Flow equivalence of shift spaces (and their C^* -algebras), II

Toke Meier Carlsen tokemeie@math.ntnu.no

Department of Mathematical Sciences Norwegian University of Science and Technology

01.02.11

Let $\mathfrak a$ be a finite set and equip $\mathfrak a^{\mathbb Z}$ with the product topology based on the discrete topology on $\mathfrak a.$

Definition

A *shift space* is a subset X of $\mathfrak{a}^{\mathbb{Z}}$ which is closed and invariant (ie. $\sigma(X) = X$) under the *shift map*

$$\sigma:\mathfrak{a}^{\mathbb{Z}}\to\mathfrak{a}^{\mathbb{Z}}\qquad\sigma((x_i))=(x_{i+1}).$$

Definition

Two shift spaces X and Y are *conjugate* when there is a homeomorphism $\phi : X \to Y$ such that $\phi \circ \sigma_X = \sigma_Y \circ \phi$.

Associated to any shift space there is a *suspension flow* given by product topology on

$$SX = rac{X imes \mathbb{R}}{(x,t) \sim (\sigma(x),t-1)}.$$

Definition

X and Y are *flow equivalent* (written $X \simeq_{fe} Y$) when SX and SY are homeomorphic in a way preserving direction in \mathbb{R} .

Fix $a \in \mathfrak{a}$ and $\star \notin \mathfrak{a}$ and define $\eta : \mathfrak{a}^{\mathbb{Z}} \to (\mathfrak{a} \cup \{\star\})^{\mathbb{Z}}$ as the map inserting a \star after each a:

 \cdots babbbaba \cdots \mapsto \cdots ba \star bbba \star ba $\star \cdots$

Definition

The " $a \mapsto a\star$ " symbol expansion of a shift space X is the shift space $X_{a\mapsto a\star} = \eta(X)$.

Theorem (Parry and Sullivan)

Flow equivalence is the coarsest equivalence relation containing conjugacy and $X \sim X_{a \mapsto a \star}$.

By a *flow* we will mean a continuous action α of \mathbb{R} on a compact metrizable space Y.

For $y \in Y$ we let

$$Orb(y) = \{\alpha_s(y) \mid s \in \mathbb{R}\}$$
$$Orb_+(y) = \{\alpha_s(y) \mid s > 0\}$$
$$Orb_-(y) = \{\alpha_s(y) \mid s < 0\}.$$

- Two flows are *conjugate* if there is a homeomorphism between their domains intertwining the R-actions.
- Two flows are *equivalent* if there is a homeomorphism between their domains taking orbits to orbits and preserving orientation.

Let $T : X \to X$ be a homeomorphism of a compact metrizable zero-dimensional space X, and $f : X \to \mathbb{R}$ a continuous strictly positive function. The *suspension* of T by f is the quotient space

$$S_f T = rac{X imes \mathbb{R}}{(x,t) \sim (Tx,t-f(x))},$$

and the suspension flow is the action $\alpha^{T,f}$ of \mathbb{R} on $S_f T$ given by

$$\alpha_s^{T,f}([x,t]) = [x,s+t].$$

The suspension $S_1 T$ is called the *standard suspension* of T.

A cross section to a flow α on Y is a closed set $C \subseteq Y$ such that $\alpha : C \times \mathbb{R} \to Y$ is a surjective local homeomorphism.

Proposition

If C is a cross section then

• $\operatorname{Orb}_+(y) \cap C \neq \emptyset$ and $\operatorname{Orb}_-(y) \cap C \neq \emptyset$ for every $y \in Y$,

2 the map

$$x \mapsto r_{\mathcal{C}}(x) := \inf\{t > 0 \mid \alpha_t(x) \in \mathcal{C}\}$$

is a continuous strictly positiv function from C to \mathbb{R} ,

• the map $x \mapsto R_C(x) := \alpha_{r_C(x)}(x)$ is a homeomorphism from C to C.

Definition

We say that a homeomorphism T is a *section* to a flow if it is conjugate to R_C for some cross section C of the flow.

- If S_fX is a suspension of a homeomorphism T : X → X of a compact metrizable zero-dimensional space X, then
 C := {[x,0] | x ∈ X} is a cross section to α^{T,f} and R_C is conjugate to T.
- If C is a cross section to a flow α , then α^{R_C,r_C} is conjugate to α .

Flow equivalence

Proposition

If T and S are two homeomorphisms on compact metrizable zero-dimensional spaces then the following are equivalent:

- **1** T is a section to some suspension of S.
- **2** *T* is a section to the standard suspension of S.
- **③** T is a section to any flow for which S is a section.
- T and S are sections to a common flow.
- The standard suspension of T is equivalent to the standard suspension of S.
- Any suspension of T is equivalent to any suspension of S.

Definition

We say that T and S are *flow equivalent* if the above conditions are satisfied.

Let T be a homeomorphism on of a compact metrizable zero-dimensional space X and $p: X \to \mathbb{N}$ a continuous map. For each $k \in \mathbb{N}$ let $A_k = \{x \in X \mid p(x) = k\}$, and let

$$X_p = \bigcup_{0 \le i < k} A_k \times \{i\}.$$

Then X_p is a compact metrizable zero-dimensional subspace of $X \times \mathbb{N}_0$.

Define $T_p: X_p \to X_p$ by

$$T_p((x,i)) = \begin{cases} (x,i+1) & \text{if } i+1 < p(x) \\ (T(x),0) & \text{if } i = p(x) - 1. \end{cases}$$

Then T_p is a homeomorphism.

Definition

The homeomorphism T_p is called the *discrete suspension* of T by p and $X \times \{0\}$ is called the *base* of the suspension.

Theorem

Suppose C_1 and C_2 are cross sections to some suspension flow of a homeomorphism on a zero-dimensional compact metrizable space. Let T_1 and T_2 denote their respective return maps. Then there exists a third cross section C_3 such that T_1 and T_2 are conjugate to discrete suspensions of the return map of C_3 .

Lemma

If X is the discrete suspension of a shift space X_0 , then there exists a finite sequence X_0, X_1, \ldots, X_n of shift spaces such that X_i is a symbolic expansion of X_{i-1} for each $i = 1, 2, \ldots, n$, and X_n is conjugate to X.

Corollary

Flow equivalence is the coarsest equivalence relation containing conjugacy and symbolic expansion.