Non-simple C*-algebras are sometimes better tools for working with minimal dynamics than simple ones

Toke M. Carlsen and Søren Eilers

Oberwolfach, August 22, 2003

C^* -algebras considered by Matsumoto

For any shift space \underline{X} we define $\mathcal{O}_{\underline{X}}$ as the universal C^* -algebra given by generators S_a , $a \in \mathfrak{a}$ and relations

- (i) $\sum_{a \in \mathfrak{a}} S_a S_a^* = 1$
- (ii) $[S_v S_v^*, S_w^* S_w] = 0, v, w \in \mathfrak{a}^{\sharp}$
- (iii) $\{S_v S_v^*\}_{v \in \mathfrak{a}^{\sharp}}$ relate mutually as do the indicator functions of

$$\{x \in \pi(\underline{\mathsf{X}}) \mid vx \in \pi(\underline{\mathsf{X}})\}$$

where $\pi: \mathfrak{a}^{\mathbb{Z}} \longrightarrow \mathfrak{a}^{\mathbb{N}_0}$

Key results by Matsumoto

- $\mathcal{O}_X \otimes \mathbb{K}$ is a flow invariant
- You know $K_*(\mathcal{O}_{\underline{X}})$ as a group if you know the relations \sim_l on $\pi(\underline{X})$ defined by

$$\begin{aligned} x \sim_{l} y \\ & \longleftrightarrow \\ \forall v \in \mathfrak{a}^{\sharp}, |v| \leq l : vx \in \pi(\underline{X}) \Longleftrightarrow vy \in \pi(\underline{X}) \\ \text{and the actions} \\ a : [x]_{l+1} \mapsto [ax]_{l}, a \in \mathfrak{a} \end{aligned}$$

• General simplicity criteria under property (*I*):

$$\forall x \in \pi(\underline{\mathsf{X}}) \forall l \in \mathbb{N} \exists y \in \pi(\underline{\mathsf{X}}) : \left\{ \begin{array}{l} y \neq x \\ y \sim_l x \end{array} \right.$$

Substitutions

A substitution is a map

 $\tau:\mathfrak{a}\longrightarrow\mathfrak{a}^{\sharp}$

Note that it extends to $\mathfrak{a}^{\mathbb{Z}}$ via concatenation.

Example $\tau(a) = ab, \tau(b) = abaa.$

Definition A τ -periodic element $u \in \mathfrak{a}^{\mathbb{Z}}$ satisfies $\tau^n(u) = u$ for some $n \in \mathbb{N}$.

Observation $\underline{X}_{\tau} = \overline{\{\sigma^n(u) \mid u \ \tau\text{-periodic}\}}$ is a well-defined Cantor minimal system when τ is primitive and aperiodic. Abelianization

To a substitution τ one associates the $|\mathfrak{a}|\times|\mathfrak{a}|$ -matrix \mathbf{A}_{τ} given by

 $(\mathbf{A}_{\tau})_{a,b} = \#$ of occurrences of b in $\tau(a)$

Example For
$$\tau(a) = ab, \tau(b) = abaa$$
 we get
$$\mathbf{A}_{\tau} = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$$

Theorem [Giordano/Putnam/Skau²/Durand/Host]

When τ is aperiodic, primitive and proper*,

$$K_0(C(\underline{X}_{\tau}) \rtimes_{\sigma} \mathbb{Z}) = \varinjlim(\mathbb{Z}^{|\mathfrak{a}|} \xrightarrow{\mathbf{A}_{\tau}} \mathbb{Z}^{|\mathfrak{a}|} \xrightarrow{\mathbf{A}_{\tau}} \cdots)$$

as an ordered group.

Observation
$$\underline{X}_{\tau} \sim_{\mathsf{SOE}} \underline{X}_{\tau^{-1}}$$

*No loss of generality

Properties of \mathcal{O}_{τ}

Definition
$$\mathcal{O}_{\tau} = \mathcal{O}_{X_{\tau}}$$

• \mathcal{O}_{τ} is nonsimple, and has a maximal ideal isomorphic to $\mathbb{K}^{n_{\tau}}$ for $n_{\tau} \in \mathbb{N}$. Further,

$$0 \longrightarrow \mathbb{K}^{\mathsf{n}_{\tau}} \longrightarrow \mathcal{O}_{\tau} \xrightarrow{\rho} C(\underline{\mathsf{X}}_{\tau}) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0$$

• The short exact sequence induces

$$\begin{array}{c} \mathbb{Z}^{\mathsf{n}_{\tau}} \longrightarrow K_{0}(\mathcal{O}_{\tau}) \xrightarrow{\rho_{*}} K_{0}(C(\underline{X}_{\tau}) \rtimes_{\sigma} \mathbb{Z}) \\ \mathbb{P}_{\tau} \uparrow & \downarrow \\ \mathbb{Z} \longleftarrow 0 \longleftarrow 0 \end{array}$$
for $\mathsf{p}_{\tau} \in \mathbb{N}^{\mathsf{n}_{\tau}}.$

• The order on $K_0(\mathcal{O}_{\tau})$ is given by

$$g \ge \mathsf{0} \Longleftrightarrow
ho_*(g) \ge \mathsf{0}$$

Special words

Most $x \in \underline{X}_{\tau}$ have the property that one tail determines the other, as in

$$\pi(x) = \pi(y) \Longrightarrow x = y$$

But there is (up to orbit equivalence) a finite but nonzero number of exceptions to this rule, as in

 n_{τ} is the number of right shift tail classes of such exceptions.

Complete desciption

Theorem [CE] Let τ be a primitive, aperiodic, proper^{*} and elementary[†] substitution. For suitable $n_{\tau} \times |\mathfrak{a}|$ matrix \mathbf{E}_{τ} we define

$$\widetilde{\mathbf{A}}_{\tau} = \begin{bmatrix} \mathbf{A}_{\tau} & \mathbf{0} \\ \mathbf{E}_{\tau} & \mathbf{Id} \end{bmatrix}$$
$$H_{\tau} = \mathbb{Z}^{\mathsf{n}_{\tau}}/\mathsf{p}_{\tau}\mathbb{Z}$$

and have

$$K_0(\mathcal{O}_{\tau}) = \varinjlim(\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}, \widetilde{\mathbf{A}}_{\tau})$$

as an ordered group, where $\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}$ is ordered by

$$(x,y) \ge 0 \iff x \ge 0$$

The constituent quantities n_{τ} , p_{τ} and \hat{A}_{τ} are computable.

*No loss of generality †No loss of generality

Ultimate example

For the subtitution v the exact sequence $0 \longrightarrow \mathbb{Z}^{n_v}/p_v \mathbb{Z} \longrightarrow K_0(\mathcal{O}_v) \xrightarrow{\rho_*} K_0(C(\underline{X}_v) \rtimes_\sigma \mathbb{Z}) \longrightarrow 0$ becomes

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 2 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \xrightarrow{\begin{bmatrix} -2 & 1 \end{bmatrix}} \mathbb{Z} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \longrightarrow 0$$

But for υ^{-1} we get

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \mathbb{Z} \oplus \mathbb{Z}[\frac{1}{3}] \xrightarrow{[0 \ 1]} \mathbb{Z}[\frac{1}{3}] \longrightarrow 0$$