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Abstract

Starting from a probability ¢ on the half-line with moments of any order
A.G. Pakes has defined probabilities o, by length biasing of order r and g, by
the stationary-excess operation of order r,r = 1,2,... . Examples are given
to show that o can be determined in the Stieltjes sense while o1 and g; are
indeterminate in the Stieltjes sense. This shows that a statement in a recent
paper by Pakes does not hold.
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1 Introduction

In a recent paper [11] Pakes is considering the criteria of Carleman and Krein to-
gether with some converse results. We shall use the notation of [11]. For a measure
o on the half-line R, with moments of any order and distribution function F', Pakes
introduces the measure o, with distribution function F, given by

Ria) =" [ v dF(),

where {p,} is the moment sequence of F'. The moment sequence of F, is p,(r) =
trin/ty. The construction is called length biasing of order r, and r can be any
non-negative integer.

In [11, page 92] Pakes remarks: ‘Obviously {u,} is S-determining if and only if
{pn(r)} is”

This is not true. While it is clear indeed that S-indeterminacy of o implies
S-indeterminacy of o,., the converse is false.

In fact, in our paper with Thill [6] we completely characterized the probabilities &
on the half-line which are S-determinate but for which oy is not S-determinate. This
characterization was the starting point for the solution of the Challifour problem
solved in [6].



This lead us in [6] to introduce an index of determinacy:
For a measure o on the half-line with moments of any order and which is S-
determinate (det(S) in short) the index (of determinacy) of o is

ind(o) = sup{r € Ny|o, is det(S)}.

Theorems 5.5 and 5.6 of [6] contain a complete characterization of the measures
with ind(o) = k. In a continuation [7] we considered the relation between the index
and the denseness of the polynomials in L2-spaces.

[ later papers with Duran [4, 5] we extended this to the Hamburger case, that
is, for measures on the real line with moments of any order. For a survey of the
these results see [2]. It should be added that the remark of Pakes is true if o
is a non-discrete measure, because such a measure is either S-indeterminate or S-
determinate with ind(o) = oo. Our observation has also the consequence that o can
be S-determinate although the stationary-excess operation of order 1 defined in [11]
leads to an S-indeterminate probability density

gi(x) = F(z)/m, F(r)=1-F(a).
In particular, the first part of Theorem 5 in [11] is not true:

Theorem 1.1 There exists S-determinate measures o for which

/ 73 (—log F(z))dr < 00, 2’ >0, (1)

’

and the density gi(x) is S-indeterminate.

We shall explain why the result fails and also give a concrete counterexample in
the next section.

2 Counterexamples

For the general theory of the moment problem see [1]. Let us first recall that
if ¢ is S-indeterminate, there are infinitely many solutions to the corresponding
Stieltjes moment problem. Among those are the N(evanlinna)-extremal solutions v,
supported by [0, co[. Here the parameter ¢ can be any real number in a well-defined
interval [a, 0] where o < 0, see [9, page 179] for details. The particular value t = 0
gives a measure of the form

vo = Poco + Zﬁn&cna (2)
n=1



where the masses 6, > 0 sum to 1 and 0 < z; < x5 < --- tend to infinity. If the
mass at zero is removed from 1, and we rescale to a probability o, that is

o= (v — Bogo)/(1 = Bo), (3)

then o is S-determinate and determinate even for the corresponding Hamburger
moment problem. For different proofs of this see [1, page 115] and [3]. Let as before
{pn} be the moment sequence of o.

The probability measure of length biasing of order 1

t
o1 = —do(t
' M1 )
is indet(S) because oy is proportional to tdiy(t), which is clearly indet(S) because
1y is so. o
Let F be the distribution function of ¢ and define F(x) = 1 — F(z), ¢1(z) =

F(x)/ .
Then g, is a probability density with moments of any order and moment sequence

_ 1 Hn+1
L+n

T (1)

We claim that ¢; is indet(S), because it is the product of the S-indeterminate
sequence fi,+1/p1 with the moment sequence of Lebesgue measure on [0, 1], see
Lemma 2.1 below.

As a preparation for Lemma 2.1 we shall recall the Mellin transformation.

The (open) positive half-line is a locally compact abelian group under multipli-
cation, and the Mellin transformation is the Fourier transformation in the sense of
harmonic analysis on such groups.

The corresponding convolution of measures is denoted ¢, so 7 ¢ x is the image
measure under (x,y) — zy of the product measure 7®y. The Mellin transformation
M is defined for finite (complex) measures by

M(7)(z) = /000 tdr(t), xR,

The Mellin transform of the convolution product is the ordinary product of
the Mellin transforms. Furthermore, for the n’th moments we have pu,(7 ¢ x) =

i (T (X)-
The Mellin transform of the Lebesgue measure m on the unit interval [0, 1] is

B 1
14z’

M(m)(z)

hence non-vanishing. The Mellin transformation is one-to-one which implies the
first statement of Lemma 2.1.



Lemma 2.1 The mapping T — T o m is one-to-one. If T is indet(S), then so is
Tom.

The second statement follows from the first, because if 7 and y are different
positive measures with the same moments, then 7 ¢ m and y ¢ m are different, and
they also have identical moments. []

Remark 2.2 There exists a measure 7 which is det(S) and yet 7o m is indet(S).

The measure vy from (2) can be written vy = foeg + p and vgom = Foeg +pom
is indet(S) by Lemma 2.1. Since p ¢ m is absolutely continuous we can conclude
that pom is indeterminate. In fact, if pom was determinate, then the polynomials
are dense in L*(p o m) and hence in L?*(vy ¢ m) by [3, Lemma 2]. Therefore the
indeterminate measure vy ¢ m is N-extremal, but this contradicts the fact that it is
non-discrete.

The probability 7 = p/(1 — o) (= o from (3)) satisfies the claim of the remark.

The author does not know if the phenomenon of Remark 2.2 can hold if 7 is
non-discrete or absolutely continuous. []

Remark 2.3 The Krein condition (1) cannot distinguish between the measures v
and o given by (2) and (3).

If we let F' and G denote the corresponding distribution functions, condition (1)
for F takes the form

22—1%(1—50—'“—&)(\/2—“—\/;”—“)<OO= (4)

while for G it has the form

Since

— [ 1 1 1
g(vzn \/xn-i-l)— \/xN’
the two series in (4), (5) converge simultaneously, and we know that v is indet(S),
but ¢ is det(S). O

We shall now give a concrete example of a probability of the form (2), which leads
to a probability o which is det(S) and for which the Krein condition (1) nevertheless
holds by direct verification. This gives a concrete example showing that the first
part of Theorem 5 in [11] is not correct.



The example comes from a birth and death process with quartic rates studied
by Berg and Valent, see [8, 9].

A birth and death process is defined by the sequences (A,),>o of birth rates and
(tn)n>0 of death rates, restricted by A, > 0, p,41 > 0 for n > 0 and pg > 0, see for
example [10].

In order to solve the so-called Kolmogorov equation, one studies the polynomials
F,.(x) defined by the recurrence

()\n + Hn — l’)Fn(l’) = Mn+1Fn+1($) + )\n—an—l(l’) , N 2 0
with the initial conditions
F_l(l’) = 0, F()(ZL’) = 1.

Defining

T =1, Wn:”i,nzl
/’l’l'.'/’l’n

an:)\n_l',una bn: \/)\nﬂn—i-lanz(),

it is wellknown that the polynomials

and

satisfy the three term recurrence relation
2P, (x) = b, Poy1(x) + anPo(z) + by 1Py (), n>1

together with the initial conditions

Po(x) =1, Pi(x) = b—lo(:)s ~ o).

By Favard’s Theorem the polynomials {P,} form an orthonormal system with
respect to some probability measure on the half-line and the corresponding moment
sequence is a Stieltjes moment sequence.

We shall consider the following quartic rates

Ao = (dn+1)(4n +2)*(An+3) , p, = (4n —1)(4n)*(4n+1), n >0

initially considered in [12, 13, 14]. Note that py = 0 and

1 ((1/2)")2N L1 64 |

= — ATl = T ~ —N
dn +1 n! drp2’ T HnTrn T

T

and it follows from known criteria that the corresponding moment problem is in-
det(S), see for example [8].



The N-extremal measure 1 is given by

0 4
P ) N LA (L
'R K? 4 sinh(2nm) 7 " Ky )’

and the constant Kj is given by en elliptic integral, see [8].
From the general theory mentioned above

> 2nm
7=¢ ; sinh(2n7r)€x"

is determinate. The normalization constant ¢ (expressible by Kj) is chosen so that
o is a probability. The function F' is piecewise constant and to establish (1), we
have to prove that

= 1 1
— log(yn, — < 00, 6
; &(yn) ( = m1) (6)
where z,, is as above and
> 2km
n =€ Z sinh(2km)
k=n+1

Using

o 2 00
Yn = C/ & dr > 471'6/ 1’6_27m dx > QC(n + 1)6_2”(""‘1)’
a1 Sinh(2z7) e

we see that (6) holds.
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