ≤ 0.

Our strategy will be to approximate G� by a composition of C�-coefficient
operators, obtained by approximation the original boundary value problem by C�-
coefficient problems, where the desired estimates are well-known.

Proposition 5.1. There is a sequence of C�-smooth invertible �dbo systems �k =(
Ak
�0

)
, with inverses A−1

k = Qk on �n, �−1
k = k =

(
R��k K��k

)
on �, such that the

symbol seminorms of A− Ak converge to 0 in H1
q S

2��n ×�n�, and in C	
′
S2��n ×�n�

for all 	′ ∈ �0� 	� , and when k→ �,

�A− Ak���Hs+2��n��Hs��n�� → 0 for each �s� < 	�
��− �k���Hs+2����Hs���×Hs+ 3

2 ���
→ 0 for each �s� < 	�

�Q−Qk���Hs��n��Hs+2��n�� → 0 for each s ∈ �− 	� 0�� (5.4)

�−k���Hs���×Hs+ 3
2 ���Hs+2����

→ 0 for each s ∈ �− 	� 0��
�K� − K��k���Hs′− 1

2 ���Hs
′
����

→ 0 for each s′ ∈ �0� 2��
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558 Grubb

Proof. As accounted for in Section 2, Ak = �k ∗ A converges to A in H1
q S

2 and in
C	

′
S2 for any 	′ ∈ �0� 	� . Starting with a sufficiently large k and relabeling, we can

assure that the operators Ak are uniformly strongly elliptic on �n, uniformly in k.
(Note that the Ak are differential operators and only their coefficients are modified
by convolution with �k.) We can assume that a sufficiently large constant has been
added to A such that all the operators have a lower bound greater than a positive
constant.

By Theorem 2.3 ff., the first two lines in (5.4) are valid. For the second line
we note that for differential operators, the restriction to functions on � is tacitly
understood, and that �0 cancels out.

The other statements will be obtained by following each step of the construction
in [4]. First there is the construction in Section 4.2 there, where parametrices
are constructed from the principal symbols in a localized situation. The principal
interior symbol and boundary symbol are determined pointwise in x or x′ by the
standard theory; when C	

′
-dependence is taken into account, one similarly gets the

C	
′
-dependence for the inverted symbols. Then the convergence of the principal

symbol of Ak to that of A in C	
′
implies a convergence in C	

′
of the inverse principal

symbol and boundary symbol. By Theorem 2.3 ff. and Theorem 3.8, the resulting
operator families converge in the asserted Sobolev norms; note also that the Sobolev
operator norms are bounded uniformly in k.

Next, we go to the (-dependent construction in Sect. 4.3 of [4], applied to the
operators on �. Here the remainder in the calculation of �k�(�

0
k�(�− I will have

not only lower order, but also a small operator-norm in terms of (, uniformly in k.
It is found that for sufficiently large ( in a sector around �− the exact inverses

are determined by Neumann series arguments and have the form of the sum of
a parametrix coming from the calculus and a lower-order term. The convergence
in the third and fourth lines of (5.4) follows from the estimates, for the values
of s allowed in the inverse construction for the nonsmooth problem, namely for
s ∈ �− 	� 0�.

For the last statement in (5.4) we use the additional information worked out
in Section 5.2 of [4], again examined with a view to the approximation in C	

′
for

k→ �. �

Theorem 5.2.
1� The �do term Q+ in (5.3) has the spectral behavior

sj�Q+�j
2/n → c�q0+�

2/n for j → �� (5.5)

where the constant is defined from the principal symbol q0 (or a0 = �q0�−1):

c�q0+� = 1
n�2��n

∫
�

∫
���=1

�q0∗�x� ��q0�x� ���n/4 d dx

= 1
n�2��n

∫
�

∫
���=1

�a0∗a0�−n/4 d dx� (5.6)

2� The singular Green term G� = −K��0Q+ (cf. (5.3)) in the solution operator to
the Dirichlet problem for A has the spectral behavior

sj�G��j
2/�n−1� → c�g0�2/�n−1� for j → �� (5.7)
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Spectral Asymptotics 559

where the constant is defined from the principal symbol g0 of G�:

c�g0� = 1
�n−1��2���n−1�

∫


∫
��′ �=1

tr��g0∗�x′� �′� Dn�g
0�x′� �′� Dn��

�n−1�/4� d dx′� (5.8)

cf. also (5.11) below.

Proof. We approximate Q and K� by the sequences Qk and K��k as in Proposition
5.1. It is known in the C�-case that the exact solution operators Qk, k =

(
R��k K��k

)
belong to the �dbo calculus (cf. e.g. [16] or the recent account in [18], Sect. 11.3).

1�. The statements (5.5)–(5.6) are well-known for Qk�+, see e.g. [16] Proposition
4.5.3. It follows from the third line in (5.4) that Q+ −Qk�+ → 0 in the norm of
��H0����H2����, hence in the quasinorm of �n/2���L2����. Then the result follows
by an application of Lemms 2.4 2�.

2�. The statements (5.7)–(5.8) for G��k = −K��k�0Qk�+ are known for these
operators from [15].

Now we have

G� −G��k = �−K� + K��k��0Q+ − K��k��0Q+ − �0Qk�+��

Here �0Q+ is bounded from H0��� to H
3
2 ��. Writing it as )

− 3
2

0 )
3
2
0 �0Q+, where the

)r0 are homeomorphisms from Hs�� to Hs−r �� for all s, with �)r0�
−1 = )−r

0 , we see
that �0Q+ belongs to ��n−1�/�3/2����L2���� L2���, as the composition of the operator

)
− 3

2
0 ∈ ��n−1�/�3/2����L2��� and the bounded operator )

3
2
0 �0Q+ from L2��� to L2��.

Similarly, since K� − K��k = �K� − K��k�)
1
2
0)

− 1
2

0 , where )
− 1

2
0 ∈ ��n−1�/�1/2����L2���,

and the norm of �K� − K��k�)
1
2
0 from L2�� to L2��� goes to 0 in view of (5.4),

N�n−1�/�1/2��K� − K��k�→ 0 for k→ �� (5.9)

It follows by (2.3) that

N�n−1�/2��K� − K��k��0Q+�→ 0 for k→ ��

For the other term, note that N�n−1�/�1/2��K��k� is bounded in k, and
N�n−1�/�3/2���0Q+ − �0Qk�+�→ 0 for k→ � by (5.4), so also

N�n−1�/2�K��k��0Q+ − �0Qk�+��→ 0 for k→ ��

Together these statements show that

N�n−1�/2�G� −G��k�→ 0 for k→ ��

We can then apply Lemma 2.4 2� to the decomposition G� = G��k + �G� −G��k�,
concluding the assertion in the theorem, since g0k → g0 for k→ �. �
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560 Grubb

Remark 5.3. Because of the special structure of G� it is easy to determine the
constant, in the following way: when all operators are smooth we have, denoting
�0Q+ = T :

sj�G��
2 = �j�G

∗
�G�� = �j�T

∗K∗
�K�T� = �j�K

∗
�K�TT

∗� = �j�P1P
′
1� = �j�P2�P

′
2�

2P2��

where P1 = K∗
�K�� P

′
1 = TT ∗ are selfadjoint nonnegative elliptic operators with

square roots P2 resp. P ′
2. Then

sj�G�� = sj�P
′
2P2��

To calculate the principal symbols at a point x′ ∈  we consider the principal
symbol of A in local coordinates for ��′� ≥ 1:

a0�x′� �′� �n� = s0�x
′���n − (+�x′� �′����n − (−�x′� �′��

= s0�x
′��i�n + &+�x′� �′���−i�n + &−�x′� �′���

where Im (± ≷ 0, and &+ = −i(+� &− = i(− have positive real part. Then Q has
principal symbol

q0 = 1
a0

= 1
s0�&

+ + &−�
( 1
&+ + i�n

+ 1
&− − i�n

)
�

and it follows from the rules of calculus for �dbo’s that T and K� have principal
symbols

t0 = 1
s0�&

+ + &−��&− − i�n�
� k0 = 1

&+ + i�n
� (5.10)

Then P ′
1 = TT ∗ and P1 = K∗

�K� have principal symbols

p′01 = 1
�s0�&+ + &−��22Re &−

� p01 =
1

2Re &+
�

and (cf. Theorem 2.5)

c�g0� = c�p′02 p
0
2� = 1

�n−1��2���n−1�

∫


∫
��′ �=1

�4�s0�&+ + &−��2

Re &− Re &+�−�n−1�/4 d dx′� (5.11)

The formula carries over to the nonsmooth case since the symbols converge in C	
′

(	′ < 	) for k→ �.

5.2. Resolvent Differences

Next, we consider the difference between the Dirichlet resolvent and the resolvent
of a Neumann problem for A defined by a boundary condition �u− C�0u = 0 as
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Spectral Asymptotics 561

studied in [4], Section 7. Here �u is the conormal derivative,

�u =
n∑

j�k=1

nj�0ajk�ku� (5.12)

where �n = �n1� � � � � nn� is the interior unit normal on . Moreover, C is a first-
order tangential differential operator C = c ·D	 + c0, where c = �c1� � � � � cn�, all cj ∈
H1
q �� (D	 = −i�	 as defined in [4], Section 2.4). To assure invertibility, let us assume

that the sesquilinear form

a��C�u� v� =
n∑

j�k=1

�ajk�ku� �jv�L2��� + �
n∑
j=1

aj�ju+ a0u� v�L2��� + �C�0u� �0v�L2�� (5.13)

satisfies Re a��C�u� u� ≥ c0�u�2H1���
− k�u�2L2��� for u ∈ H1���; then we can add a

constant (absorbed in a0) such that the realization A��C in L2��� defined from a��C
by variational theory has its spectrum in a sector in �Re z > 0�. As shown in [4]
there holds a Krein-type resolvent formula

A−1
��C − A−1

� = K�L
−1�K′

��
∗� (5.14)

here L acts like C − P���, where P��� is the Dirichlet-to-Neumann operator. The
boundary value problem is elliptic, hence so is L = C − P���, so D�L� = H

3
2 ��

(cf. [4] Th. 7.2), mapping this space homeomorphically onto H
1
2 ��.

It is shown in Sect. 5 of [4] that

P���� H
s− 1

2 ��→ Hs− 3
2 ��

is continuous for s ∈ �0� 2�, and since multiplication by the coefficients cj in C
preserves Hs�� for �s� ≤ 1 (cf. [4] (2.29)), C has this mapping property for s ∈ � 12 � 2�.
So L extends to a continuous map of this kind for s ∈ � 12 � 2�.

When we now also approximate C by smoothed out operators Ck, and P��� is
approximated by smooth �do’s P����k as a result of the earlier mentioned smoothing
of A, we get a sequence Lk = Ck − P����k such that

�L− Lk���Hs− 1
2 ���H

s− 3
2 ���

→ 0 for k→ �� all s ∈ � 12 � 2��

Since L is an invertible operator from H
3
2 �� to H

1
2 ��, Lk is likewise so for large k,

say k ≥ k0, by a Neumann series argument. Moreover, the inverses L−1
k are estimated

uniformly in k ≥ k0, and

�L−1 − L−1
k �

��H
1
2 �H

3
2 �

= �L−1�Lk − L�L−1
k �

��H
1
2 �H

3
2 �

→ 0 for k→ ��

We can then show:

Theorem 5.4. The singular Green term GC = K�L
−1�K′

��
∗ in the Krein resolvent

formula (5.14) has the spectral behavior

sj�GC�j
2/�n−1� → c�g0C�

2/�n−1� for j → �� (5.15)

D
ow

nl
oa

de
d 

by
 [

C
op

en
ha

ge
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

5:
35

 1
3 

Fe
br

ua
ry

 2
01

4 



562 Grubb

where the constant is defined from the principal symbol g0C of GC by formula (5.8), cf.
also (5.17) below.

Proof. Define GC�k = K��kL
−1
k �K

′
��k�

∗, and write

GC −GC�k=�K� − K��k�L−1�K′
��

∗ + K��k�L−1 − L−1
k ��K

′
��

∗ + K��kL−1
k ��K

′
��

∗ − �K′
��k�

∗��

(5.16)

We shall show that all three terms have N�n−1�/2-quasinorms going to 0 for k→ �.
Then since the statements in the theorem are well-known for GC�k, the result follows
for GC by application of Lemma 2.4 2�.

Since K′
� is of the same kind as K�, its adjoint satisfies for all s′ ∈ �0� 2� that

�K′
��

∗ ∈ ��H−s′
0 ����H−s′+ 1

2 ���, and �K′
��

∗ − �K′
��k�

∗ goes to zero in these operator
norms for k→ �.

In the first term in (5.16), the boundedness of �K′
��

∗ from H0��� to H
1
2 �� and

that of L−1 from H
1
2 �� to H

3
2 �� imply that L−1�K′

��
∗ ∈ ��H0����H

3
2 ���; hence it

lies in ��n−1�/�3/2��� (by an argumentation as in the proof of Theorem 5.2). Together
with (5.9) this implies that the composed operator goes to 0 in ��n−1�/2�� for k→ �.

For the second term, we use that the norm of �L−1 − L−1
k ��K

′
��

∗ in
��H0����H

3
2 ��� goes to zero, and for the last term we use that the norm of

L−1
k ��K

′
��

∗ − �K′
��k�

∗� in ��H0����H
3
2 ��� goes to zero; both are combined with the

fact that K� ∈ ��n−1�/�1/2���. This completes the proof. �

Remark 5.5. Also here, the constant can be determined from a formula with �do’s
on . In local coordinates, K� has the principal symbol (5.11), and since A′ has the
principal symbol a0, K′

� has the principal symbol �&− + i�n�−1, and that of �K′
��

∗

is �&− − i�n�−1. Let P ′′
1 = �K′

��
∗K′

�, with square root P ′′
2 ; here p′′02 = �2Re &−�−1/2.

Then, with notation from Remark 5.3 (recall p02 = �2Re &+�−1/2), one has in case of
smooth operators:

sj�GC�
2 = �j�K

′
��L

∗�−1K∗
�K�L

−1�K′
��

∗� = �j��L
∗�−1P2

2L
−1�P ′′

2 �
2� = sj�P2L

−1P ′′
2 �

2�

and hence, with l0 denoting the principal symbol of L,

c�g0C� = 1
�n−1��2���n−1�

∫


∫
��′ �=1

�4�l0�2 Re &+ Re &−�−�n−1�/4 d dx′� (5.17)

The formula extends to nonsmooth cases by the approximation used in Theorem
5.4.

Corollary 5.6. The operators A−1
� and A−1

��C have the same spectral asymptotic behavior
as Q+ in Theorem 5.2.

Proof. The statement for A−1
� is found by application of Lemma 2.4 1� and

Theorem 5.2 to (5.3). Next, the statement for A��C follows similarly from (5.14) and
Theorem 5.4. �

Remark 5.7. The estimates extend to differences between resolvents at arbitrary
points of ��A�� ∩ ��A��C� in the same way as in [19], using (3.7) there.
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Spectral Asymptotics 563

6. Nonsmooth Boundaries

In [4] also open sets with nonsmooth boundaries were allowed. While the coefficients
ajk� aj were taken in H1

q ��� (a0 ∈ Lq���) as above, the domain � was taken to be

B
3
2
p�2 (meaning that the boundary is locally the graph of a function in B

3
2
p�2��

n−1�),
possibly with different choices of p and q. More precisely it was required that p� q >
2, p < �, with

1− n
q
≥ 1

2 − n−1
p

≡ 	0 > 0� (6.1)

then 	 was taken as 	0. This domain regularity includes C
3
2+
 for small 
, and is

included in C1+	0 .
One interest of the Besov space B

3
2
p�2 is that it hits the differentiability index 3

2

in an exact way, better that C
3
2+
. It comes in as the boundary value space (trace

space) for the anisotropic Sobolev space

W 2
�2�p���

n
+� = �f � D�f ∈ L2��+� Lp��

n−1��� ��� ≤ 2�� (6.2)

Proposition 6.1. 1� Let 0 < � < �1 < 1. When � is a bounded C1+�1 -domain, there
exists a sequence of bounded C�-domains �l with C

1+�-diffeomorphisms (l� �
∼→ �l

(sending �� =  onto ��l = l), such that (l → Id in C1+� on a neighborhood �′ of
�, and in this sense �l → �, for l→ �.

2� When � is a bounded domain with B
3
2
p�2-boundary, it is C

1+	0 -smooth, and there

exists a sequence of bounded C�-domains �l with C1+	0 -diffeomorphisms (l� �
∼→

�l (associated to the B
3
2
p�2-boundary structure as in [4]) such that (l → Id in C1+	0

on a neighborhood �′ of �, and in this sense �l → �, for l→ �. Moreover, the
estimates for the associated operators studied in [4] for second-order problems hold
boundedly in l.

Proof. 1�. The C1+�1 -structure is defined by a family of C1+�1 -charts &j� Vj →
Uj , j = 1� � � � � N , where Vj and Uj are open subsets of �n and &j is a C1+�1 -
diffeomorphism from Vj to Uj , sending Vj�+ = Vj ∩�

n

+ resp. Vj�0 = Vj ∩ ��n−1 ×
�0�� onto Uj�+ = Uj ∩� resp. Uj�0 = Uj ∩ ��, and where U ≡ ⋃

j≤N Uj ⊃ �. We
can choose bounded open subsets V ′

j � V
′′
j , mapped onto U ′

j � U
′′
j , such that V

′′
j ⊂

V ′
j ⊂ V

′
j ⊂ Vj , U

′′
j ⊂ U ′

j ⊂ U
′
j ⊂ Uj , with U

′′ ≡ ⋃
j≤N U ′′

j ⊃ �, and there is a smooth
partition of unity ��j�j≤N for U

′′
with supp�j ⊂ U ′

j , �j ≥ cj > 0 on U ′′
j for each j.

With �l denoting an approximative unit with supp�l ⊂ B1/l, the convolution �l ∗ &j
is well-defined on Vj�l = �x ∈ Vj � dist�x� �Vj� > 1/l�, and

�l ∗ &j → &j in C
1+��V ′

j � for l→ �� l ≥ l0�

with l0 so large that V
′
j ⊂ Vj�l0 for all j ≤ N . Then define the mapping (l on the

neighborhood U = ⋃
Uj of � by

(l =
∑
j≤N
��l ∗ &j� � ��j&−1

j �� (6.3)

it converges to the identity on U
′′
, in the C1+�-norm.
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564 Grubb

Let �l = (l���; for large l it is contained in a small neighborhood of �. The
mappings �l ∗ &j from V ′

j to neighborhoods of U
′
j are C

� and are bijective from the
sets V ′′

j to their images Ũj�l in the neighborhoods of U
′′
j , for l sufficiently large. Note

that they are C� from the subset V ′′
j�+ (with the flat boundary piece V ′′

j�0 ⊂ �n−1 ×
�0�) to Ũj�l ∩�l, so they provide a system of C�-charts for �l. This is then indeed
a C�-smooth subset of �n.

Since (l → Id on U
′′
, it is a C1+�-diffeomorphism from U ′′ to (l�U

′′� for l
sufficiently large. In particular, it then defines a C1+�-diffeomorphism from � to �l,
converging to the identity for l→ �; in this sense �l → � for l→ �.

2�. In the case of a domain with B
3
2
p�2-boundary, one can likewise approximate

with C�-domains. It is shown in [4] that such domains are C1+	0 , so one can use
1� to do a C1+	-approximation for any 	 < 	0. One can also do a more precise
construction adapted to the structure explained in [4]:

We refer to the notation there, see in particular Lemma 2.2, Prop. 2.7 and
Remark 2.9 there. Recall that � is covered by patches U0� � � � � UJ , where U 0 ⊂ �,
and the other Uj , together covering , are such that Uj ∩� is of the form Uj ∩
�x � xn > �j�x′�� for a function �j ∈ B

3
2
p�2��

n−1� (after a rotation of coordinates).
From �j one constructs (in Prop. 2.7 of [4]) a C1+	0 -diffeomorphism Fj on
�n mapping �n

+ to �x � xn > �j�x′��. For each of these Uj , we can smoothen
out the boundary defining function �j�x

′� by convolution with an approximate

identity �l�x
′�; then �l ∗ �j converges to �j in B

3
2
p�2-norm for l→ �. The associated

diffeomorphisms Fj�l constructed as in Prop. 2.7 are C� (since the lifting used in
Lemma 2.2 of [4] lifts C� to C�), and converge to Fj in C

1+	0 . For U0 we simply
use the identity diffeomorphism for all l. As under 1�, the approximations can be
pieced together by a suitably chosen partition of unity, leading to an approximation
of � by C�-domains �l, such that the boundary converges in B

3
2
p�2 and the

diffeomorphisms converge in C1+	0 . Moreover, the various other constructions in [4]
can be followed through these coordinate changes. �

For C1-domains it is not hard to prove that 1� holds with approximation in C1.
Let �l = � be one of the approximating domains, with a C1+	-diffeomorphism

(� �→ �. When u is a function on �, denote by u the function on � defined by

u�y� = u�(−1�y�� for y ∈ �� also denoted u � (−1 or �(−1�∗u� (6.4)

An operator B in L2��� carries over to the operator B in L2��� by

B u = �Bu�� also written as �(−1�∗B(∗u�

We have by the rules for coordinate changes:

�Bu� v�L2��� =
∫
�
Bu�x�v̄�x� dx =

∫
�
B u�y�v̄�y�J�y� dy = �B u� J v̄�L2���� (6.5)

where J denotes the Jacobian � det���(−1�j/�yk�j�k=1�����n�; it is a positive C	-function
on �. Denote J�y�

1
2 = "�y�, then moreover,

�Bu� v�L2��� = �B u� "2v̄�L2� � = �"B"−1"u� "v�L2� �� (6.6)
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Spectral Asymptotics 565

in particular one gets for B = I that �u�L2��� = �"u�L2� �.
Thus the mapping $ � u �→ "u = "�(−1�∗u is an isometry of L2��� onto L2� �,

i.e., a unitary operator $ = "�(−1�∗, and by use of this mapping, B is carried over
to the operator on L2� �

B̃ = "B "−1 = $B$−1� (6.7)

The analysis of the spectrum of B can then be performed as an analysis of the
spectrum of B̃. In particular, when B is compact, sj�B� = sj�B̃� for all j.

We shall now show that the results of Section 5 extend to the general case of [4],
where also the boundary is nonsmooth.

Theorem 6.2. Theorems 5.2 and 5.4 (with corollaries and remarks) extend to the

situation where � is a bounded open set in �n with B
3
2
p�2-boundary, satisfying (6.1).

Proof. Consider the Dirichlet and Neumann-type problems for A on �, as defined
in [4]. For each l, apply the diffeomorphism (l of Proposition 6.1 2� to carry
the operators over to  = �l; as shown in [4] this gives operators Al� Cl of the
kind treated in Section 5. For the resulting �do Ql�+ and singular Green terms
G��l = −K��l�0Ql�+ and GCl

= K��lL
−1
l �K

′
��l�

∗ from the solution operators, the spectral
asymptotics results of Section 5 are valid.

Consider, for example, B = GC on �, carried over to Bl = GCl
on �l (the

operators Q+ and G� are treated similarly). Theorem 5.4 and Remark 5.5 applied to
Bl give that

sj�Bl�j
2/�n−1� → c�g0Cl�

2/�n−1� for j → �� where

c�g0Cl� = 1
�n−1��2���n−1�

∫
l

∫
��′ �=1

�4�l0l �
2 Re &+l Re &−l �

−�n−1�/4 d dx′� (6.8)

To obtain similar results for B we define as in (6.7):

B̃l = "lBl"
−1
l � (6.9)

here the s-numbers satisfy for all j� l,

sj�B� = sj�B̃l�� (6.10)

The results of Section 5 will not be applied directly to the operator "lBl"
−1
l , since

the multiplication by the C	0 -functions "l� "
−1
l does not fit easily into the calculus.

Instead we shall use their properties for l→ �. Since (l converges to the identity
in C1+	0 for l→ � on a neighborhood �′ of �, the Jacobian Jl converges to 1 in
C	0��′�, and so does its square root "l as well as the inverse function "−1

l .
Now by (2.4), noting also that Bl = "−1

l B̃l"l,

�"l�L�sj�Bl��"−1
l �L� ≥ sj�B̃l� ≥

1

�"−1
l �L�

sj�Bl�
1

�"l�L�
�

for all j� l (norms in L���′�). Hence, in view of (6.10),

lim supj→�sj�B�j
2/�n−1� ≤ �"l�L��"−1

l �L�c�g0Cl�2/�n−1��
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566 Grubb

lim inf j→�sj�B�j
2/�n−1� ≥ 1

�"l�L��"−1
l �L�

c�g0Cl�
2/�n−1�� (6.11)

for all l. Since �"l�L� and �"−1
l �L� converge to 1 and c�g0Cl�

2/�n−1� → c�g0C�
2/�n−1� for

l→ �, we conclude that

limj→�sj�B�j
2/�n−1� = c�g0C�

2/�n−1�� (6.12)

as was to be shown. �

Appendix. Proof of Theorem 3.7

For the following let �!j����j∈�0
be a smooth partition of unity on �n such that

supp�!0� ⊆ B2�0�� supp�!0� ⊆ �� ∈ �n � 2j−1 ≤ ��� ≤ 2j+1� for j ∈ �

satisfying !j�−�� = !j��� for all � ∈ �n� j ∈ �0 and

����!j���� ≤ C�2
−j��� for all j ∈ �0

for arbitrary � ∈ �n
0 . This implies

����!j���� ≤ C�
��−��� uniformly in j ∈ �0 (A.1)

for all � ∈ �n
0 , since 2j−1 ≤ ��� ≤ 2j+1 on supp!j if j ≥ 1 and the estimate for j = 0

is trivial.

Lemma A.1. Let Z be a Banach space, N ∈ �0, and let g� �n → Z be an N -times
continuously differentiable function, N ∈ �0, with compact support. Then

��−1�g��x��Z ≤ CN �suppg��x�−N sup
���=N

����g�L���n�Z�� (A.2)

uniformly in x �= 0 and g.

Proof. See e.g. Lemma 5.10 in Abels [3]. �

Lemma A.2. Let X0� X1 be Banach spaces, let p ∈ C	Sm1�0��n ×�n� N���X0� X1��,
m ∈ �� N ∈ �� 	 > 0, and let pj�x� �� = p�x� ��!j���� j ∈ �0. Then for all � ∈
�n

0�M ∈ �0� � � � � N� there is a constant C��M such that

���zkj�x� z����X0�X1�
≤ C��M �z�−M2j�n+m+���−M� (A.3)

uniformly in j ∈ �0, z �= 0, where

kj�x� z� �= �−1
��→z�pj�x� ��� for all x� z ∈ �n�

Proof. The lemma follows from Lemma A.1 applied to gx��� = �i���pj�x� ��, where
x ∈ �n is considered as a fixed parameter, cf. Lemma 5.14 in Abels [3]. Since some
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Spectral Asymptotics 567

of the arguments will be modified below, we include the details. Because of (A.1)
and the Leibniz formula, it is easy to show that for all � ∈ �n

0 with ��� ≤ N ,

����pj�x� �����X0�X1�
≤ C�
��m−���

uniformly in x� � ∈ �n and j ∈ �0. Moreover, this implies that for all �� � ∈ �n
0 with

��� ≤ N , ∥∥���(�i���pj�x� ��)∥∥��X0�X1�
≤ C�
���m+���−���

uniformly in x� � ∈ �n and j ∈ �0, by another use of the Leibniz formula. Therefore
Lemma A.1 yields

���zkj�x� z����X0�X1�
≤ CN �supppj�x� ·���z�−M sup

���=M

∥∥���(�i���pj�x� ��)∥∥��X0�X1�

≤ C����M �z�−M2j�n+m+���−M��

since �supppj�x� ��� ≤ C2jn independently of x ∈ �n. �

Note that for the last lemma no smoothness in x is needed; in fact boundedness
in x would suffice.

Recall the notation p�x�Dx� = OP�p�x� ���, cf. (2.9).

Lemma A.3.
Let X0� X1 be Banach spaces and let p ∈ C	Sm1�0��n ×�n� n+ 1���X0� X1��, m ∈

�, 	 > 0, and let pj�x�Dx� = p�x�Dx�!j�Dx�. Then for any 1 ≤ q < �,

�pj�x�Dx����Lq��n�X0��Lq��n�X1��
≤ C2jm for all j ∈ �0� (A.4)

where C does not depend on j.

Proof. The proof is variant of the proof of Lemma 6.20 in Abels [3]. We include
the details for the convenience of the reader and since some of its arguments will be
modified below.

First of all

pj�x�Dx�f =
∫
�n
kj�x� x − y�f�y�dy for all f ∈ � ��n� X0��

where kj satisfies (A.3). According to these estimates∫
�n

�kj�x� z����X0�X1�
dz ≤ C

(∫
�z�≤2−j

2j�n+m�dz+
∫
�z�>2−j

�z�−n−12j�m−1�dz
)
�

The first comes from (A.3) for M = 0 and the second comes from the choice M =
n+ 1. Hence we get by a simple calculation∫

�n
�kj�x� z����X0�X1�

dz ≤ C2jm�
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568 Grubb

which proves (A.4), since∥∥∥∫
�n
kj�x� x − y�f�y�dy

∥∥∥
Lq��n�X1�

≤ sup
x∈�n

∫
�n

�kj�x� z����X0�X1�
dz�f�Lq��n�X0�

for all f ∈ � ��n� X0� because of Young’s inequality for convolution integrals. �

Lemma A.4. Let X0� X1 be Banach spaces and let p ∈ C	Sm1�0��n ×�n� n+
1���X0� X1��, m ∈ �, 	 > 0, and let pj�k�x� �� = !k�Dx�p�x� ��!j��� for all j� k ∈ �0.
Then for any 1 ≤ q < �,

�pj�k�x�Dx����Lq��n�X0��Lq��n�X1��
≤ C2−	k2jm for all j� k ∈ �0� (A.5)

where C does not depend on j� k.

Proof. First of all we have that

sup
x∈�n

����!k�Dx�p�x� �����X0�X1�

≤ C2−	k����p�·� ���C	��n���X0�X1��
≤ C ′
��m−���2−	k�

since C	��n� Z� ⊆ B	�����
n� Z� with continuous embedding, for a general Banach

space Z. If Z = �, then the statement follows e.g. from Theorem 6.2.5 in [5]. For
a general Banach space Z the proof directly carries over. Hence by the Leibniz
formula

����
(
!k�Dx�p�x� ��!j���

)���X0�X1�

≤ C2−	k����
(
p�·� ��!j���

)�C	��n���X0�X1��
≤ C ′
��m−���2−	k

uniformly in j� k ∈ �0, � ∈ �n. Now, if kj�k�x� z� = �−1
��→z�pj�k�x� ���, then

pj�k�x�Dx�f =
∫
�n
kj�k�x� x − y�f�y�dy for all f ∈ � ��n� X0��

Hence as in the proof of Lemma A.2 one shows that

���zkj�k�x� z����X0�X1�
≤ C��M �z�−M2j�n+m+���−M�2−	k

uniformly in j� k ∈ �0, z �= 0, for all ��� = M ∈ �0� � � � � n+ 1�. Therefore the same
estimates as in the proof of Lemma A.3 (with an additional factor 2−	k) prove (A.5).
�

Lemma A.5. Let X0� X1 be Banach spaces, let p ∈ C	S01�0��n ×�n� n+
1���X0� X1��, and let pj�x� �� = p�x� ��!j���. Then for any 1 ≤ q < �, there is a
constant C such that

�!i�Dx�pj�x�Dx����Lq��n�X0��Lq��n�X1��
≤


C2−i	 if i ≥ j + 4�

C if j − 3 ≤ i ≤ j + 3�

C2−j	 if j ≥ i+ 4�

(A.6)
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Spectral Asymptotics 569

uniformly in i� j ∈ �0.

Proof. First of all, if j − 3 ≤ i ≤ j + 3, then the estimate follows from (A.4). To
prove the other cases, we use that

!i�Dx�pj�x�Dx� =
�∑
k=0

!i�Dx�pj�k�x�Dx��

where pj�k�x� �� = !k�Dx�pj�x� ��. Moreover,∫
�n
pj�k�x�Dx�f�x�g�x� dx =

∫
�2n
eix·�!k�Dx�pj�x� ��f̂ ���g�x� d

–�dx

=
∫
�2n
pj�x� ��f̂ ���!k�Dx�e

−ix·�g�x� d–�dx

=
∫
�3n
e−i"·xpj�x� ��f̂ ���!k�"�ĝ��+ "� d–�d–"dx

=
∫
�3n
ei��−�

′�·xp�x� ��!j���f̂ ���!k��
′ − ��ĝ��′� d–�d–�′dx

for all f ∈ � ��n� X1�� g ∈ � ��n�. Here for every x ∈ �n the support of∫
�n
ei��−�

′�·xp�x� ��!j���f̂ ���!k��
′ − ��ĝ��′�d–�

with respect to �′ is contained in

�2k−1 ≤ ��� ≤ 2k+1�+ �2j−1 ≤ ��� ≤ 2j+1�

⊆


�2k−2 ≤ ��� ≤ 2k+2� if k ≥ j + 3�

�2j−2 ≤ ��� ≤ 2j+2� if j ≥ k+ 3�

���� ≤ 2j+2� if j ≥ k�

���� ≤ 2k+2� if k ≥ j�

Now let us consider first the case i ≥ j + 4. Then∫
�n
!i�Dx�pj�k�x�Dx�f�x�g�x� dx

=
∫
�3n
ei��−�

′�·xp�x� ��!j���f̂ ���!k��
′ − ��!i��′�ĝ��′�d–�d–�′dx = 0

for all f ∈ � ��n� X1�� g ∈ � ��n�, if �k− i� ≥ 4, since

�2k−2 ≤ ��� ≤ 2k+2� ∩ �2i−1 ≤ ��� ≤ 2i+1� = ∅ if k ≥ i+ 4�

���� ≤ 2k+2� ∩ �2i−1 ≤ ��� ≤ 2i+1� = ∅ if j ≤ k ≤ i− 4�

���� ≤ 2j+2� ∩ �2i−1 ≤ ��� ≤ 2i+1� = ∅ if k < j�

Therefore

!i�Dx�pj�x�Dx� =
i+3∑
k=i−3

!i�Dx�pj�k�x�Dx��
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570 Grubb

which implies

�!i�Dx�pj�x�Dx����Lq��n�X0��Lq��n�X1��

≤
i+3∑
k=i−3

�!i�Dx�pj�k�x�Dx����Lq��n�X0��Lq��n�X1��
≤ C2−	i

due to (A.5).
Finally, we consider the case j ≥ i+ 4.∫

�n
!i�Dx�pj�k�x�Dx�f�x�g�x� dx

=
∫
�3n
ei��−�

′�·xp�x� ��!j���f̂ ���!k��
′ − ��!i��′�ĝ��′� d–�d–�′dx = 0

for all f ∈ � ��n� X1�� g ∈ � ��n� if �k− j� ≥ 4, since

�2k−2 ≤ ��� ≤ 2k+2� ∩ �2i−1 ≤ ��� ≤ 2i+1� = ∅ if k ≥ j + 4�

�2j−2 ≤ ��� ≤ 2j+2� ∩ �2i−1 ≤ ��� ≤ 2i+1� = ∅ if k ≤ j − 4�

Therefore

!i�Dx�pj�x�Dx� =
i+3∑
k=i−3

!i�Dx�pj�k�x�Dx��

which implies

�!i�Dx�pj�x�Dx����Lq��n�X0��Lq��n�X1��

≤
j+3∑
k=j−3

�!i�Dx�pj�k�x�Dx����Lq��n�X0��Lq��n�X1��
≤ C2−	j

due to (A.5) again. �

Proof of Theorem 3.7. First of all, by a composition from the right with 
Dx�−m we
can always reduce to the case m = 0, which we consider in the following.

We use that f = ∑�
j=0 fj� where fj = !j�Dx�f , f ∈ � ��n�H0�. Since supp!j ∩

supp!k = ∅ if �j − k� > 1,

p�x�Dx�f =
�∑
j=0

pj�x�Dx�f =
�∑
k=0

pj�x�Dx��fj−1 + fj + fj+1�

=
�∑
j=0

pj�x�Dx�f̃j�

where f̃j = fj−1 + fj + fj+1 and we have set f−1 = 0. Moreover, we use that
�f�Hs��n�H� is equivalent to

�f�Bs2�2��n�H� �= ��2sjfj�j∈�0
��2��0�L2��n�H��
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Spectral Asymptotics 571

if H is a Hilbert space. This follows easily from Plancherel’s theorem and the fact
that 
��s is equivalent to 2js on supp!j .

If f ∈ � ��n�H0�, then

��2sj f̃j�j∈�0
��2��0�L2��n�H0��

= ��2sj�fj−1 + fj + fj+1��k∈�0
��2��0�L2��n�H0��

≤ C
∥∥(2sj!j�Dx�f)j∈�0

∥∥
�2��0�L2��n�H0��

= C�f�Bs2�2��n�H0�
�

Next, we use

2is�!i�Dx�pj�x�Dx�f̃j�L2��n�H1�

≤


C2−�	−s�i−js2js�f̃j�L2��n�H0�

if i ≥ j + 4�

C2js�f̃j�L2��n�H0�
if j − 3 ≤ i ≤ j + 3�

C2�i−j�s−	j2js�f̃j�L2��n�H0�
if j ≥ i+ 4�

≤ C2−�	−�s���i−j�2js�f̃j�L2��n�H0�

Now let aj = 2−�	−�s���j�, bj = 2sj�f̃j�L2��n�H0�
for j ∈ �0 and aj = bj = 0 for j ∈ � \

�0. Then

�p�x�Dx�f�Bs2�2��n�H1�

≤ C
∥∥�aj�j∈� ∗ �bj�j∈�

∥∥
�2���

≤ C��aj�j∈���1�����bj�j∈���2���
= C��2sj f̃j�j∈�0

��2��0�L2��n�H0���
≤ C�f�Bs2�2��n�H0�

�

where the sequence �cj�j∈� = �aj�j∈� ∗ �bj�j∈� is the convolution of �aj�j∈� and
�bj�j∈�. (Recall that Bs2�2 = Hs.) Since � ��n�H0� is dense in H

s��n�H0�, the theorem
follows. �
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