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PICK FUNCTIONS RELATED
TO THE GAMMA FUNCTION

CHRISTIAN BERG AND HENRIK L. PEDERSEN

ABSTRACT. We show that the function

f(z) =
log Γ(z + 1)

zLog z
,

holomorphic in the complex plane cut along the negative real
axis, is a Pick function and we find its integral representation.
We also show that various other related functions are Pick
functions.

1. Introduction. The function

f(x) =
log Γ(x+ 1)

x log x
, x > 0,

has attracted the attention of several authors, see [3, 2] and [7]. In [4],
we proved that the reciprocal function 1/f has a holomorphic extension
to the cut plane

A = C \ ]−∞, 0] ,

and that this extension is a Stieltjes transform. We also found its Stielt-
jes representation. As a corollary, we obtained that the restriction of f ′

to the positive real axis is completely monotone, thereby answering a
question raised by Dimitar Dimitrov at the Fifth International Sympo-
sium on Orthogonal Polynomials, Special Functions and Applications
held in Patras in September 1999. This result was thus obtained by
considering the reciprocal function, and in the course of the proof we
had to establish that the only zeros of the function log Γ, defined below,
in A are those at z = 1 and z = 2. The reciprocal of a Stieltjes function
is a Pick function, so the result of [4] implies that f is a Pick function.

2000 AMSMathematics subject classification. Primary 33B15, Secondary 30E20,
30E15.

Keywords and phrases. Gamma function, completely monotone function.
Received by the editors on August 17, 2000.

Copyright c©2002 Rocky Mountain Mathematics Consortium

507



508 C. BERG AND H.L. PEDERSEN

We feel that it is worthwhile to show directly that f is a Pick function,
and this is the main goal of the paper. Our result easily implies that
f ′ is completely monotone. It also implies that log Γ(z) is zero free in
C\R. This fact can be obtained in a more elementary way by showing
that the function

z −→ log Γ(z + 1)
z

is a Pick function. This we verify in the last section.

The function Log denotes the principal logarithm, holomorphic in
the cut plane A and defined in terms of the principal argument Arg.
The function log Γ = log |Γ| + iarg Γ denotes the holomorphic branch
in A that is real on the positive real axis. Such a branch exists, since
Γ is holomorphic in the simply connected domain A and has no zeros
there.

We recall that a Pick function is a holomorphic function ϕ in the
upper half-plane H = {z ∈ C | 	z > 0} with 	ϕ(z) ≥ 0 for z ∈ H.
Pick functions are extended by reflection to holomorphic functions in
C \ R, and they have the following integral representation

(1) ϕ(z) = az + b+
∫ ∞

−∞

(
1

t− z
− t

t2 + 1

)
dµ(t),

where a ≥ 0, b ∈ R and µ is a nonnegative Borel measure on R
satisfying ∫ ∞

−∞

dµ(t)
t2 + 1

< ∞,

see, e.g. [6]. It is known that

(2)

a = lim
y→∞ϕ(iy)/(iy), b = �ϕ(i),

µ = lim
y→0+

	ϕ(t+ iy) dt
π

,

where the last limit is in the vague topology, and finally that ϕ has a
holomorphic extension to A if and only if supp (µ) ⊆ ]−∞, 0].

Our main results are the following:

Theorem 1.1. The function

f(z) =
log Γ(z + 1)
zLog z

, z ∈ A
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FIGURE 1. The graph of d.

is a Pick function of the form (1) with a = 0, b = (1/π) log((sinhπ)/π)
and µ = d(t) dt where d : R → [0,∞] is defined as d(t) = 0 for t ≥ 0,
d(t) =∞, for t ∈ {−1,−2, . . . } and for k ≥ 1,

(3)
d(t) = − log |Γ(t+ 1)|+ (k − 1) log |t|

t((log |t|)2 + π2)
for t ∈ ]−k,−k + 1[ .

Theorem 1.2. We have
log Γ(z + 1)
zLog z

= 1−
∫ ∞

0

d(−t)
z + t

dt,

where d is defined in (3).

In Figure 1 we have drawn the graph of the function d. There are
vertical asymptotes at t = −1,−2, . . . , and there is a vertical tangent
(from the left) at t = 0. The minimum of d on the interval ]−k,−k + 1[
behaves asymptotically as 1/(log k)2 as k tends to infinity, see Remark
3.6.
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2. Properties of the gamma function. We give some preliminary
relations involving the Γ-function. We have the relation

(4) log Γ(z + 1) = log Γ(z + k + 1)−
k∑

l=1

Log (z + l)

for z ∈ A and for any k ≥ 1. Indeed, both sides of this relation are
holomorphic in A and they agree on the positive real axis because of
the functional equation of Γ.

Taking real and imaginary parts on both sides of (4) we obtain

(5) log |Γ(z + 1)| = log |Γ(z + k + 1)| −
k∑

l=1

log |z + l|

and

(6) arg Γ(z + 1) = arg Γ(z + k + 1)−
k∑

l=1

Arg (z + l).

We put, for k ∈ Z,

Rk = {z = x+ iy ∈ C : −k ≤ x < −k + 1, 0 < y ≤ 1}
and R = ∪∞

k=0Rk. We note that R0 is a compact subset of the domain
of holomorphy of log Γ(z + 1). Therefore, a positive constant c exists
such that

−c ≤ log |Γ(z + 1)| ≤ c

and

−c ≤ arg Γ(z + 1) ≤ c

for all z ∈ R0.

Lemma 2.1. We let c denote the constant mentioned above and let
z ∈ Rk. For k = 1 we have

−c− log 2 ≤ log |Γ(z + 1)| ≤ c− log |z + 1|,
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while for k ≥ 2 we have

−c− k log k ≤ log |Γ(z + 1)| ≤ c− log |z + k| − log |z + k − 1|.

For k ≥ 1 we have

−c− kπ ≤ arg Γ(z + 1) ≤ c− (k − 1)π/2.

We stress that the constant c does not depend on k.

Proof. From the relation (5) and the observation above,

−c−
k∑

l=1

log |z + l| ≤ log |Γ(z + 1)| ≤ c−
k∑

l=1

log |z + l|.

This readily gives the first assertion in the lemma. For k ≥ 2, we note
that

c−
k∑

l=1

log |z + l| ≤ c− log |z + k − 1| − log |z + k|,

since, clearly, |z + l| ≥ 1 for l = 1, . . . , k − 2. Furthermore, |z + l| ≤
1 + (k − l) for l = 1, . . . , k − 1 and |z + k| ≤ 2. Therefore,

−
k∑

l=1

log |z + l| ≥ −
k−1∑
l=1

log(k − l + 1)− log 2

= −
k−1∑
j=1

log(j + 1)− log 2

≥ −k log k.

This proves the second assertion about log |Γ(z + 1)|. The assertion
about arg Γ(z + 1) is obtained in the same way, using (6) and the
estimates

(k − 1)π/2 ≤
k∑

l=1

Arg (z + l) ≤ kπ



512 C. BERG AND H.L. PEDERSEN

for z ∈ Rk.

We also need a formula going back to Stieltjes, see [4, Proof of
Proposition 2.4]:

(7) log Γ(z + 1) = log
√
2π + (z + 1/2)Log z − z + J (z).

Here

J (z) = 1
2

∫ ∞

0

Q(t)
(z + t)2

dt,

where Q is periodic with period 1 and Q(t) = t − t2 for t ∈ [0, 1[.
Furthermore,

(8) |J (z)| ≤ π

8

for z ∈ H \R.

3. Estimates of a harmonic function. Throughout the paper
f denotes the function in Theorem 1.1. We shall study the function
V : A → R defined by V = 	f . It is harmonic in A and we find that
with as usual, z = x+ iy,

(9)
V (z) =

(x log |z| − yArg z)arg Γ(z + 1)
|zLog z|2

− (y log |z|+ xArg z) log |Γ(z + 1)|
|zLog z|2 .

We shall prove that V is a positive function in H, and to do that we
first investigate the boundary behavior of V on the real line. We also
estimate its behavior near infinity.

To determine the boundary behavior of V , we recall [4, Lemma 2.1]:

Lemma 3.1. We have, for any k ≥ 1,

lim
z→t
�z>0

log Γ(z) = log |Γ(t)| − iπk
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for t ∈ ]−k,−k + 1[ and

lim
z→t
�z>0

| log Γ(z)| =∞

for t = 0,−1,−2, . . . .

We recall that d : R → R ∪ {∞} was defined as d(t) = 0 for t ≥ 0,
d(t) =∞, for t ∈ {−1,−2, . . . } and for k ≥ 1,

d(t) = − log |Γ(t+ 1)|+ (k − 1) log |t|
t((log |t|)2 + π2)

for t ∈ ]−k,−k + 1[ .

We notice that d is a nonnegative function. For k = 1, it follows from
the fact that t+ 1 ∈ ]0, 1[ so that Γ(t+ 1) > 1. For k ≥ 2, we use

log |Γ(t+ 1)|+ (k − 1) log |t| = log |Γ(t+ k)|+ (k − 1) log |t|

−
k−1∑
l=1

log |t+ l|

= log |Γ(t+ k)|+
k−1∑
l=1

log
|t|

|t+ l| ,

where all terms are positive.

Lemma 3.2. We have that V (z)→ πd(t) for t ∈ R as z → t within
H. In particular, V has nonnegative boundary values.

Proof. Since f is real on the positive axis, V (z) → 0 as z → t > 0.
For t ∈ ]−k,−k + 1[ the limit is straightforward to compute, using
Lemma 3.1. To find the limit when t = −k for k = 1, 2, . . . , we
use Lemma 2.1. The lemma tells us that y log |Γ(z + 1)| → 0 as
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z = x+ iy → −k, and that arg Γ(z + 1) remains bounded. Hence,

lim inf
z→−k

V (z) = lim inf
z→−k

{
(x log |z| − yArg z)arg Γ(z + 1)

|z|2|Log z|2

− (y log |z|+ xArg z) log |Γ(z + 1)|
|z|2|Log z|2

}

≥ Const− lim
z→−k

y log |z| log |Γ(z + 1)|
|z|2|Log z|2

+ lim
z→−k

−xArg z log |Γ(z + 1)|
|z|2|Log z|2

= Const + 0 +∞ =∞.

To handle the behavior at the origin, we estimate V as

(10) |V (z)| ≤
∣∣∣∣ log Γ(z + 1)z

∣∣∣∣
∣∣∣∣ 1
Log z

∣∣∣∣ ≤ Const 1
| log |z|| ,

where we have used the fact that (log Γ(z + 1))/z has a removable
singularity at z = 0. Therefore, limz→0 V (z) = 0.

Proposition 3.3. There is a constant C > 0 such that

V (z) ≥ −C
for all z ∈ H of large absolute value.

Proof. We have, from (7) and (8),

(11)
log Γ(z + 1)
zLog z

= 1 +
log

√
2π + (Log z)/2− z + J (z)

zLog z
−→ 1,

and hence V (z) → 0 as |z| → ∞ within H \ R. Thus |V (z)| ≤ 1, say,
for all z ∈ H \R of sufficiently large absolute value.
We shall consider next the situation where z ∈ R. Suppose that

z ∈ Rk for some k ≥ 2. Then, in particular, −k ≤ x < 0, log |z| > 0,
y > 0 and Arg z > 0. Therefore we have, by Lemma 2.1,

L1(z) ≡ (x log |z| − yArg z)arg Γ(z + 1)
≥ c(x log |z| − yArg z)
≥ −c(k log |z|+ π).
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From that lemma we also get

L2(z) ≡ −(y log |z|+ xArg z) log |Γ(z + 1)|
= −y log |z| log |Γ(z + 1)|
− xArg z log |Γ(z + 1)|

≥ −cy log |z|
+ (log |z + k|+ log |z + k − 1|)y log |z|
− xArg z(−c− k log k).

Furthermore, we have

(log |z + k|+ log |z + k − 1|)y ≥ 2y log y ≥ −1.

Hence,
L2(z) ≥ −(c+ 1) log |z| − k(c+ k log k)π.

Furthermore,
log |z| ≤ log(k + 1) ≤ log k + log 2,

so we get
L1(z) + L2(z) ≥ −Const k2 log k,

where the constant is independent of k. Using finally that

log |z| ∼ log k, |zLog z| ∼ k log k

for z ∈ Rk, k → ∞, we obtain

V (z) ≥ −Const
log |z| , z ∈ Rk,

when k is sufficiently large.

After these preliminary results we are able to find a useful estimate
of V in the upper half plane.

Theorem 3.4. The harmonic function V is nonnegative in the upper
half plane.
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Proof. We apply the theorem in [8, page 27], with A = 0, to the
subharmonic function u(z) = −V (z).

Remark 3.5. The relation (11) can be used to give a better estimate
of V in H \R. If we multiply by (log |z|)2 on both sides of (11), we get

(log |z|)2 log Γ(z + 1)
zLog z

= (log |z|)2 − (log |z|)
2

Log z
+
log |z|
Log z

× (log |z|)(log
√
2π + (Log z)/2 + J (z))

z
.

If we now take imaginary parts, we obtain

(log |z|)2V (z)−Arg z −→ 0

as |z| → ∞ within H \R. This is because

	((log |z|)2/Log z) = −Arg z
1 + (Arg z)2/(log |z|)2

and
log |z|
Log z

(log |z|)(log√2π + (Log z)/2 + J (z))
z

−→ 0

as |z| → ∞.

Remark 3.6. The asymptotic behavior of V in R is less regular. As
we have seen in Lemma 3.2, V tends to infinity as z tends to a negative
integer.

We shall find the asymptotic behavior of the minimum of d on the
interval ]−k,−k + 1[ as k tends to infinity. On the interval ]−k,−k + 1[,
we have

d(t) =
A(t)
B(t)

,

where

A(t) = log Γ(t+ k) +
k−1∑
l=1

log
t

t+ l

and
B(t) = −t((log |t|)2 + π2).
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We estimate the numerator as follows: since Γ(t+ k) ≥ 1 for −k < t <
−k + 1,

A(t) ≥
k−1∑
l=1

log
t

t+ l
.

Here, the righthand side is increasing for −k < t < −k + 1, and hence

A(t) ≥ (k − 1) log k − log(k − 1)! = (k − 1) log k − log Γ(k).

On the other hand,

min{A(t) | −k < t < −k + 1} ≤ A(−k + 1/2).

We find

A(−k + 1/2) = log Γ(1/2) + (k − 1) log(k − 1/2)

−
k−1∑
l=1

log(k − 1/2− l)

= 2 log Γ(1/2) + (k − 1) log(k − 1/2)
− log Γ(k − 1/2).

Stirling’s formula gives us that

log Γ(t) = (t− 1/2) log t− t+ log
√
2π + o(1),

as t → ∞, and therefore

k − (1/2) log k − log
√
2π + o(1) ≤ minA(t)

≤ k − 1/2 + 2 log Γ(1/2)
− log

√
2π + o(1).

Since

(k − 1)((log(k − 1))2 + π2) ≤ B(t) ≤ k((log k)2 + π2),

we obtain
min{d(t) | −k < t < −k + 1}

1/(log k)2
−→ 1
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as k → ∞.

4. The representation as a Pick function.

Theorem 4.1. We have

f(z) =
1
π
log

(
sinh π
π

)
+

∫ 0

−∞

(
1

t− z
− t

t2 + 1

)
d(t) dt,

where d is the function in (3).

Proof. From Theorem 3.4, we know that f is a Pick function. It thus
has a representation of the form

f(z) = az + b+
∫ ∞

−∞

(
1

t− z
− t

t2 + 1

)
dµ(t),

where µ is a positive measure, a is nonnegative and b is a real number.
Our problem is to find these constants and this measure.

From the general theory we know that a = limy→∞ f(iy)/(iy) and
that b = �f(i). We find, using the relation (7),

a = lim
y→∞

1
iy

(
1 +

log
√
2π + (Log iy)/2− iy + J (iy)

iyLog iy

)
= 0,

since by (8), |J (iy)| ≤ π/8 for all y ≥ 1. The constant b is equal to

�f(i) = −i(2/π) log |Γ(i+ 1)| = 1
π
log
sinh(π)

π
.

Here the last equality sign follows fromWeierstrass’s product expansion
of the function Γ(z + 1).

We know that µ is the vague limit of the sequence of positive measures
	f(t+ i/n) dt/π = V (t+ i/n) dt/π as n tends to infinity.

Let h be a nonnegative continuous function on the real line and
suppose that its support is compact and hence is contained in [−K,K]
for some K.
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We shall show that

(12)
∫ K

−K

h(t)V (t+ i/n) dt −→ π

∫ K

−K

h(t) d(t) dt,

as n tends to infinity by appealing to Lebesgue’s theorem on dominated
convergence.

We claim that, for any k ≥ 1,

V (t+ i/n) ≤ Const (1 + | log |t+ k||),

for all t satisfying |t + k| ≤ 1/2 and all n ≥ 1. The constant depends
on k but not on n. In the following, we assume k ≥ 2, but the proof is
easily adapted to the case k = 1.

From (9), we have, with z = t+ i/n,

|zLog z|2V (z) = (x log |z| − yArg z)arg Γ(z + 1)
− (y log |z|+ xArg z) log |Γ(z + 1)|

≤ (|t| log
√
t2 + 1 + π) Const

+ (log
√
t2 + 1 + |t|π) Const

+ (log
√
t2 + 1 + |t|π)

× (| log |z + k − 1||+ | log |z + k||),
because of Lemma 2.1. We have

log |t+ k| ≤ log |z + k| ≤ log(3/2)

for all |t + k| ≤ 1/2 and n ≥ 1. Since | log |z + k − 1|| is also bounded
for |t+ k| ≤ 1/2 and all n ≥ 1, we consequently obtain

|zLog z|2V (z) ≤ Const + Const | log |t+ k|| ≤ Const (1 + | log |t+ k||)

for all t, such that |t + k| ≤ 1/2, and all n. The constants depend on
k, but not on n. The member on the righthand side is integrable on
[−k − 1/2,−k + 1/2] because it has a logarithmic singularity at k.
If |t| ≤ 1/2 and n ≥ 2, we have

|Log (t+ i/n)| ≥ | log
√
t2 + 1/4|.
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Thus, as used in (10),

V (t+ i/n) ≤ Const
| log√

t2 + 1/4| .

The constant is independent of n and the righthand side is again
integrable. Furthermore,

|(t+ i/n)Log (t+ i/n)|2 −→ t2((log |t|)2 + π2)

uniformly on compact subsets of ]−∞, 0[. Therefore, we see that
Lebesgue’s theorem is applicable. We conclude that (12) holds, and
hence, that

µ(t) = d(t) dt.

We shall now simplify the representation in Theorem 4.1.

By a change of variables we have

f(z) =
1
π
log

(
sinh π
π

)
−

∫ ∞

0

(
1

t+ z
− t

t2 + 1

)
d(−t) dt.

It is tempting to rewrite the integral as a sum of two integrals
∫ ∞

0

d(−t)
t+ z

dt−
∫ ∞

0

td(−t)
t2 + 1

dt.

This can be done if we can verify that

(13)
∫ ∞

0

td(−t)
t2 + 1

dt < ∞.

This property can be verified directly, but we prefer to argue as follows:

By differentiating under the integral sign, we find the following
corollary to the theorem above.

Corollary 4.2. We have, for n ≥ 1,

f (n)(z) = (−1)n+1n!
∫ ∞

0

d(−s)
(s+ z)n+1

ds.
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In particular, f ′ is completely monotone on ]0,∞[.

The holomorphic function z �→ 1− f(z) in A has the properties
1. 	(1− f(z)) ≤ 0 for z ∈ H (by Theorem 3.4).

2. 1 − f(x) ≥ 0 for x > 0 (by Corollary 4.2, 1 − f(x) is decreasing,
and from Stirling’s formula we see that 1− f(x)→ 0 as x → ∞).
These properties ensure that 1−f is a Stieltjes transform and thus has
a representation of the form

1− f(z) = α+
∫ ∞

0

dσ(t)
z + t

.

Here α = limx→∞(1 − f(x)) = 0 and
∫ ∞
0
(1/(t + 1))σ(t) < ∞.

Concerning these facts, see, e.g., [4]. The measure σ is given as the
vague limit for n → ∞ of

− 1
π
	(1− f(−t+ i/n)) dt =

1
π
V (−t+ i/n)/dt,

hence dσ(t) = d(−t) dt. Therefore, (13) holds and we find
∫ ∞

0

td(−t)
t2 + 1

dt = 1− 1
π
log

(
sinh π
π

)
.

We conclude:

Theorem 4.3. We have

log Γ(z + 1)
zLog z

= 1−
∫ ∞

0

d(−t)
z + t

dt,

where d is defined in (3).

5. Some related Pick functions. We shall show that the
holomorphic functions in A

(14) f1(z) =
log Γ(z + 1)

z
, f2(z) = z − log Γ(z + 1)

Log z
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are Pick functions and we shall find their integral representations.

The first of these results is more elementary than the main result of
the paper. It has, however, the interesting consequence that log Γ(z)
does not vanish in C \ R.

Theorem 5.1. The function

f1(z) =
log Γ(z + 1)

z
, z ∈ A

is a Pick function of the form (1) with a = 0,

b = −γ +
∞∑

k=1

(
1
k
− arctan 1

k

)

and µ = d1(t) dt, where d1 : R → [0,∞[ is defined as d1(t) = 0 for
t ≥ −1 and

d1(t) =
k − 1
−t for t ∈ [−k,−k + 1[ , k = 2, 3, . . . .

The proof can be done in analogy with the proof of Theorem 1.1, but
we shall give another proof based on the following lemma.

Lemma 5.2. The function −(Log (1 + z))/z is a Pick function with
the representation

(15)
−Log (1 + z)

z
= −π

4
+

∫ −1

−∞

(
1

t− z
− t

t2 + 1

)
dt

−t ,

z ∈ C \ ]−∞,−1] .

Proof. The righthand side is a Pick function, and if we integrate term
by term, it is easy to establish the formula.
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Proof of Theorem 5.1. By Weierstrass’s product expansion, we get

log Γ(z + 1)
z

= −γ +
∞∑

k=1

(
1
k
− Log (1 + z/k)

z

)
, z ∈ A,

and since the partial sum

n∑
k=1

(
1
k
− Log (1 + z/k)

z

)

is a Pick function by the lemma, it is clear that f1 is a Pick function.
To find the integral representation, we replace z by z/k and substitute
t = s/k in formula (15) and get

−Log (1 + z/k)
z

= − π

4k
+

∫ −k

−∞

(
1

s− z
− s

s2 + k2

)
ds

−s

= arctan k − π

2
+

∫ −k

−∞

(
1

s− z
− s

s2 + 1

)
ds

−s .

Using π/2− arctan k = arctan(1/k), we find
n∑

k=1

(
1
k
− Log (1 + z/k)

z

)
=

n∑
k=1

(
1
k
− arctan 1

k

)

+
∫ −1

−∞

(
1

s− z
− s

s2 + 1

)
ϕn(s) ds,

where

ϕn(s) =
{−(k − 1)/s for s ∈ [−k,−k + 1[, k = 2, . . . , n,
−n/s for s < −n.

For n → ∞, we get the assertion of the theorem.

Remark 5.3. From the unicity of the integral representation of a Pick
function, we get that

arg Γ(i+ 1) = −γ +
∞∑

k=1

(
1
k
− arctan 1

k

)
.
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This follows of course also directly from the Weierstrass product.

Theorem 5.4. The function

f2(z) = z − log Γ(z + 1)
Log z

, z ∈ A

is a Pick function of the form (1), with a = 0, b = −(2/π)arg Γ(1 + i)
and µ = −td(t) dt, where d(t) is defined in Theorem 1.1.

Proof. By Theorem 1.2, we have

Φ(z) ≡ 1− log Γ(z + 1)
zLog z

=
∫ ∞

0

d(−t)
t+ z

dt,

so Φ(−z) is a Pick function, continuous and positive on ]−∞, 0[. By a
result in [1, page 127], it follows that zΦ(−z) is a Pick function with
representing measure td(−t) dt concentrated on [0,∞[, i.e.,

zΦ(−z) = αz + β +
∫ ∞

0

(
1

t− z
− t

t2 + 1

)
td(−t) dt,

and by the relations (2) and (11), we see that α = 0, β = (2/π)arg Γ(1+
i). Replacing z by −z and t by −t leads to

f2(z) = −β +
∫ 0

−∞

(
1

t− z
− t

t2 + 1

)
(−t) d(t) dt,

which is the desired representation.
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