Non-simple C^{*}-algebras are sometimes better tools for working with minimal dynamics than simple ones

Toke M. Carlsen and Søren Eilers

Oberwolfach, August 22, 2003

For any shift space \underline{X} we define $\mathcal{O}_{\underline{X}}$ as the universal C^{*}-algebra given by generators $S_{a}, a \in \mathfrak{a}$ and relations
(i) $\sum_{a \in \mathfrak{a}} S_{a} S_{a}^{*}=1$
(ii) $\left[S_{v} S_{v}^{*}, S_{w}^{*} S_{w}\right]=0, v, w \in \mathfrak{a}^{\sharp}$
(iii) $\left\{S_{v} S_{v}^{*}\right\}_{v \in \mathfrak{a}^{\sharp}}$ relate mutually as do the indicator functions of

$$
\{x \in \pi(\underline{\mathrm{X}}) \mid v x \in \pi(\underline{\mathrm{X}})\}
$$

where $\pi: \mathfrak{a}^{\mathbb{Z}} \longrightarrow \mathfrak{a}^{\mathbb{N} o}$

Key results by Matsumoto

- $\mathcal{O}_{\underline{X}} \otimes \mathbb{K}$ is a flow invariant
- You know $K_{*}\left(\mathcal{O}_{\underline{X}}\right)$ as a group if you know the relations \sim_{l} on $\pi(\underline{\mathrm{X}})$ defined by

$$
\begin{aligned}
x & \sim_{l} y \\
& \Longleftrightarrow \\
\forall v \in \mathfrak{a}^{\sharp},|v| \leq l: v x & \in \pi(\underline{\mathrm{X}}) \Longleftrightarrow v y \in \pi(\underline{\mathrm{X}})
\end{aligned}
$$

and the actions

$$
a:[x]_{l+1} \mapsto[a x]_{l}, a \in \mathfrak{a}
$$

- General simplicity criteria under property (I):

$$
\forall x \in \pi(\underline{\mathrm{X}}) \forall l \in \mathbb{N} \exists y \in \pi(\underline{\mathrm{X}}):\left\{\begin{array}{l}
y \neq x \\
y \sim_{l} x
\end{array}\right.
$$

Substitutions

A substitution is a map

$$
\tau: \mathfrak{a} \longrightarrow \mathfrak{a}^{\sharp}
$$

Note that it extends to $\mathfrak{a}^{\mathbb{Z}}$ via concatenation.

Example $\tau(a)=a b, \tau(b)=a b a a$.

Definition A τ-periodic element $u \in \mathfrak{a}^{\mathbb{Z}}$ satisfies $\tau^{n}(u)=u$ for some $n \in \mathbb{N}$.

Observation $\underline{X}_{\tau}=\overline{\left\{\sigma^{n}(u) \mid u \tau \text {-periodic }\right\}}$ is a well-defined Cantor minimal system when τ is primitive and aperiodic.

Abelianization

To a substitution τ one associates the $|\mathfrak{a}| \times|\mathfrak{a}|-$ matrix \mathbf{A}_{τ} given by

$$
\left(\mathbf{A}_{\tau}\right)_{a, b}=\# \text { of occurrences of } b \text { in } \tau(a)
$$

Example For $\tau(a)=a b, \tau(b)=a b a a$ we get

$$
\mathbf{A}_{\tau}=\left[\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right]
$$

Theorem [Giordano/Putnam/Skau²/Durand/Host]
When τ is aperiodic, primitive and proper*,

$$
K_{0}\left(C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z}\right)=\underline{\longrightarrow}\left(\mathbb{Z}^{|\mathfrak{a}|} \stackrel{\mathbf{A}_{\tau}}{\mathbb{Z}^{|\mathfrak{a}|} \mid} \xrightarrow{\mathbf{A}_{\tau}} \cdots\right)
$$ as an ordered group.

Observation $\underline{X}_{\tau} \sim_{\text {SOE }} \underline{X}_{\tau^{-1}}$
*No loss of generality

Properties of \mathcal{O}_{τ}

Definition $\mathcal{O}_{\tau}=\mathcal{O}_{\underline{X}_{\tau}}$

- \mathcal{O}_{τ} is nonsimple, and has a maximal ideal isomorphic to $\mathbb{K}^{\mathbf{n}_{\tau}}$ for $\mathrm{n}_{\tau} \in \mathbb{N}$. Further,

$$
0 \longrightarrow \mathbb{K}^{\mathrm{n}_{\tau}} \longrightarrow \mathcal{O}_{\tau} \xrightarrow{\rho} C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0
$$

- The short exact sequence induces

for $\mathrm{p}_{\tau} \in \mathbb{N}^{\mathrm{n}_{\tau}}$.
- The order on $K_{0}\left(\mathcal{O}_{\tau}\right)$ is given by

$$
g \geq 0 \Longleftrightarrow \rho_{*}(g) \geq 0
$$

Special words

Most $x \in \underline{\mathrm{X}}_{\tau}$ have the property that one tail determines the other, as in

$$
\pi(x)=\pi(y) \Longrightarrow x=y
$$

But there is (up to orbit equivalence) a finite but nonzero number of exceptions to this rule, as in

n_{τ} is the number of right shift tail classes of such exceptions.

Complete desciption

Theorem [CE]

Let τ be a primitive, aperiodic, proper* and elementary ${ }^{\dagger}$ substitution. For suitable $\mathrm{n}_{\tau} \times|\mathfrak{a}|-$ matrix E_{τ} we define

$$
\begin{aligned}
& \tilde{\mathbf{A}}_{\tau}=\left[\begin{array}{cc}
\mathbf{A}_{\tau} & 0 \\
\mathbf{E}_{\tau} & \mathbf{l d}
\end{array}\right] \\
& H_{\tau}=\mathbb{Z}^{\mathbf{n}_{\tau}} / \mathbf{p}_{\tau} \mathbb{Z}
\end{aligned}
$$

and have

$$
K_{0}\left(\mathcal{O}_{\tau}\right)=\underset{\longrightarrow}{\lim }\left(\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}, \widetilde{\mathbf{A}}_{\tau}\right)
$$

as an ordered group, where $\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}$ is ordered by

$$
(x, y) \geq 0 \Longleftrightarrow x \geq 0
$$

The constituent quantities $\mathrm{n}_{\tau}, \mathrm{p}_{\tau}$ and $\tilde{\mathbf{A}}_{\tau}$ are computable.
*No loss of generality
${ }^{\dagger}$ No loss of generality

Ultimate example

For the susbtitution v the exact sequence

$$
0 \longrightarrow \mathbb{Z}^{\mathrm{n}_{v}} / \mathrm{p} v \mathbb{Z} \longrightarrow K_{0}\left(\mathcal{O}_{v}\right) \xrightarrow{\rho_{*}} K_{0}\left(C\left(\underline{\mathrm{X}}_{v}\right) \rtimes_{\sigma} \mathbb{Z}\right) \longrightarrow 0
$$ becomes

$$
\left.0 \rightarrow \mathbb{Z}^{\left[\frac{1}{2}\right]} \mathbb{Z} \oplus \mathbb{Z}\left[\frac{1}{3}\right] \stackrel{[-2}{ } 1\right] \mathbb{Z}\left[\frac{1}{3}\right] \rightarrow 0
$$

But for v^{-1} we get

$$
0 \rightarrow \mathbb{Z} \underline{\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \mathbb{Z} \oplus \mathbb{Z}\left[\frac{1}{3}\right] \stackrel{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}{\mathbb{Z}\left[\frac{1}{3}\right] \longrightarrow 0}
$$

