
The Chen-Rubin conjecture in a continuous setting

Christian Berg and Henrik L. Pedersen∗

August 24, 2006

Abstract

We study the median m(x) in the gamma distribution with parameter
x and show that 0 < m′(x) < 1 for all x > 0. This proves a generalization
of a conjecture of Chen and Rubin from 1986: The sequence m(n) − n
decreases for n ≥ 1. We also describe the asymptotic behaviour of m and
m′ at zero and at infinity.
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1 Introduction

The gamma distribution with (positive) parameter x has density with respect
to Lebesgue measure on (0,∞) given by e−ttx−1/Γ(x). The median m(x) of
this distribution is defined implicitly as

∫ m(x)

0

e−ttx−1

Γ(x)
dt =

1

2
,

or
∫ m(x)

0
e−ttx−1 dt =

1

2

∫

∞

0
e−ttx−1 dt. (1)

This is of course equivalent to

∫

∞

m(x)
e−ttx−1 dt =

1

2

∫

∞

0
e−ttx−1 dt. (2)

We show that m is continuous and increasing. This is a consequence of a result
about general convolution semigroups of probabilities on the positive half-line,
that is given in Section 2. There we also show that m is real analytic and that
m satisfies a certain differential equation.

We shall mainly study m through the function

ϕ(x) ≡ log
x

m(x)
, x > 0. (3)
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This function appears if we make the substitution u = log(x/t) in the relation
(2):

∫ ϕ(x)

−∞

e−x(e−u+u) du =
1

2

∫

∞

−∞

e−x(e−u+u) du. (4)

Chen and Rubin (see [7]) studied the median of the gamma distribution and
proved that x−1/3 < m(x) < x for x > 0. The relation (4) was also used in [7]
to establish that ϕ(x) > 0, or equivalently m(x) < x. (It follows by observing
that

∫ 0
−∞

e−x(e−u+u) du <
∫

∞

0 e−x(e−u+u) du, which is true because sinhu > u
for u > 0.)

Chen and Rubin furthermore conjectured that the sequence m(n) − n de-
creases. This conjecture has recently been verified by Alm [2]. See also Adell
and Jodrá [1], which contains a simpler proof. We also mention Alzer [3], who
proved that m(n + 1) − αn decreases for all n ≥ 0 exactly when α ≥ 1 and
increases exactly when α ≤ m(2) − log 2. (Note that m(1) = log 2.)

In this paper we investigate the properties of m as a function on (0,∞).
Chen and Rubin’s conjecture follows from the relation

m′(x) < 1 for all x > 0 (5)

and it is our main goal to verify this relation. (See Theorem 3.4.)
The graph of m can be found in Figure 1. (The dotted line is given by

x − 1/3.)
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Figure 1: The graph of m

In terms of ϕ the inequality (5) takes the form 1 − xϕ′(x) < eϕ(x). As a
crucial step towards this result we show that xϕ(x) decreases and that

1

3
< xϕ(x) < log 2
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for all x > 0 (see Proposition 3.6). In terms of m this relation can be rewritten
as

xe− log 2/x < m(x) < xe−1/3x.

If we use that e−a < 1 − a + a2/2 for a > 0 then in fact

m(x) < x

(

1 − 1

3x
+

1

18x2

)

= x − 1

3
+

1

18x

for all x > 0. This result improves a result of Choi about m(n + 1), see [8,
Theorem 1], even though it is there claimed to be best possible.

The asymptotic behaviour of m(x) for x → 0 and for x → ∞ is given in
Section 4. From this we can deduce that m(k)(x) > 0 for x close to 0 for each
k while (−1)km(k)(x) > 0 for x sufficiently large and k ≥ 2. It is reasonable to
believe that m′′(x) > 0 for all x > 0, i.e. m is convex, but the higher derivatives
of odd order change sign.

2 Medians of convolution semigroups on the half-

line

A family {µx}x>0 of probabilities concentrated on [0,∞) is called a convolution
semigroup if it has the properties

(i) µx([0,∞)) = 1 for all x > 0;

(ii) µx ∗ µy = µx+y for all x, y > 0;

(iii) µx → δ0 for x → 0 in the vague topology (here δ0 denotes the Dirac mass
at zero).

A probability measure µ on [0,∞) has median m if

µ([0,m]) =
1

2
.

Of course a probability measure may not have a median and if it exists it may
not be unique. However, if the measure has density w.r.t. Lebesgue measure on
[0,∞) then the median exists: this follows from the fact that M → µ([0,M ]) is
continuous and increases from 0 to 1. If the density is strictly positive almost
everywhere on [0,∞) then the median is unique.

Proposition 2.1 Let {µx}x>0 be a convolution semigroup of probabilities on
[0,∞) having a.e. strictly positive densities w.r.t. Lebesgue measure on [0,∞).
Then the median m(x) of µx is a continuous and strictly increasing function
on (0,∞). Furthermore, limx→0 m(x) = 0 and limx→∞ m(x) = ∞.

Proof. We write dµx(t) = gx(t) dt. As was noticed above, m exists as a function
on the positive half-line. We now show that m is strictly increasing. Let x > 0
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and h > 0. Then
∫ m(x)

0
gx+h(t) dt =

∫ m(x)

0
gx ∗ gh(t) dt

=

∫ m(x)

0

∫ t

0
gh(t − s)gx(s) ds dt

=

∫ m(x)

0

∫ m(x)

s
gh(t − s) dt gx(s) ds

=

∫ m(x)

0

∫ m(x)−s

0
gh(t) dt gx(s) ds

<

∫ m(x)

0

∫

∞

0
gh(t) dt gx(s) ds

=

∫ m(x)

0
gx(s) ds =

1

2
.

Since m(x + h) by definition satisfies

∫ m(x+h)

0
gx+h(t) dt =

1

2
,

it follows that m(x) < m(x + h). Therefore m is strictly increasing.
Concerning the continuity we first notice that for any A > 0,

∫ A

0
gx0+h(t) dt →

∫ A

0
gx0(t) dt

as h → 0. In fact, by the same computation as above,

∫ A

0
gx0+h(t) dt =

∫ A

0
gx0 ∗ gh(t) dt

=

∫ A

0

∫ A−s

0
gh(t) dt gx0(s) ds

→
∫ A

0

∫ A−s

0
dδ0(t) gx0(s) ds

=

∫ A

0
gx0(s) ds,

as h → 0, because of the vague convergence. (All measures in question have
the same total mass, so vague convergence implies weak convergence.) Now let
x0 > 0 and let ε > 0 be given. For A = m(x0) + ε we have, as h → 0+,

∫ m(x0)+ε

0
gx0+h(t) dt →

∫ m(x0)+ε

0
gx0(t) dt >

1

2
,

so that m(x0 +h) ≤ m(x0)+ε for all sufficiently small and positive h. Similarly,
m(x0 − h) ≥ m(x0) − ε, and this shows that m is continuous.

To show that limx→0 m(x) = 0 and limx→∞ m(x) = ∞, it is enough to
exclude that
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(a) there is a > 0 such that m(x) ≥ a for x > 0, and

(b) there is A > 0 such that m(x) ≤ A for x > 0,

m being increasing.
If (a) holds then

∫ a

0
gx(t)dt ≤

∫ m(x)

0
gx(t)dt =

1

2

for all x. Since µx converges vaguely to the Dirac mass at 0 for x tending to 0
we get

1 = δ0([0, a)) ≤ lim inf
x→0

µx([0, a)) ≤ 1

2
,

which is a contradiction.
If (b) holds then

1

2
=

∫ m(x)

0
gx(t)dt ≤

∫ A

0
gx(t)dt ≤ eA

∫ A

0
e−tgx(t)dt < eAe−xf(1),

where f is the Bernstein function corresponding to the convolution semigroup
(see [5]). However, f(1) > 0 so that the right-hand side tends to 0 as x → ∞.
We have reached a contradiction. �

The gamma distributions {e−ttx−1/Γ(x) dt}x>0 is an example of such a con-
volution semigroup. Other examples can be constructed from the one-sided
stable distribution of order α (0 < α < 1), and the log-normal distribution; see
[14]. Both of these distributions are infinitely divisible and can be embedded
in a convolution semigroup. The median of either of these semigroups has the
properties of Proposition 2.1.

We now specialize to consider the median m(x) of the gamma distributions.
We notice

Proposition 2.2 The median m(x) of the gamma distributions is real analytic.

Proof. We consider the C1-function

F (x, y) =

∫ y

0
e−ttx−1 1

Γ(x)
dt, x, y > 0.

The median is implicitly defined as F (x,m(x)) = 1/2. The fact that the contin-
uous function m is C1 follows from the implicit function theorem, which yields
the following differential equation for m:

e−m(x)m(x)x−1m′(x) =
1

2
Γ′(x) −

∫ m(x)

0
(log t) e−ttx−1 dt, (6)

which shows that m satisfies a differential equation of the form

m′(x) = G(x,m(x)),

with G(x, y) being real analytic for x, y > 0. Therefore m is real analytic. �

Remark 2.3 From (6) it seems difficult to deduce monotonicity properties of
m; e.g. it is not at all clear that m′(x) > 0, which follows from Proposition 2.1.
For another derivation of m′(x) > 0 see Proposition 3.6.
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3 Uniform results

In this section the generalized version of Chen and Rubin’s conjecture (Theorem
3.4) is proved.

Proposition 3.3 below is the key to our results. Before stating it we need
some notation.

We consider the function f(x) = e−x+x. It is easily seen that f(x) decreases
for x < 0 and then increases for x > 0. Hence f has an inverse on (−∞, 0],
which we call u, and an inverse on [0,∞), which we call v. The function u is
defined for t ≥ 1 as u(t) ≤ 0 and

e−u(t) + u(t) = t, t ≥ 1;

the function v as v(t) ≥ 0 and

e−v(t) + v(t) = t, t ≥ 1.

The following function ξ plays an important role:

ξ(t) =
1

1 − e−v(t)
+

1

1 − e−u(t)
= u′(t) + v′(t). (7)

Since u(t) → −∞ and v(t) → ∞ for t → ∞ it follows that

ξ(t) → 1 as t → ∞. (8)

The function ξ(t) is defined for t > 1. For t = 1 the expression (7) yields ∞−∞
and a closer study is necessary.

Proposition 3.1 The function ξ(t) is holomorphic in a neighbourhood of t = 1
and ξ(1) = 2/3, ξ′(1) = 8/135.

The monotonicity properties of ξ also play an important role in our investiga-
tions. The following result holds.

Proposition 3.2 The function ξ(t) is increasing and concave for t > 1.

These two propositions are proved in Section 5. It is in fact proved that ξ
has a holomorphic extension to the cut plane C \ {x ± 2πi |x ≥ 1} (Corollary
5.5). Furthermore, an integral representation of ξ is obtained (Proposition 5.8)
from which the monotonicity properties are derived. It is shown that ξ(t) is
increasing for t ∈ R and has the limit 0 as t tends to −∞. Hence the function
cannot be concave on the whole real line and this is reflected in the technicalities
establishing concavity on the interval [1,∞).

Proposition 3.3 We have

2

∫ ϕ(x)

0
e−x(e−u+u) du =

∫

∞

1
ξ(t)e−xt dt, (9)

where the function ξ is defined in (7).
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Proof. From (4) it follows

2

∫ ϕ(x)

0
e−x(e−u+u) du =

∫

∞

0
e−x(e−u+u) du −

∫ 0

−∞

e−x(e−u+u) du.

In the first integral on the right-hand side we make the substitution u = v(t)
and in the second the substitution u = u(t), where u(t) and v(t) denote the
functions above. This leads to

2

∫ ϕ(x)

0
e−x(e−u+u) du =

∫

∞

1
e−xt

(

1

1 − e−v(t)
+

1

1 − e−u(t)

)

dt

=

∫

∞

1
ξ(t)e−xt dt.

�

As mentioned in the introduction the inequality m′(x) < 1 follows from the
result below.

Theorem 3.4 The inequality

1 − xϕ′(x) < eϕ(x)

holds for all x > 0.

Before proving this result, we give the following Lemma.

Lemma 3.5 The relation

2

∫ xϕ(x)

0
e−sex(1−e−s/x) ds =

2

3
+

∫

∞

1
ξ′(t)e−x(t−1) dt

holds for all x > 0.

Proof. On the left hand side of the relation in Proposition 3.3 we make the
substitution s = xu and get in this way

2

x

∫ xϕ(x)

0
e−s−xe−s/x

ds =

∫

∞

1
ξ(t)e−xt dt,

hence by integration by parts

2

∫ xϕ(x)

0
e−s−xe−s/x

ds =

∫

∞

1
ξ(t)xe−xt dt

= e−xξ(1) +

∫

∞

1
ξ′(t)e−xt dt.

Here ξ(1) = 2/3 (see Proposition 3.1) and the assertion of the lemma now
follows by multiplication by ex. �

Proposition 3.6 The function x → xϕ(x) decreases for x > 0 and

lim
x→0+

xϕ(x) = log 2,

lim
x→∞

xϕ(x) =
1

3
.

In particular ϕ is decreasing from ∞ to 0 (and m is increasing).
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Proof. It follows from Lemma 3.5, by differentiation, that

e−x(ϕ(x)−1+e−ϕ(x)) (xϕ(x))′ =

−
∫ xϕ(x)

0
e−sex(1−e−s/x)

(

1 −
(

1 +
s

x

)

e−s/x
)

ds

−1

2

∫

∞

0
te−xtξ′(t + 1) dt.

Since 1 − (1 + a)e−a > 0 for a > 0 and ξ′(t + 1) > 0 for t > 0 (see Proposition
3.2) we have

A(x) ≡
∫ xϕ(x)

0
e−sex(1−e−s/x)

(

1 −
(

1 +
s

x

)

e−s/x
)

ds > 0

and

B(x) ≡ 1

2

∫

∞

0
te−xtξ′(t + 1) dt > 0.

Therefore
(xϕ(x))′ = −ex(ϕ(x)−1+e−ϕ(x))(A(x) + B(x)), (10)

which is a negative quantity, so xϕ(x) decreases.

Furthermore, since e−sex(1−e−s/x) ≥ e−s, we get from Lemma 3.5,

2

∫ xϕ(x)

0
e−s ds ≤ 2

3
+

∫

∞

1
ξ′(t) dt =

2

3
+ lim

x→∞

ξ(x) − ξ(1) = 1,

since limx→∞ ξ(x) = 1 (see (8)). Therefore xϕ(x) is bounded by log 2 for all
x > 0.

Let l = limx→0+ xϕ(x). Then by the dominated convergence theorem we
find

2

∫ l

0
e−s ds =

2

3
+

∫

∞

1
ξ′(t) dt = 1,

so that l = log 2.
Finally, let L = limx→∞ xϕ(x). In the same way, we get

2

∫ L

0
1 ds =

2

3
,

so that L = 1/3. �

Proof of Theorem 3.4. With the expressions A(x) and B(x) and the relation
(10) from the proof of Proposition 3.6 we obtain

1 − xϕ′(x) = ex(ϕ(x)−1+e−ϕ(x))(A(x) + B(x)) + ϕ(x) + 1

≤ exϕ(x)(A(x) + B(x)) + ϕ(x) + 1.

Now, using that 1−e−a < a and 1− (1+a)e−a < a2/2 for a > 0, it follows that

A(x) ≤
∫ xϕ(x)

0
e−sex(s/x)

(

s2

2x2

)

ds =
xϕ(x)3

6
.
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Furthermore, since ξ′(t + 1) ≤ ξ′(1) = 8/135 for t ≥ 0,

B(x) ≤ 1

2

8

135

∫

∞

0
te−xt dt =

4

135x2
.

This gives

1 − xϕ′(x) ≤ 1 + ϕ(x) + exϕ(x)

(

xϕ(x)

6
+

4

135(xϕ(x))2

)

ϕ(x)2.

It is easily seen that the function

ρ(u) = eu

(

u

6
+

4

135u2

)

attains its maximum on [1/3, log 2] at u = 1/3 with value

ρ

(

1

3

)

=
29

90
e1/3 <

1

2
.

We obtain from this the relation

1 − xϕ′(x) < 1 + ϕ(x) +
1

2
ϕ(x)2 < eϕ(x).

�

Remark 3.7 The difference between eϕ(x) and 1 + ϕ(x) + 1
2ϕ(x)2 is O(ϕ(x)3),

that is (by Proposition 3.6) the difference is O(x−3). Hence for large x the
difference is very small, reflecting the fact that m′(x) is very close to 1. For
x close to 0, the difference is large, reflecting the fact that m′(x) approaches 0
rapidly. See Proposition 4.1.

Remark 3.8 Defining θ(n) for natural numbers n by

en

2
=

n−1
∑

k=0

nk

k!
+ θ(n)

nn

n!
,

Ramanujan [13] claimed that 1
3 < θ(n) < 1

2 . This was later proved indepen-
dently by Szegő [15] and Watson [16]. Further details about Ramanujan’s prob-
lem can be found in [2], [6], [10] and [8].

Watson obtained the relation

θ(n) = 1 +
n

2

(∫ 1

0
(te1−t)n dt −

∫

∞

1
(te1−t)n dt

)

and noticed that the right-hand side of this equation makes perfect sence when n
is replaced by a positive real variable x. The substitution t = e−u in the integrals
and some computation lead to

θ(x) =
x

2

∫

∞

0
e−xtξ(t + 1) dt. (11)

The inequalities 1/3 < θ(x) < 1/2 can now be obtained from the inequalities
2/3 < ξ(t + 1) < 1.
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4 Asymptotic results

Here the behaviour of m and m′ at zero and at infinity is described. We use
f(x) ∼ g(x) for x → 0 to denote that

lim
x→0

f(x)/g(x) = 1.

Proposition 4.1 We have m(x)x → 1/2 as x → 0 and

m(x) ∼ e−γ2−1/x as x → 0.

Furthermore,

m′(x) ∼ (log 2)e−γ 2−1/x

x2
as x → 0.

(The constant γ denotes Eulers constant.)

Proof. Let l(x) = log(m(x)x) = −xϕ(x) + x log x. From Proposition 3.6 it
follows that l(x) → − log 2 as x → 0. Therefore m(x)x → 1/2 as x → 0.

By the definition of m(x) and by the functional equation of the gamma
function we have

∫ m(x)

0
e−txtx−1 dt =

1

2
Γ(x + 1).

Integration by parts on the integral on the left hand side in this relation yields

m(x)xe−m(x) +

∫ m(x)

0
e−ttx dt =

1

2
Γ(x + 1).

We next differentiate this relation and get after some manipulation

log m(x) +
x

m(x)
m′(x) = em(x)m(x)−x

(

1

2
Γ′(x + 1) −

∫ m(x)

0
(log t) e−ttx dt

)

.

Since m(x)x → 1/2 as x → 0 it follows that

lim
x→0

(

log m(x) +
x

m(x)
m′(x)

)

= Γ′(1) = −γ. (12)

This is the same as l′(x) = (log(m(x)x))′ → −γ as x → 0. Using l’Hospital’s
rule we get

l(x) + log 2

x
→ −γ

for x → 0. Therefore m(x) ∼ 2−1/xe−γ as x → 0.
From (12) it follows that

x log m(x) +
x2

m(x)
m′(x) → 0

for x → 0 and, since (as used before) x log m(x) → − log 2, we get

m′(x) ∼ log 2

x2
2−1/xe−γ

as x → 0. �
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Proposition 4.2 The functions m and m′ have asymptotic expansions at in-
finity. We have in particular

m′(x) = 1 − 8

405x2
− 368

25515x3
+ o(x−3) as x → ∞

and

m(x) = x − 1

3
+

8

405x
+

184

25515x2
+ o(x−2) as x → ∞.

Remark 4.3 Choi [8] found the asymptotic expansion of m(n+1) up to order
o(n−3). Higher order expansions of m(n+1) were found in [11]. In the appendix
we have included higher order expansions of m(x) and ϕ(x) (and higher order
derivatives of the function ξ at 1). Because of the complexity, the computations
behind the expansions in the appendix were made with “Maple 9”, using the
same method as described in Lemma 4.5.

Some properties of ξ are also needed here, namely:

Lemma 4.4 For any n ≥ 1, limt→∞ ξ(n)(t) = 0.

This lemma is proved in the last part of Section 5.

Lemma 4.5 The functions ϕ and ϕ′ have asymptotic expansions at infinity.
In particular

ϕ(x) =
1

3x
+

29

810x2
− 37

25515x3
+ o(x−3)

as x → ∞.

Proof. We have already seen in Proposition 3.6 that ϕ(x) = O(x−1). Therefore

2

∫ ϕ(x)

0
e−x(u+e−u

−1) du = 2

n
∑

k=0

(−1)kxk

k!

∫ ϕ(x)

0
(u + e−u − 1)k du + o(x−(n+1)).

On the other hand, by partial integration and Lemma 4.4,

∫

∞

0
ξ(t + 1)e−xt dt =

n
∑

k=0

ξ(k)(1)

xk+1
+ o(x−(n+1)). (13)

From Proposition 3.3 we thus get

ϕ(x) =
n
∑

k=0

ξ(k)(1)

2xk+1
−

n
∑

k=1

(−1)kxk

k!

∫ ϕ(x)

0
(u + e−u − 1)k du + o(x−(n+1)). (14)

From this relation it is possible to deduce that ϕ(x) has an asymptotic expansion
of the form

ϕ(x) =

n
∑

k=1

ck

xk
+ o(x−n) (15)

as x → ∞ and for any n. (See below.)
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Let us first find the coefficients c1, c2 and c3 in the expansion. If n = 0 the
relation (14) yields, since ξ(1) = 2/3,

ϕ(x) =
1

3x
+ o(x−1).

(This was already found in Proposition 3.6.) For n = 1 we get, using ξ ′(1) =
8/135,

ϕ(x) =
1

3x
+

4

135x2
+ x

∫ ϕ(x)

0
(u + e−u − 1) du + o(x−2).

Now, u + e−u − 1 = u2/2 + o(u2) for u → 0 and therefore

ϕ(x) =
1

3x
+

4

135x2
+ x

(

ϕ(x)3

6
+ o(x−3)

)

+ o(x−2).

Then we use the result for n = 0 to obtain that xϕ(x)3 = 1/(27x2) + o(x−2),
and if we insert this into the relation above it follows that

ϕ(x) =
1

3x
+

(

4

135
+

1

162

)

1

x2
+ o(x−2) =

1

3x
+

29

810x2
+ o(x−2).

The argument is repeated and yields the following for n = 2:

ϕ(x) =
1

3x
+

4

135x2
− 8

2835x3

+x

∫ ϕ(x)

0
(u + e−u − 1) du − x2

2

∫ ϕ(x)

0
(u + e−u − 1)2 du + o(x−3).

Here we use u+e−u−1 = u2/2−u3/6+o(u3) and (u+e−u−1)2 = u4/4+o(u4)
for u → 0 and get

ϕ(x) =
1

3x
+

4

135x2
− 8

2835x3

+x

(

ϕ(x)3

6
− ϕ(x)4

24
+ o(x−4)

)

−x2

2

(

ϕ(x)5

20
+ o(x−5)

)

+ o(x−3).

In the term xϕ(x)3/6 the expansion of ϕ(x) for n = 1 is substituted and in the
terms xϕ(x)4/24 and x2ϕ(x)5/40 the expansion of ϕ(x) for n = 0. In this way
we get

ϕ(x) =
1

3x
+

29

810x2
+

(

− 8

2835
+

1

18

29

810
− 1

24

1

81
− 1

40

1

243

)

1

x3
+ o(x−3)

=
1

3x
+

29

810x2
− 37

25515x3
+ o(x−3).

These computations also indicate how to show that there is an asymptotic
expansion (15) for every n ≥ 1. One could use an inductive argument based on
the relation (14): First of all, the sum

n
∑

k=0

ξ(k)(1)

2xk+1

12



contains a term of order 1/xn+1. Next the integrand (u + e−u − 1)k is approxi-
mated by its Taylor polynomial of order n + k,

(u + e−u − 1)k =

n+k
∑

l=2k

αk,lu
l + o(un+k),

and the expansion ϕ(x) =
∑n

k=1 ck/x
−k +o(x−n) is then used in the upper limit

of the integrals in the sum

n
∑

k=1

(−1)kxk

k!

∫ ϕ(x)

0
(u + e−u − 1)k du.

Using these approximations it is possible to obtain

ϕ(x) =

n
∑

k=0

ξ(k)(1)

2xk+1
−

n
∑

k=1

(−1)kxk

k!

n+k
∑

l=2k

αk,l

l + 1





n
∑

j=1

cj

xj





l+1

+ o(x−(n+1)).

This is an expansion of ϕ(x) of order n + 1.
To see that also ϕ′(x) has an asymptotic expansion we differentiate (9) and

get

2ϕ′(x)e−x(ϕ(x)+e−ϕ(x)) − 2

∫ ϕ(x)

0
e−x(u+e−u)(u + e−u) du = −

∫

∞

1
tξ(t)e−xt dt.

Adding (9) to the relation above we get after multiplication by ex and a change
of variable s = t − 1,

2ϕ′(x)e−x(ϕ(x)+e−ϕ(x)
−1)

= 2

∫ ϕ(x)

0
e−x(u+e−u

−1)(u + e−u − 1) du −
∫

∞

0
sξ(1 + s)e−xs ds.

In the first integral we use again Taylor approximation and in the second integral
integration by parts. Using also the asymptotic expansion of ex(ϕ(x)+e−ϕ(x)

−1) it
follows finally that there is an asymptotic expansion of ϕ′(x). The coefficients
in this expansion can be identified by integrating the expansion and using the
known expansion of ϕ(x), cf [4][Appendix C]. �

Proof of Proposition 4.2. Since ϕ(x) has an asymptotic expansion,

m(x) = xe−ϕ(x) = x
∞
∑

k=0

(−1)kϕ(x)k

k!

also has an asymptotic expansion and in particular

m(x) = xe−ϕ(x) = x

(

1 − ϕ(x) +
ϕ(x)2

2
− ϕ(x)3

6
+ o(x−3)

)

.

We insert in this relation the asymptotic expansion of ϕ(x) from the lemma
above and get, after some computation,

m(x) = x

(

1 − 1

3x
+

8

405x2
+

184

25515x3
+ o(x−3)

)

= x − 1

3
+

8

405x
+

184

25515x2
+ o(x−2).

13



Since ϕ′(x) has an asymptotic expansion, the same is true for m′(x), since
m′(x) = (1−xϕ′(x))e−ϕ(x). The expansion of m(x) can be found by integrating
the expansion of m′(x), and this gives the desired expansion of m′(x). �.

Remark 4.6 It is clear that the methods above can be continued so the asymp-
totic behaviour of m(k)(x), k ≥ 2 for x → 0 and x → ∞ can be determined by
differentiation of the asymptotic formulas for m′(x).

Remark 4.7 The asymptotic expansion of Ramanujans function θ(x)

θ(x) =

n
∑

k=0

ξ(k)(1)

2xk
+ o(x−n)

follows from (13) and (11).

5 Properties of the auxiliary function ξ

In this section the properties of the function ξ, stated in the propositions 3.1,
3.2 and in Lemma 4.4 are derived. The monotonicity properties of ξ we found
surprisingly difficult to establish. Much of the difficulty lies in the fact that ξ
is given as a sum of two terms, where it is necessary to control the cancellation
between these two terms.

Behaviour of ξ at t = 1

Proof of Proposition 3.1. We put f(z) = e−z + z and notice that the function
f(z)− 1 has a zero of multiplicity 2 at z = 0. Hence there exists a holomorphic
function h in a neighbourhood of 0 such that f(z) − 1 = h(z)2 there. Since
h′(0)2 = 1/2 6= 0, h is one-to-one near z = 0. We choose h′(0) = 1/

√
2 and

with this choice h is uniquely determined.
There is thus a radius r > 0 such that for any w with |w| < r, there are

exactly two solutions to the equation f(z) = w, namely z = h−1(±
√

w − 1). In
particular, for t > 1 and close to 1 we have

u(t) = h−1(−
√

t − 1) and v(t) = h−1(
√

t − 1),

where u and v are the functions appearing in (7). Denoting the Taylor series
of h−1(w) by

∑

∞

n=1 anwn it follows that

u(t) + v(t) =

∞
∑

k=1

2a2k(t − 1)k.

Since ξ(t) = u′(t) + v′(t), we find ξ(1) = 2a2 and ξ′(1) = 4a4. The numbers a2

and a4 can be found as follows. If h(z) =
∑

∞

n=1 bnzn then

(

∞
∑

n=1

bnzn

)2

= e−z + z − 1 =
1

2
z2 − 1

6
z3 +

1

24
z4 + . . .

14



and this gives after some manipulation b1 = 1/
√

2, b2 = −
√

2/12, b3 =
√

2/72
and b4 = −

√
2/540. The numbers a2 and a4 can now be identified if we differen-

tiate four times the relation (h−1)(h(z)) = z and put z = 0 (so that expressions
involving e.g. (h−1)(4)(0) appear). This gives, again after some manipulation,
(h−1)(2)(0) = 2/3 and (h−1)(4)(0) = 16/45, so that ξ(1) = 2a2 = 2/3 and
ξ′(1) = 4a4 = 4 · (16/45) · (1/24) = 8/135. �

Remark 5.1 One can in principle find any derivative of ξ at 1 in this way.
Higher order derivatives of ξ at 1 can be found in the appendix.

Monotonicity properties of ξ

The monotonicity properties are derived through an approach using complex
analysis and we shall make extensive use of the theory of the so-called Pick
functions, see [9]. A holomorphic function p defined in the upper half plane is a
Pick function if it maps the upper half plane into the closed upper half plane, or
put in another way, if =p is a non-negative harmonic function. A Pick function
has an integral representation,

p(z) = az + b +

∫

∞

−∞

(

1

t − z
− t

t2 + 1

)

dµ(t), (16)

where a ≥ 0, b is real and µ is a positive measure on the real line. Furthermore,

a = lim
y→∞

=p(iy)

y
, b = <p(i)

and

µ = lim
y→0+

=p(x + iy)

π
dx

in the vague topology. Note that a Pick function can be extended to a holo-
morphic function in C \ R by (16). If A ⊆ R is closed we recall that p has a
holomorphic extension to C \ A if and only if the support of µ is contained in
A.

The proof of the monotonicity properties of ξ (Proposition 3.2) is based on
an investigation of the conformal properties of the holomorphic function

f(z) = e−z + z. (17)

The key to the proof is an integral representation of ξ that is given in Proposition
5.8. Some quite technical lemmas are needed, basically to exploit the relation
between the functions f and ξ.

Lemma 5.2 The function f(z) = e−z + z is a conformal mapping of the strip

S2π = {0 < =z < 2π}

onto the domain

T = C \ ({=w = 2π,<w ≥ 1} ∪ {=w = 0,<w ≥ 1}) .

15
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Figure 2: The image of horizontal lines under f(z) = e−z + z.

The image of some horizontal lines in S2π under the function f is shown in
Figure 2.

Proof. We have f(x + iy) = σ + iτ if and only if

e−x cos y + x = σ

−e−x sin y + y = τ.

If y = π then τ = π and σ = x− e−x so f maps the horizontal line R + iπ onto
itself and is one-to-one there.

Note that if 0 < y < π then τ = −e−x sin y + y < y so

f({0 < =z < π}) ⊆ {=w < π}.

For τ < π we get ex = (sin y)/(y − τ) and since τ < y this gives x =
log(sin y/(y − τ)). Therefore we shall look for a solution y to the equation

log
sin y

y − τ
+

(y − τ) cos y

sin y
= σ.

For τ < π we put

Fτ (y) = log
sin y

y − τ
+

(y − τ) cos y

sin y
(18)

and claim the following:

1. For 0 < τ < π, Fτ (y) decreases for y ∈ (τ, π) from ∞ to −∞.

2. For τ = 0, Fτ (y) decreases for y ∈ (τ, π) from 1 to −∞.

16



3. For τ < 0, Fτ (y) decreases for y ∈ (0, π) from ∞ to −∞.

It is easy to see that limy→π−
Fτ (y) = −∞, limy→τ+ Fτ (y) = ∞ for τ > 0 and

limy→0+ F0(y) = 1. Furthermore, limy→0+ Fτ (y) = ∞ for τ < 0 since the first
term in Fτ (y) has a logarithmic singularity. To verify 1., 2. and 3. we need to
show that F ′

τ (y) < 0. We find, after some computation,

F ′

τ (y) =
1

sin y

(

2 cos y − sin y

y − τ
− y − τ

sin y

)

.

Putting κ = (sin y)/(y − τ) then κ > 0 and hence κ + 1/κ ≥ 2. Since cos y < 1
it follows that indeed F ′

τ (y) < 0.
From 1. and 3. it follows that for given σ ∈ R and τ < π, τ 6= 0 there is

a unique solution y to the equation Fτ (y) = σ and therefore there is a unique
solution x + iy ∈ S2π to f(x + iy) = σ + iτ . If τ = 0 there is by 2. a unique
solution y to the equation Fτ (y) = σ when σ < 1 and none when σ ≥ 1.

For π < y < 2π we have sin y < 0 so τ > y and therefore

f({π < =z < 2π}) ⊆ {π < =w}.

For τ > π we put

Fτ (y) = log
− sin y

τ − y
+

(τ − y) cos y

− sin y
.

It follows that Fτ (y) increases with y ∈ (π,min(τ, 2π)), and the conformality
follows in the same way as for the case τ < π. �

In the following we let f−1 denote the inverse of the conformal mapping f
of Lemma 5.2, including its obvious continuous extension to both sides of the
cuts.

Lemma 5.3 The function w 7→ f−1(1 − w) is a Pick function with the repre-
sentation

f−1(1 − w) = <f−1(1 − i) +

∫

∞

0

(

1

t − w
− t

t2 + 1

)

η(t) dt,

where

η(t) =
1

π
=f−1(1 − t)

is increasing on (0,∞) from 0 to 1.

Proof. First of all, 1−w belongs to the lower half plane when w belongs to the
upper half plane. Since f−1 maps all of T , and hence in particular the lower
half plane, into the strip 0 < =z < 2π, f−1(1 − w) is certainly a Pick function.
We next derive its integral representation. Since its imaginary part is bounded
the number a in the representation (16) must be zero.

It remains to identify the measure µ. Since the function f−1(1 − t − iy) is
continuous for (t, y) ∈ R × [0, 1] and is real for y = 0 and t < 0 we find

η(t) = lim
y→0+

=f−1(1 − t − iy)

π
=

=f−1(1 − t)

π

17



for t > 0 and η(t) = 0 for t < 0.
By definition the function Y (t) = πη(t) satisfies the equation

F0(Y (t)) = log
sinY (t)

Y (t)
+

Y (t) cos Y (t)

sinY (t)
= 1 − t

(with the notation of Lemma 5.2) and therefore

Y ′(t)F ′

0(Y (t)) = −1.

Since F ′

0 is negative (see again Lemma 5.2), Y (t) and hence η(t) must be increas-
ing. Since Y (t) tends to π as t tends to ∞ (this is because F0(Y (t)) → −∞),
η(t) → 1 as t → ∞. �

Lemma 5.4 The function

g(w) = f−1(w) + f−1(w)

has a holomorphic extension to C \ {=w = ±2π,<w ≥ 1}. All points on the
lines {=w = ±2π,<w ≥ 1} are singular points for g.

Proof. Since f−1 is a conformal mapping of the region

C \ ({=w = 2π,<w ≥ 1} ∪ {=w = 0,<w ≥ 1}) ,

the function g is holomorphic in

C \ ({=w = ±2π,<w ≥ 1} ∪ {=w = 0,<w ≥ 1}) .

However, g has a continuous extension to {=w = 0,<w ≥ 1} with boundary
values u + v (see the beginning of Section 3), so from Moreras theorem we
conclude that g is holomorphic across this half-line. Concerning the boundary
values on the half-lines {=w = ±2π,<w ≥ 1} we have (σ ≥ 1)

lim
τ→2π−

g(σ + iτ) = lim
τ→2π−

f−1(σ + iτ) + f−1(σ − 2πi)

= v(σ) + 2πi + f−1(σ − 2πi)

and similarly

lim
τ→2π+

g(σ + iτ) = u(σ) + 2πi + f−1(σ − 2πi).

Therefore g is not continuous across any segment of the half-line

{=w = 2π,<w ≥ 1}

and so all these points are singular points. Since g(w) = g(w) the same conclu-
sion holds for the points on the other half-line. �

The next result relates g from the lemma above with u, v (defined by (7))
and ξ.

18



Corollary 5.5 The function

g(w) = f−1(w) + f−1(w)

is a holomorphic extension of u + v to C \ {=w = ±2π,<w ≥ 1}. The function
g′ is thus a holomorphic extension of ξ.

Proposition 5.6 The Taylor series for ξ(z) centered at 1 has radius of con-
vergence equal to 2π and the asymptotic series

∞
∑

k=0

ξ(k)(1)

zk

diverges for any z in C.

Proof. We have ξ = g′, where g is the function in Lemma 5.4. If the radius of
convergence of ξ at 1 were larger than 2π then the primitive g would also have
a holomorhic extension to this larger disk, and this contradicts the fact that g
has singular points in that disk.

Concerning the divergence of the asymptotic series we use that the radius
of convergence of the Taylor series is finite. It means that

lim sup
k→∞

(

|ξ(k)(1)|
k!

)1/k

> 0,

and hence that for some ε > 0, |ξ(k)(1)|1/k/(k!)1/k > ε for infinitely many k.
Stirlings formula yields (k!)1/k ∼ k/e and therefore

lim sup
k→∞

|ξ(k)(1)|1/k = ∞.

This shows on the other hand that the asymptotic series diverges for any com-
plex number z. �

In the following log denotes the principal logarithm defined in the cut plane
C \ (−∞, 0].

Lemma 5.7 The function

Ψ(w) = f−1(log w) + f−1(log w)

is a Pick function. It has the representation

Ψ(w) = <Ψ(i) −
∫

∞

0

(

1

t + w
− t

t2 + 1

)

h(t)dt,

where the function h is given as

h(t) = 1 − = f−1(log t − iπ)

π
.

Furthermore, h increases on (0,∞) from 0 to 1.
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Proof. We consider the holomorphic function g from Lemma 5.4 in the strip
S = {0 < =w < π}. Hence the function V (w) = =g(w) is a harmonic function
in S. Furthermore, since f−1 maps all of {=w < π} \ {x |x ≥ 1} into S, V is
also bounded there, with the apriori bound −π < V (w) < π. We claim that
indeed 0 < V (w) < π for all w ∈ S.

We consider the boundary values of V . The horizontal line {t + iπ, | t ∈ R}
is mapped by f−1 to itself, whereas {t− iπ, | t ∈ R} is mapped by f−1 to some
curve inside the strip S. Therefore f−1(t − iπ) has imaginary part greater than
−π and hence the boundary values V (t+ iπ), t ∈ R, are all non negative. Since
g(w) = g(w), the boundary values V (t), t ∈ R, are all zero. Therefore V has
non-negative boundary values. Since it is bounded, the maximum principle in
an unbounded region (see e.g. [12]) yields that V (w) > 0 for all w ∈ S.

Since log maps the upper half plane onto the strip S, the function Ψ(w) =
g(log w) maps the upper half plane into itself, and is hence a Pick function.
Since =Ψ is bounded, Ψ has an integral representation of the form

Ψ(w) = <Ψ(i) +

∫

∞

−∞

(

1

t − w
− t

t2 + 1

)

dµ(t),

for some positive measure µ. Here =Ψ(t) = 0 for t > 0 since V is zero on the
real line. We thus find the measure µ to be supported on the negative half-line
with density

1 − = f−1(log(−t) − iπ)

π
, t < 0.

After making a change of variable (t 7→ −t) in the integral it follows that

Ψ(w) = <Ψ(i) −
∫

∞

0

(

1

t + w
− t

t2 + 1

)

h(t)dt, (19)

where h is the function in the statement of the lemma.
By definition of h, π(1 − h(t)) = =f−1(log t − iπ), so h is increasing if the

solution Y (t) to the equation F−π(Y (t)) = log t is decreasing. This is indeed
the case, since

F ′

−π(Y (t))Y ′(t) =
1

t
> 0,

and F ′

−π < 0. �

Proposition 5.8 The function ξ(log w) is holomorphic in the cut plane C \
(−∞, 0] with the representation

ξ(log w) = 1 −
∫

∞

0

t

t + w
h′(t) dt,

where h(t) is given in Lemma 5.7.

Proof. From Corollary 5.5 it follows that Ψ(w) = u(log w) + v(log w), for
w ≥ e , where Ψ is the function in Lemma 5.7. Hence ξ(log w) = wΨ′(w) and
so we get from (19),

ξ(log w) =

∫

∞

0

wh(t)

(t + w)2
dt.
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Integration by parts on the right-hand side of this relation yields

ξ(log w) =

∫

∞

0

w

t + w
h′(t) dt,

or

ξ(log w) = 1 −
∫

∞

0

t

t + w
h′(t) dt.

�

Proof of Proposition 3.2.
ξ(t) increases from 0 to 1 for t ∈ R (this is more than is stated in the

proposition). From (8), limt→∞ ξ(t) = 1. Letting w → 0+ in the integral in
Proposition 5.8 then

ξ(log w) → 1 −
∫

∞

0
h′(t) dt = 1 − lim

t→∞

h(t) + h(0) = 0.

Hence ξ(t) → 0 as t → −∞. Differentiation of the formula in Proposition 5.8
gives us

ξ′(log w)

w
=

∫

∞

0

t

(t + w)2
h′(t) dt,

and since h′(t) > 0 for all t ∈ R, we see that ξ ′(t) > 0 for all t ∈ R.
ξ(t) is concave for t ≥ 1. Differentiation of both sides of the relation above

yields

ξ′′(log w) − ξ′(log w) = −2w2

∫

∞

0

t

(t + w)3
h′(t) dt,

so that, again using the integral representation of ξ ′(log w),

ξ′′(log w) =

∫

∞

0

( −2w2

(t + w)3
+

w

(t + w)2

)

th′(t) dt

=

∫

∞

0

t − w

(t + w)3
wth′(t) dt

= w

∫

∞

0

s − 1

(s + 1)3
sh′(sw) ds.

This last integral we split into two, one for s < 1 and another for s > 1. We
thus get, after making the substitution s → 1/s in the latter one,

ξ′′(log w)

w
=

∫ 1

0

1 − s

(1 + s)3

(

1

s
h′

(w

s

)

− sh′(sw)

)

ds.

From this relation we see that ξ is concave on [log w0,∞) if

1

s
h′

(w

s

)

− sh′(sw) ≤ 0 for s ∈ (0, 1) and w ≥ w0. (20)

Now, as noted in the proof of Lemma 5.7, h(s) = 1 − Y−π(log s)/π, where
Y−π(t) ∈ (0, π) is the solution to the equation F−π(Y−π(t)) = t, see (18). There-
fore h′(s) = −Y ′

−π(log s)/(πs) and hence

1

s
h′

(w

s

)

= −Y ′

−π(log w − log s)

πw
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and

sh′(sw) = −Y ′

−π(log w + log s)

πw
.

The relation (20) holds provided

Y ′

−π(log w − log s) ≥ Y ′

−π(log w + log s).

Since log s runs through (−∞, 0) when s ∈ (0, 1), this condition is the same as

Y ′

−π(log w + t) ≥ Y ′

−π(log w − t)

for all t ≥ 0 and all w ≥ w0. We aim at proving this for w0 = e, so what we
really should prove is the following:

Y ′

−π(α + t) ≥ Y ′

−π(α − t) (21)

for all t ≥ 0 and all α ≥ 1. This inequality is verified by using Lemma 5.3.
According to that lemma, with w = 1 − α − t + iπ, we have

Y−π(α + t) = =f−1(α + t − iπ))

= =f−1(1 − (1 − α − t + iπ))

=

∫

∞

0

π

(s + t + α − 1)2 + π2
η(s) ds

so that

Y ′

−π(α + t) =

∫

∞

0

(

∂

∂t

π

(s + t + α − 1)2 + π2

)

η(s) ds

=

∫

∞

0

(

∂

∂s

π

(s + t + α − 1)2 + π2

)

η(s) ds

=

[

π

(s + t + α − 1)2 + π2
η(s)

]

∞

0

−
∫

∞

0

π

(s + t + α − 1)2 + π2
η′(s) ds

= −
∫

∞

0

π

(s + t + α − 1)2 + π2
η′(s) ds.

Replacing t by −t in this formula we get

Y ′

−π(α − t) = −
∫

∞

0

π

(s − t + α − 1)2 + π2
η′(s) ds,

so that

Y ′

−π(α + t) − Y ′

−π(α − t)

= 4πt

∫

∞

0

s + α − 1

((s + t + α − 1)2 + π2)((s − t + α − 1)2 + π2)
η′(s) ds.

Since η′(s) > 0 it follows that Y ′

−π(α + t) − Y ′

−π(α − t) has the same sign as t
for α ≥ 1 and hence is positive for t > 0. �
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Behaviour of ξ at ∞
The behaviour of ξ and its derivatives at infinity can be investigated through
the theory of completely monotonic functions. The investigation is based on a
simple lemma of independent interest.

We recall that a C∞-function ν(t) defined on the positive half-line is called
completely monotonic if

(−1)pν(p)(t) ≥ 0, for all integers p ≥ 0.

It is called a Bernstein function if

ν(t) ≥ 0 and (−1)pν(p)(t) ≤ 0, for all integers p ≥ 1.

The last conditions can also be expressed that ν ′(t) is completely monotonic.
For details about these classes of functions see e.g. [5].

Lemma 5.9 Let F be completely monotonic, let ς(t) be a positive C∞-function
for t > 0 and assume that ς ′(t) = F (ς(t)). Then:

For each n ≥ 1 there exists a completely monotonic function Fn such that

(−1)n−1ς(n)(t) = Fn(ς(t)).

In particular ς is a Bernstein function.

Proof. For n = 1, F1 = F can be used. If (−1)n−1ς(n)(t) = Fn(ς(t)) for some
completely monotonic function Fn then

(−1)nς(n+1)(t) = −F ′

n(ς(t))ς ′(t) = −F ′

n(ς(t))F (ς(t)).

Here Fn+1 ≡ −F ′

nF is completely monotonic as a product of two completely
monotonic fuctions.

Furthermore we have

(−1)nς(n)(t) = −Fn(ς(t)) ≤ 0,

so ς is a Bernstein function. �

Proposition 5.10 The functions −u(t+1) and v(t+1) are Bernstein functions
and

lim
t→∞

v(t)/t = 1, lim
t→∞

u(t)/t = 0.

Proof. We have v′(t) = F (v(t)) where

F (x) =
1

1 − e−x
=

∞
∑

k=0

e−kx

is completely monotonic. Since v(t) → ∞ as t → ∞ we have e−v(t) → 0 and
hence v(t)/t = 1 − e−v(t)/t → 1 as t → ∞.
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If w ≡ −u then w′(t) = G(w(t)) where

G(x) =
1

ex − 1
=

∞
∑

k=1

e−kx

is completely monotonic. Furthermore, t = e−u(t) + u(t) > 1 + u(t)2/2 (since
u(t) < 0) so that −u(t) <

√

2(t − 1) and thus u(t)/t → 0 as t → ∞. �

Bernstein functions admit integral representations (see e.g. [5, p. 64]) and
thus we have

v(t + 1) = t +

∫

∞

0
(1 − e−xt) dλ(x)

and

−u(t + 1) =

∫

∞

0
(1 − e−xt) dσ(x),

for some positive measures λ and σ on (0,∞). Since t+1−v(t+1) = e−v(t+1) →
0 for t → ∞ we conclude that λ((0,∞)) = 1 and hence

v(t + 1) = t + 1 −
∫

∞

0
e−xt dλ(x).

The measure σ has infinite total mass because u(t) → −∞ for t → ∞.
From these representations we rediscover the relation ξ(t) (= u′(t)+v′(t)) →

1 as t → ∞ (see (8)). Furthermore, u(n+1)(t) and v(n+1)(t) both tend to zero
as t tends to infinity for any n ≥ 1. Consequently, ξ(n)(t) → 0 as t → ∞ (for
any n ≥ 1) and Lemma 4.4 is proved.

One could hope to deduce the monotonicity properties of ξ by using these
integral representations. We have not succeeded in doing this, since much
cancellation between u and v takes place and we do not know λ and σ explicitly.
Furthermore, it is not even true that ξ(t+1) is a Bernstein function even though
it is increasing and concave.

6 Appendix: Higher order expansions

In this section the asymptotic expansion of m(x) up to o(x−9) can be found.
We have also included the expansion of the auxiliary function ϕ(x) and the
numbers ξ(k)(1) for k up to 10. These results were found using the Maple 9
program. The Maple code and a short description can be found at

www.math.ku.dk/~berg/

The asymptotic expansion of m(x) is

m(x) = x − 1

3
+

9
∑

k=1

mk

xk
+ o(x−9),
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where

m1 =
23

34 · 5

m2 =
23 · 23

36 · 5 · 7

m3 =
23 · 281

39 · 52 · 7

m4 = −23 · 17 · 139753

313 · 53 · 7 · 11

m5 = − 23 · 708494947

315 · 53 · 72 · 11 · 13

m6 =
23 · 140814348739

318 · 54 · 72 · 11 · 13

m7 =
23 · 7663181003289047

321 · 56 · 73 · 11 · 13 · 17

m8 = −23 · 653 · 1359581 · 759929 · 3307

323 · 56 · 73 · 11 · 13 · 17 · 19

m9 = −23 · 29 · 1376560394479059407

327 · 57 · 73 · 112 · 17
.

The asymptotic expansion of ϕ(x) is

ϕ(x) =
10
∑

k=1

ck

xk
+ o(x−10),

where

c1 =
1

3

c2 =
29

34 · 5 · 2
c3 = − 37

36 · 5 · 7
c4 = − 3877

39 · 52 · 22

c5 =
8957413

313 · 53 · 7 · 11

c6 =
401 · 8842279

2 · 315 · 52 · 72 · 11 · 13

c7 = − 356146891 · 2039

318 · 54 · 72 · 11 · 13

c8 = − 216607304027 · 3077479

23 · 321 · 56 · 73 · 11 · 13 · 17

c9 =
31 · 743 · 4569027042343

323 · 53 · 73 · 11 · 13 · 17 · 19

c10 =
71 · 282699240672481 · 1949 · 5113

2 · 327 · 57 · 73 · 112 · 13 · 17 · 19
.
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The derivatives of ξ are:

ξ(1) =
2

3

ξ′(1) =
23

33 · 5

ξ(2)(1) = − 24

34 · 5 · 7

ξ(3)(1) = − 25

35 · 5 · 7

ξ(4)(1) =
26 · 281

38 · 52 · 7 · 11

ξ(5)(1) =
27 · 23 · 227

39 · 52 · 7 · 11 · 13

ξ(6)(1) = − 28 · 53 · 103

310 · 52 · 7 · 11 · 13

ξ(7)(1) = − 29 · 373 · 4439 · 557

312 · 54 · 72 · 11 · 13 · 17

ξ(8)(1) =
210 · 2650986803

313 · 54 · 72 · 11 · 13 · 17 · 19

ξ(9)(1) =
211 · 6171801683

314 · 54 · 72 · 11 · 13 · 17 · 19

ξ(10)(1) = − 212 · 1117 · 3835213201

316 · 52 · 72 · 11 · 13 · 17 · 19 · 23
.
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