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Abstract. The fact that Markov’s Theorem holds for determinate measures is often

overlooked and the theorem is stated for measures with compact support as did

Markov. We shall give a brief survey of the history of the theorem as well as a
proof in the determinate case. We also prove a version of Markov’s theorem in the

indeterminate case. The results are applied to the shifted moment problem.

0. Introduction. The classical theorem of Markov [11] states that

lim
n→∞

Qn(z)

Pn(z)
=

∫

dµ(x)

z − x
for z ∈ C \ [a, b] , (1)

where µ is a (positive) measure on the finite interval [a, b]. Here and in the fol-
lowing Pn are the orthonormal polynomials associated with µ, and (Qn) are the
corresponding polynomials of the second kind

Qn(x) =

∫

Pn(x)− Pn(y)

x− y
dµ(y) . (2)

Markov considered a measure with a density, but this reflects the period and is
not essential in his proof.

In this paper we shall look at the various extensions of Markov’s Theorem which
have appeared since [11],[12]. The theorem holds in fact for any determinate mea-
sure µ, and that was proved by Hamburger in the fundamental paper [10], Theorem
14 p.292. In the monographs by Akhiezer [1] and Shohat-Tamarkin [21] Markov’s
Theorem is not stated explicitely (but one can find equivalent statements without
Markov’s name), and in Szegö [24] and Chihara [7] the theorem is stated only for
measures on a finite interval, and this may lead to the erroneous conclusion that
the extension to more general classes of measures is not known.
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2 CHRISTIAN BERG

Hamburger’s extension of Markov’s Theorem is connected to complete conver-
gence of the associated continued fraction, a concept which was introduced by
Hamburger, who also proved that it is equivalent to determinacy of the moment
problem. In the first third of this century the moment problem was intimately
connected with the theory of continued fractions, and in Perron’s influential mono-
graph on the subject, which appeared in 3 editions in the period 1913 to 1957,
cf. [15],[17],[18], the moment problem is treated from the continued fractions point
of view. Markov’s Theorem is treated in all three editions and the extension by
Hamburger is contained in [17] and [18]. We shall give more details below. In
later treatments of the moment problem functional analysis has replaced continued
fractions as the main tool, and in e.g. Akhiezer [1] continued fractions only enter
marginally.

In the sequel s = (sn)n≥0 denotes a Hamburger moment sequence, normalized
(s0 = 1) and assumed positive definite, i.e. ∆n = detHn > 0 for n ≥ 0, where
Hn is the Hankel matrix (si+j)0≤i,j≤n. Any solution µ having s as sequence of
moments is a probability measure with infinite support. The polynomials (Pn)
and (Qn) are uniquely determined by s with the convention that Pn has positive
leading coefficient.

For each n ≥ 1 let Λn denote the set of zeros of Pn and consider the discrete
probability τn with mass

mλ =

(

n−1
∑

i=0

Pi(λ)
2

)−1

in λ ∈ Λn .

It is well-known that

Qn(z)

Pn(z)
=

∫

dτn(x)

z − x
for z ∈ C \ Λn , (3)

and
∫

xkdµ(x) =

∫

xkdτn(x) , k = 0, 1, · · · , 2n− 1 , (4)

cf. Akhiezer [1] p. 22, 31.
The basic notion of convergence for probability measures is weak convergence:

A sequence (µn) of probabilities on a metric space X converges weakly to µ if

lim
n→∞

∫

fdµn =

∫

fdµ (5)

for any continuous and bounded function f : X → C. For a treatment of this
classical concept see Billingsley [5].
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Defining

Λ =

∞
⋂

N=1

MN , where MN =
∞∪

n=N
Λn , (6)

we get a closed subset of R, and it is clear that any natural solution µ of the moment
problem, i.e. any weak accumulation point of the sequence (τn)n≥1, cf. [7] p. 60,
has supp(µ) ⊆ Λ.

Furthermore, if for any solution µ of the moment problem we define aµ =
inf supp(µ), bµ = sup supp(µ), then Λ ⊆ MN ⊆ [aµ, bµ].

1. The determinate case.

We shall prove Hamburger’s extension of Markov’s Theorem using the following
result.

Theorem 1.1. Method of moments. Suppose that (µn) and µ are probabilities
on R with moments of every order and that µ is det(H).

If

lim
n→∞

∫

xkdµn(x) =

∫

xkdµ(x) for k = 0, 1, · · ·

then µn → µ weakly.

For a proof see Feller [9]. A very general version of the method of moments,
including measures on R

k can be found in [4].

Theorem 1.2. Assume that µ is det(H). Then

lim
n→∞

Qn(z)

Pn(z)
=

∫

dµ(x)

z − x
for z ∈ C \ Λ, (7)

and the convergence is uniform for z in compact subsets of C \ Λ.
Proof. By (4) the k’th moment of τn converges for n → ∞ to the k’th moment of µ
for any k (they are in fact equal for n sufficiently big). By the method of moments
τn → µ weakly on R and a fortiori on the closed subset MN for any N ∈ N, since
it contains supp(µ) and supp(τn) for n ≥ N .

It follows in particular that

lim
n→∞

∫

dτn(x)

z − x
=

∫

dµ(x)

z − x

for any z ∈ C \ Λ. To see that the convergence is uniform for z ∈ K, where
K ⊆ C \Λ is compact, we notice that K ∩MN = ∅ for N sufficiently big, and then
there exists C > 0 such that

|z − x| ≥ C for z ∈ K , x ∈ MN .
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For given ε > 0 there exist z1, · · · , zp ∈ K such that the discs D(zi, ε) cover K.
For z ∈ K we choose i ∈ {1, · · · , p} such that |z − zi| < ε, and hence for x ∈ MN

∣

∣

∣

∣

1

z − x
− 1

zi − x

∣

∣

∣

∣

≤ ε

C2
.

For n ≥ N we finally get

∣

∣

∣

∣

∫

dµ(x)

z − x
−
∫

dτn(x)

z − x

∣

∣

∣

∣

≤ 2ε

C2
+

∣

∣

∣

∣

∫

dµ(x)

zi − x
−
∫

dτn(x)

zi − x

∣

∣

∣

∣

,

from which the uniform convergence follows. �

Remark 1.3. One cannot replace Λ by supp(µ) in (7). If µ is a symmetric measure
then

Qn(0)

Pn(0)
=

{

0 if n is even

∞ if n is odd ,

so if supp(µ) has a hole containing 0, e.g. supp(µ) = R\] − 1, 1[, then (7) cannot
hold for z = 0.

Historical remarks.

Already Markov [11] noticed that his theorem holds for some measures with
unbounded support including the densities leading to the Laguerre polynomials.
In [16] Perron extended the theorem to measures µ on a half-line [a,∞[ satisfying

lim inf
n→∞

n
√
sn
n

< ∞, (8)

(noticing that sn > 0 for n sufficiently big), but he could only prove the convergence
in (7) for Re z < a unless a ≥ 0. This restriction in the convergence was removed
by Szász [23] who also removed the restriction about support. Without restriction
on the support Szász replaced condition (8) by

lim inf
n→∞

2n
√
s2n√
n

< ∞. (9)

Riesz showed in [19] that the following weaker condition is sufficient

lim inf
n→∞

2n
√
s2n
n

< ∞, (10)

which was later improved by Carleman [6] to

∞
∑

0

1
2n
√
s2n

= ∞. (11)
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The conditions (8)-(11) are in fact conditions which ensure determinacy of the
moment sequence. In the second edition of Perron’s monograph [17] it is shown
that (10) implies determinacy (Satz 14 p.413) and that (7) holds for all z ∈ C \ R
(Satz 16 p. 418). It is clear that the proof uses only the determinacy of the
moment sequence , but apparently Perron has not considered determinacy to be so
important a concept that he would use it as an assumption in a theorem.

In [17] Perron does not discuss the complete convergence (introduced in [10]) of
the associated continued fraction , but this is done in [18] p.220. The associated
continued fraction is of Grommer type ([18] p.192) and is given as

1

z − a0 − b2
0

z−a1−
b2
1

z−a2−···

, (12)

where an, bn are the coefficients of the recurrence relation

zPn(z) = bnPn+1(z) + anPn(z) + bn−1Pn−1(z). (13)

The approximating fractions of (12) are Qn(z)/Pn(z), cf.[1] p.24. The continued
fraction (12) is called completely convergent with limit a at the point z ∈ C if

lim
n→∞

Qn(z)t+Qn−1(z)

Pn(z)t+ Pn−1(z)
= a

uniformly for t ∈ R. Hamburger proved that the associated continued fraction
is completely convergent for all z ∈ C \ R if and only if the moment sequence is

determinate, and in the affirmative case the limit is
∫ dµ(x)

z−x . In [18] this follows by
combination of Theorems 4.11 and 4.15.

We finally note that Theorem 1.2 follows from Theorem 4.1 in [21] and from
Theorem 1.3.3 in [1].

The paper by Van Assche [26] contains a far reaching generalization of Markov’s
Theorem in the determinate case.

2. The indeterminate case.

In this case the set of measures admitting s as sequence of moments is described
via four entire functions A,B,C,D, cf. [1] p. 98. The Nevanlinna extremal solutions
(µt)t∈R∪{∞} are given by the formula

∫

dµt(x)

z − x
=

A(z)t− C(z)

B(z)t−D(z)
, z ∈ C \ supp(µt) . (14)

Note that R∗ = R∪{∞} shall be considered topologically as the one-point compact-
ification of R. To say that αn ∈ R converges to ∞ therefore means that |αn| → ∞
in the ordinary sense.
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Theorem 2.1. Assume that µ is indeterminate.
If

lim
n→∞

Pn(0)

Qn(0)
= α in R

∗ ,

then

lim
n→∞

Qn(z)

Pn(z)
=

∫

dµα(x)

z − x
for z ∈ C \ supp(µα) ,

and the convergence is uniform for z in compact subsets of C \ supp(µα).

Proof. Since Pn and Qn have no common zeros the quotient Pn(0)/Qn(0) is well--
defined in R∗. Putting αn = Pn(0)/Qn(0) we have by [1] p. 14

Qn(z)

Pn(z)
=

An(z)αn − Cn(z)

Bn(z)αn −Dn(z)
(15)

for z ∈ C with the obvious interpretations if Pn(z) = 0 or αn = ∞. The polyno-
mials An, Bn, Cn, Dn converge to the entire functions A,B,C,D uniformly for z in
compact subsets of C. Therefore, if αn → α in R

∗ then

Qn(z)

Pn(z)
→ A(z)α− C(z)

B(z)α−D(z)
(16)

uniformly for z in compact subsets of C \Nα, where

Nα = {z ∈ C | B(z)α−D(z) = 0} , α 6= ∞ ,

N∞ = {z ∈ C | B(z) = 0} .

We recall that the Nevanlinna extremal measure µα is discrete with supp(µα) = Nα.
The assertion of the theorem now follows from (14). �

Remark 2.2. It follows easily from (15) that the convergence of Pn(0)/Qn(0) in
R∗ is also a necessary condition for the convergence of Qn(z)/Pn(z) in C \ R or
even in just one point z0 ∈ C \ R. Note that µα is a natural solution so that
supp(µα) ⊆ Λ.

Remark 2.3. If µ is a symmetric indeterminate measure on R then we see as in
Remark 1.3 that Pn(0)/Qn(0) is divergent in R∗, so in this case Qn(z)/Pn(z) does
not converge. However we get

lim
n→∞

Q2n(z)

P2n(z)
=

∫

dµ∞(x)

z − x
for z ∈ C \ supp(µ∞)

lim
n→∞

Q2n+1(z)

P2n+1(z)
=

∫

dµ0(x)

z − x
for z ∈ C \ supp(µ0) ,

and the convergence is again uniform for z in compact subsets of the domains in
question.
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3. The Stieltjes case.

We shall now consider the case where s is a Stieltjes moment sequence, i.e.
there exists at least one solution µ of the moment problem for which supp(µ) ⊂
[0,∞[. Equivalently both s and the shifted sequence s̃ = (sn+1)n≥0 have positive
Hankel determinants. A Stieltjes moment sequence can be determinate in the
sense of Stieltjes meaning that there is precisely one solution supported by [0,∞[.
To have a short notation we write det(S) in this case, and the oppositie case is
denoted indet(S). Similarly we write det(H) or indet(H) if the moment sequence is
determinate or indeterminate considered as a Hamburger moment sequence. We
recall that a Stieltjes moment sequence can be det(S) and yet indet(H), cf. [1]
p.240, [21] p.76.

To a Stieltjes moment sequence there is a so-called corresponding continued
fraction ([18] p.191) which is of Stieltjes type. We shall write it in the terminology
of [1] p.232-233:

1

m1z +
1

l1+
1

m2z+···

, (17)

where mi, li > 0 are related to the coefficients an, bn of the three term recurrence
relation (13) by

a0 =
1

m1l1
, an =

1

mn+1

(

1

ln
+

1

ln+1

)

, n ≥ 1 (18)

bn =
1

ln+1
√
mn+1mn+2

, n ≥ 0. (19)

The approximating fractions Sn(z)/Tn(z), n ≥ 0 are given by the equations

(

S2n+1(z)
T2n+1(z)

)

=

(

S2n(z) S2n−1(z)
T2n(z) T2n−1(z)

)(

mn+1z
1

)

, n ≥ 0 (20)

(

S2n+2(z)
T2n+2(z)

)

=

(

S2n+1(z) S2n(z)
T2n+1(z) T2n(z)

)(

ln+1

1

)

, n ≥ 0 (21)

with
(

S0(z) S−1(z)
T0(z) T−1(z)

)

=

(

0 1
1 0

)

, (22)

cf. [17] p.5. Eliminating S2n+1(z), T2n+1(z) from these equations we see that√
mn+1S2n(−z),

√
mn+1T2n(−z) satisfy the recurrence relation (13). Using that

Pn(z), Qn(z) are uniquely determined by (13) and the initial conditions

(

Q1(z) Q0(z)
P1(z) P0(z)

)

=

( 1
b0

0
1
b0
(z − a0) 1

)

,
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we see that

Qn(z) = (−1)n−1√mn+1m1S2n(−z), Pn(z) = (−1)n
√

mn+1

m1
T2n(−z). (23)

By (20),(21) and (23) we then get

−m1
S2n(−z)

T2n(−z)
=

Qn(z)

Pn(z)
, (24)

−m1
S2n−1(−z)

T2n−1(−z)
=

√

mn

mn+1
Qn(z) +Qn−1(z)

√

mn

mn+1
Pn(z) + Pn−1(z)

. (25)

From (20)-(22) we get

(

S2n(0) S2n−1(0)
T2n(0) T2n−1(0)

)

=

(

l1 + · · ·+ ln 1
1 0

)

, n ≥ 0

and hence by (23)

Pn(0) = (−1)n
√

mn+1

m1
, Qn(0) = (−1)n−1(l1 + · · ·+ ln)

√
m1mn+1, (26)

so that

αn =
Pn(0)

Qn(0)
= − 1

m1
(l1 + · · ·+ ln)

−1 (27)

which converges to

α = − 1

m1
(

∞
∑

1

ln)
−1. (28)

Using [1] p.14 (25) can be rewritten

−m1
S2n−1(−z)

T2n−1(−z)
=

Cn(z)

Dn(z)
. (29)

Stieltjes proved in [22] that

lim
n→∞

S2n+i(z)

T2n+i(z)
=

1

m1

∫ ∞

0

dµ(i)(x)

z + x
, i = 0,−1, z ∈ C\]−∞, 0],

where µ(i), i = 0,−1 are solutions to the Stieltjes moment problem, and he further-
more showed that the problem is det(S) if and only if

∑

(ln +mn) = ∞, cf. [18],
Satz 4.9, 4.10.
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In particular already Stieltjes knew that

lim
n→∞

Qn(z)

Pn(z)
=

∫ ∞

0

dµ(0)(x)

z − x
, z ∈ C \ [0,∞[, (30)

which can be rephrased as “Markov’s Theorem holds for an arbitrary Stieltjes
moment problem.” If the problem is det(S) then µ(0) is of course the unique solution
supported by [0,∞[. That Markov’s Theorem holds in this form for a sequence
which is det(S) was noticed by Askey and Wimp [2].

In case the problem is indet(S) or more generally indet(H) we shall next identify
the solutions µ(i) as Nevanlinna extremal measures and determine the correspond-
ing parameters t.

Theorem 3.1. Consider a Stieltjes moment sequence which is indet(H).
Then µ(0) = µα, where α is given by (28) and µ(−1) = µ0.

Proof. The assertions follow from Theorem 2.1 and the equations (28) and (29).
�

Remark 3.2. It is worth noticing that the Stieltjes problem in Theorem 3.1 is
det(S) if and only if α = 0. This is easily derived from the criteria in [1] p. 237,
240. In this case µα = µ0 is the unique solution concentrated on [0,∞[.

For α < 0 the problem is indet(S) and the Nevanlinna extremal solutions (µt)t∈R∗

for which supp(µt) ⊆ [0,∞[ are characterized by t ∈ [α, 0], cf. [8] p. 340.

4. Applications to the shifted moment problem.

Let µ be a probability with infinite support and moments of any order. The
polynomial sequences yn = Pn(z) and yn = Qn(z), n ≥ 0 satisfy the second order
difference equation

zyn = bnyn+1 + anyn + bn−1yn−1 , n ≥ 1. (31)

The sequence (Pn(z)) resp. (Qn(z)) is uniquely determined by (31) and the
initial conditions

y0 = 1 , y1 =
1

b0
(z − a0) , resp. y0 = 0 , y1 =

1

b0
. (32)

Replacing (an) and (bn) in (31) and (32) by the shifted sequences ãn = an+1,

b̃n = bn+1, the corresponding unique solutions (P̃n(z)) and (Q̃n(z)) are given by

P̃n(z) = b0Qn+1(z) (33)

Q̃n(z) = P1(z)Qn+1(z)−
1

b0
Pn+1(z) , (34)
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These equations are not new. Equation (33) can be found in Sherman [20], and
both equations are derived in Belmehdi [3] and Pedersen [14]. By Favard’s theorem

(P̃n) are the orthonormal polynomials associated with some probability µ̃, and (Q̃n)
are the corresponding polynomials of the second kind. This new moment problem
will be called the shifted moment problem. The Jacobi matrix J̃ for this problem
is obtained from the Jacobi matrix J for the original problem by deleting the first
row and column. Let (sn) resp. (s̃n) denote the corresponding moment sequences.
Then

sn = Jn
11 , s̃n = J̃n

11

meaning that sn is the element in the first row and first column of the n’th power of
the matrix J and similarly with s̃n. This shows how s̃n can be expressed in terms
of (an) and (bn). By (33) we immediately get that the two moment problems are
determinate simultaneously, and we shall now relate the Stieltjes transforms of the
measures µ and µ̃ in the determinate case. The result is due to Sherman [20] p.
68. See also Nevai [13].

Theorem 4.1. Suppose that µ and hence µ̃ are det(H). Then

b20

∫

dµ̃(x)

z − x
= z − a0 −

(
∫

dµ(x)

z − x

)−1

for z ∈ C \ R . (35)

Proof. By (33) and (34) we get for z ∈ C \ R
Q̃n(z)

P̃n(z)
=

z − a0
b20

− 1

b20

Pn+1(z)

Qn+1(z)
, (36)

and the result follows from Theorem 1.2. �

Example 4.2. Sherman [20]. If µ is the Arcsin-distribution with density (1/π)(1−
x2)−

1
2 on the interval ]−1, 1[, we find that µ̃ has the density (2/π)(1−x2)1/2. This

can be verified by inserting the expressions for µ and µ̃ in (35), but follows also
from the fact that the corresponding orthonormal polynomials are the Čebyčev
polynomials of the first and second kind. Note that an = 0, n ≥ 0 and b0 = 1/

√
2,

bn = 1/2 for n ≥ 1. The shifted sequences are constant, ãn = 0, b̃n = 1/2, n ≥ 0

which shows that µ̃ = ˜̃µ, i.e. µ̃ is fixpoint under the operation ∼. All the fixpoints
under ∼ are the image measures of µ̃ under affine transformations x 7→ αx + β,
α > 0, β ∈ R for which the (an) and (bn) sequences are the constant sequences (β)
and (α/2).

In the Stieltjes case, which is characterized by bk > 0 and the positivity of the
quadratic forms

n
∑

k=0

akξ
2
k + 2

n−1
∑

k=0

bkξkξk+1, ξ ∈ R
n+1, n ≥ 0



MARKOV’S THEOREM REVISITED 11

cf. [1] p.233, the shifted moment problem is again a Stieltjes problem. If the
original Stieltjes problem is indet(H) so is the shifted problem, and we can use
Theorem 3.1 to obtain the following:

Theorem 4.3. Consider a Stieltjes problem which is indet (H), let µα be the
Nevanlinna extremal solution of the Stieltjes problem given by (28) and let µ̃α̃ be
the corresponding solution of the shifted problem.

Then we have for z ∈ C \ R

b20

∫

dµ̃α̃(x)

z − x
= z − a0 −

(
∫

dµα(x)

z − x

)−1

, (37)

and the parameters α and α̃ are related by the equation

α̃ = − b20
a0 + α

. (38)

proof. We know from (27) that (Pn(0)/Qn(0)) is strictly increasing with limit α
given by (28). Since P1(0)/Q1(0) = −a0 we have a0 + α > 0.

By (33), (34) we get

P̃n(0)

Q̃n(0)
= − b20Qn+1(0)

a0Qn+1(0) + Pn+1(0)
→ − b20

a0 + α
, (39)

so α̃ = −b20/(a0+α). The formula (37) follows as in the proof of Theorem 4.1. �

Remark 4.4. Formula (37) is a special case of a formula in [14] which establishes a
one-to-one correspondence between the convex sets of solutions to an indeterminate
Hamburger problem and its shifted counterpart.

Remark 4.5. Formula (38) shows that α̃ < 0 even if α = 0. Thus, the shifted
Stieltjes problem is always indet (S) although the original problem can be det(S)
(α = 0) or indet(S) (α < 0).

The technique above can be used to give a formula for the moment s̃n in terms
of the moments (sn). A similar formula appears in Sherman [20] p. 79, but it seems
justified only in the determinate case, and the sign in front of the determinant is
incorrect.

Proposition 4.6. Let (sn) be a normalized Hamburger moment sequence and (s̃n)
the shifted counterpart. Then

b20s̃n = −βn+2 for n ≥ 0 , where
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βn = (−1)
1
2
n(n+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . s0 s1
0 0 . . . s1 s2
...

...
...

...
s0 s1 . . . sn−2 sn−1

s1 s2 . . . sn−1 sn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (40)

Proof. If µ is any positive measure with moment sequence (sn) then the Stieltjes
transform

F (z) =

∫

dµ(x)

z − x

has the asymptotic series

F (z) ∼
∞
∑

n=0

sn
zn+1

for |z| → ∞ in any sector arg(z) ∈ ]ε, π − ε[ in the upper half-plane.
In the determinate case (35) shows that

b20

∫

dµ̃(x)

z − x

has an asymptotic series given by the right-hand side of (35), i.e. by

z − a0 − z
∞
∑

n=0

βn
zn

= −
∞
∑

n=0

βn+2

zn+1
, (41)

where (βn) is uniquely determined such that

n
∑

j=0

sn−jβj = δn0 , n ≥ 0 .

By Cramer’s rule βn is given as

βn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 0 . . . 0 1
s1 s0 . . . 0 0
...

...
...

...
sn−1 sn−2 . . . s0 0
sn sn−1 . . . s1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)
1
2
n(n+1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . s0 s1
0 0 . . . s1 s2
...

...
...

...
s0 s1 . . . sn−2 sn−1

s1 s2 . . . sn−1 sn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and hence b20s̃n = −βn+2.
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In the indeterminate case we choose an increasing sequence (nj) of positive
integers such that

lim
j→∞

Pnj
(0)

Qnj
(0)

= t in R
∗ .

By the first equality sign in (39) we get

lim
j→∞

P̃nj−10)

Q̃nj−1(0)
= − b20

a0 + t
=: t̃ .

By the same reasoning as in Theorem 2.1 we obtain

lim
j→∞

Qnj
(z)

Pnj
(z)

=

∫

dµt(x)

z − x
for z ∈ C \ R

lim
j→∞

Q̃nj−1(z)

P̃nj−1(z)
=

∫

dµ̃t̃(x)

z − x
for z ∈ C \ R ,

so by (36) we find

b20

∫

dµ̃t̃(x)

z − x
= z − a0 −

(
∫

dµt(x)

z − x

)−1

. (42)

By the same reasoning as in the determinate case this formula yields the asymptotic
series (41) for the left-hand side of (42), and this shows again (40). �
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6. T. Carleman, Sur les séries asymptotiques, C. R. Acad. Sci.(Paris) 174 (1922), 1527–1530.
7. T.S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York,

1978.

8. T.S. Chihara, Indeterminate symmetric moment problems, Math. Anal. Appl. 85 (1982),
331–346.

9. W. Feller, An introduction to probability theory and its applications, vol. II, Wiley, New York,

1966.
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