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Abstract

We consider the set of Stieltjes moment sequences, for which every positive power
is again a Stieltjes moment sequence, we and prove an integral representation of the
logarithm of the moment sequence in analogy to the Lévy-Khintchine representa-
tion. We use the result to construct product convolution semigroups with moments
of all orders and to calculate their Mellin transforms. As an application we construct
a positive generating function for the orthonormal Hermite polynomials.
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1 Introduction

The present paper treats the same circle of ideas as [2], but here we focus on
other aspects of the theory. This means that there is no overlap with the main
results of [2], but the latter contains more introductory material on previous
results.

In his fundamental memoir [15] Stieltjes characterized sequences of the form

sn =
∫ ∞

0
xn dµ(x), n = 0, 1, . . . , (1)

where µ is a non-negative measure on [0,∞[, by certain quadratic forms be-
ing non-negative. These sequences are now called Stieltjes moment sequences.
They are called normalized if s0 = 1. A Stieltjes moment sequence is called S-
determinate, if there is only one measure µ on [0,∞[ such that (1) holds;
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otherwise it is called S-indeterminate. It is to be noticed that in the S-
indeterminate case there are also solutions µ to (1), which are not supported
by [0,∞[, i.e. solutions to the corresponding Hamburger moment problem.

From (1) follows that a Stieltjes moment sequence is either non-vanishing (i.e.
sn > 0 for all n) or of the form sn = cδ0n with c ≥ 0, where (δ0n) is the
sequence (1, 0, 0, . . .). The latter corresponds to the Dirac measure δ0 with
mass 1 concentrated at 0.

It is a classical result that the integral powers (spn), p = 2, 3, . . . of a Stielt-
jes moment sequence are again Stieltjes moment sequences, but non-integral
powers (scn) are not necessarily Stieltjes moment sequences. In this paper we
study a certain class of Stieltjes moment sequences which is stable under the
formation of powers, so in this respect it is a continuation of [2]. We will how-
ever go further by characterizing the full set I of normalized Stieltjes moment
sequences (sn) with the property that (scn) is a Stieltjes moment sequence for
each c > 0. The result is given in Theorem 2.4, which contains 3 equivalent
conditions. One of them is a kind of Lévy-Khintchine representation of log sn,
and this result is very useful for deciding if a given sequence belongs to I. We
study several examples of sequences from I:

n!, (a)n, (a)n/(b)n, 0 < a < b, (a; q)n/(b; q)n, 0 < q < 1, 0 ≤ b < a < 1.

Concerning S-determinacy of (scn) when (sn) ∈ I, we shall see that the follow-
ing three cases can occur:

• (scn) is S-determinate for all c > 0.
• There exists c0, 0 < c0 < ∞ such that (scn) is S-determinate for 0 < c < c0

and S-indeterminate for c > c0.
• (scn) is S-indeterminate for all c > 0.

The moment sequences (sn) ∈ I are closely related to the study of product
convolution semigroups (ρc) of probabilities with moments of all orders, i.e.
convolution semigroups on ]0,∞[ considered as a multiplicative group. If (sn)
is the moment sequence of ρ1, then the following holds

scn =
∫ ∞

0
xn dρc(x), c > 0, n = 0, 1, . . . .

We discuss these questions and find the Mellin transform of the measures ρc.

In Section 5 we use the Stieltjes moment sequence (
√
n!) to prove non-negati-

vity of a generating function for the orthonormal Hermite polynomials. The
probability measure with the moment sequence (

√
n!) does not seem to be

explicitly known.
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During the preparation of this paper Richard Askey kindly drew my attention
to the Ph.d.-thesis [19] of Shu-gwei Tyan. It contains a chapter on infinitely
divisible moment sequences, and I is the set of infinitely divisible Stieltjes
moment sequences in the sense of Tyan. Theorem 4.2 in [19] is a representation
of log sn similar to condition (ii) in Theorem 2.4. As far as we know these
results of [19] have not been published elsewhere, so we discuss his results in
Section 4.

2 Main results

The present paper is a continuation of [2] and is motivated by work of Durán
and the author, see [4], which provides a unification of recent work of Bertoin,
Carmona, Petit and Yor, see [7],[8], [9]. They associate certain Stieltjes mo-
ment sequences with any positive Lévy process.

To formulate these results we need the concept of a Bernstein function.

Let (ηt)t>0 be a convolution semigroup of sub-probabilities on [0,∞[ with
Laplace exponent or Bernstein function f given by∫ ∞

0
e−sx dηt(x) = e−tf(s), s > 0,

cf. [5],[6]. We recall that f has the integral representation

f(s) = a+ bs+
∫ ∞

0
(1− e−sx) dν(x), (2)

where a, b ≥ 0 and the Lévy measure ν on ]0,∞[ satisfies the integrability
condition

∫
x/(1 + x) dν(x) < ∞. Note that ηt([0,∞[) = exp(−at), so that

(ηt)t>0 consists of probabilities if and only if a = 0.

In the following we shall exclude the Bernstein function identically equal to
zero, which corresponds to the convolution semigroup ηt = δ0, t > 0.

Let B denote the set of Bernstein functions which are not identically zero. For
f ∈ B we note that f ′/f is completely monotonic as product of the completely
monotonic functions f ′ and 1/f . By Bernstein’s Theorem, cf. [20], there exists
a non-negative measure κ on [0,∞[ such that

f ′(s)

f(s)
=
∫ ∞

0
e−sx dκ(x). (3)

It is easy to see that κ({0}) = 0 using (2) and f ′(s) ≥ κ({0})f(s).
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In [7] Bertoin and Yor proved that for any f ∈ B with f(0) = 0 the sequence
(sn) defined by

s0 = 1, sn = f(1)f(2) · . . . · f(n), n ≥ 1

is a Stieltjes moment sequence. The following extension holds:

Theorem 2.1 Let α ≥ 0, β > 0 and let f ∈ B be such that f(α) > 0. Then
the sequence (sn) defined by

s0 = 1, sn = f(α)f(α+ β) · . . . · f(α+ (n− 1)β), n ≥ 1

belongs to I. Furthermore (scn) is S-determinate for c ≤ 2.

In most applications of the theorem we put α = β = 1 or α = 0, β = 1, the
latter provided f(0) > 0. (Of course the result is trivially true if f(α) = 0.)
The case α = β = 1 is Corollary 1.9 of [4], and the case α = 0, β = 1 follows
from Remark 1.2 in [2].

The moment sequence (scn) of Theorem 2.1 can be S-indeterminate for c > 2.
This is shown in [2] for the moment sequences

scn = (n!)c and scn = (n+ 1)c(n+1) (4)

derived from the Bernstein functions f(s) = s and f(s) = s(1 + 1/s)s+1. For
the Bernstein function f(s) = s/(s+ 1) the moment sequence scn = (n+ 1)−c

is a Hausdorff moment sequence since

1

(n+ 1)c
=

1

Γ(c)

∫ 1

0
xn(log(1/x))c−1 dx,

and in particular it is S-determinate for all c > 0.

The sequence (a)n := a(a+1) · . . . · (a+n−1), a > 0 belongs to I and is a one
parameter extension of n!. For 0 < a < b also (a)n/(b)n belongs to I. These
examples are studied in Section 6. Finally, in Section 7 we study a q-extension
(a; q)n/(b; q)n ∈ I for 0 < q < 1, 0 ≤ b < a < 1. In Section 8 we give some
complementary examples.

Any normalized Stieltjes moment sequence (sn) has the form sn = (1−ε)δ0n+
εtn, where ε ∈ [0, 1] and (tn) is a normalized Stieltjes moment sequence satis-
fying tn > 0.

Although the moment sequence (scn) of Theorem 2.1 can be S-indeterminate
for c > 2, there is a “canonical” solution ρc to the moment problem defined
by “infinite divisibility”.
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The notion of an infinitely divisible probability measure has been studied for
arbitrary locally compact groups, cf. [12].

We need the product convolution µ � ν of two measures µ and ν on [0,∞[:
It is defined as the image of the product measure µ ⊗ ν under the product
mapping (s, t) 7→ st. For measures concentrated on ]0,∞[ it is the convolution
with respect to the multiplicative group structure on the interval. It is clear
that the n’th moment of the product convolution is the product of the n’th
moments of the factors.

In accordance with the general definition we say that a probability ρ on ]0,∞[
is infinitely divisible on the multiplicative group of positive real numbers, if
it has p’th product convolution roots for any natural number p, i.e. if there
exists a probability τ(p) on ]0,∞[ such that (τ(p))�p = ρ. This condition
implies the existence of a unique family (ρc)c>0 of probabilities on ]0,∞[ such
that ρc �ρd = ρc+d, ρ1 = ρ and c 7→ ρc is weakly continuous. (These conditions
imply that limc→0 ρc = δ1 weakly.) We call such a family a product convolution
semigroup. It is a (continuous) convolution semigroup in the abstract sense
of [5] or [12]. A p’th root τ(p) is unique and one defines ρ1/p = τ(p), ρm/p =
(τ(p))�m,m = 1, 2, . . . . Finally ρc is defined by continuity when c > 0 is
irrational.

The family of image measures (log(ρc)) under the log-function is a convolution
semigroup of infinitely divisible measures in the ordinary sense on the real line
considered as an additive group.

The following result generalizes Theorem 1.8 in [2], which treats the special
case α = β = 1. In addition we express the Mellin transform of the product
convolution semigroup (ρc) in terms of the measure κ from (3).

Theorem 2.2 Let α ≥ 0, β > 0 and let f ∈ B be such that f(α) > 0. The
uniquely determined probability measure ρ with moments

sn = f(α)f(α+ β) · . . . · f(α+ (n− 1)β), n ≥ 1

is concentrated on ]0,∞[ and is infinitely divisible with respect to the product
convolution. The unique product convolution semigroup (ρc)c>0 with ρ1 = ρ
has the moments∫ ∞

0
xn dρc(x) = (f(α)f(α+ β) · . . . · f(α+ (n− 1)β))c , c > 0, n = 1, 2, . . . .

(5)
The Mellin transform of ρc is given by

∫ ∞

0
tz dρc(t) = e−cψ(z), Re z ≥ 0, (6)
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where

ψ(z) = −z log f(α)+
∫ ∞

0

(
(1− e−zβx)− z(1− e−βx)

) e−αx

x(1− e−βx)
dκ(x), (7)

and κ is given by (3).

The proof of the theorem is given in Section 3.

In connection with questions of determinacy the following result is useful.

Lemma 2.3 Assume that a Stieltjes moment sequence (un) is the product
un = sntn of two Stieltjes moment sequences (sn), (tn). If tn > 0 for all n and
(sn) is S-indeterminate, then also (un) is S-indeterminate.

This is proved in Lemma 2.2 and Remark 2.3 in [4]. It follows that if (sn) ∈ I
and (scn) is S-indeterminate for c = c0, then it is S-indeterminate for any
c > c0. Therefore one of the following three cases occur

• (scn) is S-determinate for all c > 0.
• There exists c0, 0 < c0 < ∞ such that (scn) is S-determinate for 0 < c < c0

and S-indeterminate for c > c0.
• (scn) is S-indeterminate for all c > 0.

We have already mentioned examples of the first two cases, and the third case
occurs in Remark 2.7. It follows also from the second case that the product of
two S-determinate Stieltjes moment sequences can be S-indeterminate.

The question of characterizing the set of normalized Stieltjes moment se-
quences (sn) with the property that (scn) is a Stieltjes moment sequence for
each c > 0 is essentially answered in the monograph [3]. (This was written
without knowledge about [19].) In fact, δ0n has clearly this property, so let us
restrict the attention to the class of non-vanishing normalized Stieltjes mo-
ment sequences (sn) for which we can apply the general theory of infinitely
divisible positive definite kernels, see [3, Proposition 3.2.7]. Combining this re-
sult with Theorem 6.2.6 in the same monograph we can formulate the solution
in the following way, where (iii) and (iv) are new:

Theorem 2.4 For a sequence sn > 0 the following conditions are equivalent:

(i) scn is a normalized Stieltjes moment sequence for each c > 0, i.e. (sn) ∈ I.
(ii) There exist a ∈ R, b ≥ 0 and a positive Radon measure σ on [0,∞[\{1}

satisfying

∫ ∞

0
(1− x)2 dσ(x) <∞,

∫ ∞

2
xn dσ(x) <∞, n ≥ 3
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such that

log sn = an+ bn2 +
∫ ∞

0
(xn − 1− n(x− 1)) dσ(x), n = 0, 1, . . . . (8)

(iii) There exist 0 < ε ≤ 1 and an infinitely divisible probability ω on R such
that

sn = (1− ε)δ0n + ε
∫ ∞

−∞
e−ny dω(y). (9)

(iv) There exist 0 < ε ≤ 1 and a product convolution semigroup (ρc)c>0 of
probabilities on ]0,∞[ such that

scn = (1− εc)δ0n + εc
∫ ∞

0
xn dρc(x), n ≥ 0, c > 0. (10)

Assume (sn) ∈ I. If (scn) is S-determinate for some c = c0 > 0, then the quan-
tities a, b, σ, ε, ω, (ρc)c>0 from (ii)-(iv) are uniquely determined. Furthermore
a = log s1, b = 0 and the finite measure (1− x)2 dσ(x) is S-determinate.

Remark 2.5 The measure σ in condition (ii) can have infinite mass close to
1. There is nothing special about the lower limit 2 of the second integral. It can
be any number > 1. The conditions on σ can be formulated that (1−x)2 dσ(x)
has moments of any order.

Remark 2.6 Concerning condition (iv) notice that the measures

ρ̃c = (1− εc)δ0 + εcρc, c > 0 (11)

satisfy the convolution equation

ρ̃c � ρ̃d = ρ̃c+d (12)

and (10) can be written

scn =
∫ ∞

0
xn dρ̃c(x), c > 0. (13)

On the other hand, if we start with a family (ρ̃c)c>0 of probabilities on [0,∞[
satisfying (12), and if we define h(c) = 1−ρ̃c({0}) = ρ̃c(]0,∞[), then h(c+d) =
h(c)h(d) and therefore h(c) = εc with ε = h(1) ∈ [0, 1]. If ε = 0 then ρ̃c = δ0
for all c > 0, and if ε > 0 then ρc := ε−c(ρ̃c|]0,∞[) is a probability on ]0,∞[
satisfying ρc � ρd = ρc+d.

Remark 2.7 In [4] was introduced a transformation T from normalized non-
vanishing Hausdorff moment sequences (an) to normalized Stieltjes moment
sequences (sn) by the formula

T [(an)] = (sn); sn =
1

a1 · . . . · an
, n ≥ 1. (14)
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We note the following result:

If (an) is a normalized Hausdorff moment sequence in I, then T [(an)] ∈ I.

As an example consider the Hausdorff moment sequence an = qn, where 0 <
q < 1 is fixed. Clearly (qn) ∈ I and the corresponding product convolution
semigroup is (δqc)c>0. The transformed sequence (sn) = T [(qn)] is given by

sn = q−(n+1
2 ),

which again belongs to I. The sequence (scn) is S-indeterminate for all c > 0
e.g. by [16]. The family of densities

vc(x) =
qc/8√

2π log(1/qc)

1√
x

exp

[
− (log x)2

2 log(1/qc)

]
, x > 0

form a product convolution semigroup because∫ ∞

0
xzvc(x) dx = q−cz(z+1)/2, z ∈ C.

In particular ∫ ∞

0
xnvc(x) dx = q−c(

n+1
2 ).

Each of the measures vc(x) dx is infinitely divisible for the additive structure
as well as for the multiplicative structure. The additive infinite divisibility is
deeper than the multiplicative and was first proved by Thorin, cf. [18].

3 Proofs

We start by proving Theorem 2.4 and will deduce Theorem 2.1 and 2.2 from
this result.

Proof of Theorem 2.4: The proof of “(i)⇒(ii)”is a modification of the proof of
Theorem 6.2.6 in [3]: For each c > 0 we choose a probability measure ρ̃c on
[0,∞[ such that for n ≥ 0

scn =
∫ ∞

0
xn dρ̃c(x),

hence ∫ ∞

0
(xn − 1− n(x− 1)) dρ̃c(x) = scn − 1− n(sc1 − 1).

(Because of the possibility of S-indeterminacy we cannot claim the convolution
equation ρ̃c� ρ̃d = ˜ρc+d.) If µ denotes a vague accumulation point for (1/c)(x−
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1)2 dρ̃c(x) as c→ 0, we obtain the representation

log sn − n log s1 =
∫ ∞

0

xn − 1− n(x− 1)

(1− x)2
dµ(x),

which gives (8) by taking out the mass of µ at x = 1 and defining σ =
(x− 1)−2d µ(x) on [0,∞[\{1}. For details see [3].

“(ii)⇒(iii)” Define m = σ({0}) ≥ 0 and let λ be the image measure on R\{0}
of σ −mδ0 under − log x. We get

∫
[−1,1]\{0}

y2 dλ(y) =
∫
[1/e,e]\{1}

(1− x)2

(
− log x

1− x

)2

dσ(x) <∞,

and for n ≥ 0 ∫
R\]−1,1[

e−ny dλ(y) =
∫
]0,∞[\]1/e,e[

xn dσ(x) <∞. (15)

This shows that λ is a Lévy measure, which allows us to define a negative
definite function

ψ(x) = iãx+ bx2 +
∫

R\{0}

(
1− e−ixy − ixy

1 + y2

)
dλ(y),

where

ã :=
∫

R\{0}

(
y

1 + y2
+ e−y − 1

)
dλ(y)− a.

Let (τc)c>0 be the convolution semigroup on R with∫ ∞

−∞
e−ixy dτc(y) = e−cψ(x), x ∈ R.

Because of (15) we see that ψ and then also e−cψ has a holomorphic extension
to the lower halfplane. By a classical result (going back to Landau for Dirichlet
series), see [20, p.58], this implies∫ ∞

−∞
e−ny dτc(y) <∞, n = 0, 1, . . . .

For z = x+ is, s ≤ 0 the holomorphic extension of ψ is given by

ψ(z) = iãz + bz2 +
∫

R\{0}

(
1− e−izy − izy

1 + y2

)
dλ(y),

and we have ∫ ∞

−∞
e−izy dτc(y) = e−cψ(z).

In particular we get
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−ψ(−in) =−ãn+ bn2 +
∫

R\{0}

(
e−ny − 1 +

ny

1 + y2

)
dλ(y)

=−ãn+ bn2 +
∫

R\{0}

(
e−ny − 1− n(e−y − 1)

)
dλ(y)

+n
∫

R\{0}

(
y

1 + y2
+ e−y − 1

)
dλ(y)

= an+ bn2 +
∫
]0,∞[\{1}

(xn − 1− n(x− 1)) dσ(x),

and therefore

log sn = (n− 1)m− ψ(−in) for n ≥ 1, (16)

while log s0 = ψ(0) = 0.

The measure ω = δ−m ∗ τ1 is infinitely divisible on R and we find for n ≥ 1

sn = e−menm−ψ(−in) = e−m
∫ ∞

−∞
e−ny dω(y),

so (9) holds with ε = e−m.

“(iii)⇒(iv)” Suppose (9) holds and let (ωc)c>0 be the unique convolution
semigroup on R such that ω1 = ω. Let (ρc)c>0 be the product convolution
semigroup on ]0,∞[ such that ρc is the image of ωc under e−y. Then (10)
holds for c = 1, n ≥ 0 and for c > 0 when n = 0. For n ≥ 1 we shall prove
that

scn = εc
∫ ∞

0
xn dρc(x), c > 0,

but this follows from (9) first for c rational and then for all c > 0 by continuity.

“(iv)⇒(i)” is clear since (scn) is the Stieltjes moment sequence of ρ̃c given by
(11).

Assume now (sn) ∈ I. We get log s1 = a + b. If b > 0 then (scn) is S-
indeterminate for all c > 0 by Lemma 2.3 because the moment sequence
(exp(cn2)) is S-indeterminate for all c > 0 by Remark 2.7.

If (1− x)2 dσ(x) is S-indeterminate there exist infinitely many measures τ on
[0,∞[ with τ({1}) = 0 and such that∫ ∞

0
xn(1− x)2 dσ(x) =

∫ ∞

0
xn dτ(x), n ≥ 0.

For any of these measures τ we have

log sn = an+ bn2 +
∫ ∞

0

xn − 1− n(x− 1)

(1− x)2
dτ(x),
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because the integrand is a polynomial. Therefore (scn) has the S-indeterminate
factor

exp

(
c
∫ ∞

0

xn − 1− n(x− 1)

(1− x)2
dτ(x)

)
and is itself S-indeterminate for all c > 0.

We conclude that if (scn) is S-determinate for 0 < c < c0, then b = 0 and
(1−x)2 dσ(x) is S-determinate. Then a = log s1 and σ is uniquely determined
on [0,∞[\{1}. Furthermore, if ε, (ρc)c>0 satisfy (10) then

scn =
∫ ∞

0
xn dρ̃c(x), c > 0

with the notation of Remark 2.6, and we get that ρ̃c is uniquely determined
for 0 < c < c0. This determines ε and ρc for 0 < c < c0, but then ρc is unique
for any c > 0 by the convolution equation.

We see that ε, ω are uniquely determined by (9) since (iii) implies (iv). �

Proof of Theorem 2.1 and 2.2:

To verify directly that the sequence

sn = f(α)f(α+ β) · . . . · f(α+ (n− 1)β)

of the form considered in Theorem 2.1 satisfies (8), we integrate formula (3)
from α to s and get

log f(s) = log f(α) +
∫ ∞

0
(e−αx − e−sx)

dκ(x)

x
.

Applying this formula we find

log sn =
n−1∑
k=0

log f(α+ kβ)

=n log f(α) +
∫ ∞

0

(
n(1− e−βx)− (1− e−nβx)

) e−αxd κ(x)

x(1− e−βx)
(17)

=n log f(α) +
∫ 1

0
(xn − 1− n(x− 1)) d σ(x),

where σ is the image measure of

e−αxd κ(x)

x(1− e−βx)

under e−βx. Note that σ is concentrated on ]0, 1[. This shows that (sn) ∈ I. It
follows from the proof of Theorem 2.4 that the constant ε of (iii) is ε = 1, so
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(10) reduces to (5). The sequence (scn) is S-determinate for c ≤ 2 by Carleman’s
criterion stating that if

∞∑
n=0

1
2n
√
scn

= ∞, (18)

then (scn) is S-determinate, cf. [1],[14]. To see that this condition is satisfied
we note that f(s) ≤ (f(β)/β)s for s ≥ β, and hence

sn = f(α)f(α+ β) · . . . · f(α+ (n− 1)β)

≤ f(α)(
f(β)

β
)n−1

n−1∏
k=1

(α+ kβ) = f(α)f(β)n−1(1 +
α

β
)n−1.

It follows from Stirling’s formula that (18) holds for c ≤ 2.

We claim that ∫ ∞

1

e−αx

x
dκ(x) <∞. (19)

This is clear if α > 0, but if α = 0 we shall prove

∫ ∞

1

dκ(x)

x
<∞.

For α = 0 we assume that f(0) = a > 0 and therefore the potential kernel

p =
∫ ∞

0
ηt dt

has finite total mass 1/a. Furthermore we have κ = p ∗ (bδ0 + x dν(x)) since

f ′(s) = b+
∫ ∞

0
e−sxx dν(x),

so we can write κ = κ1 + κ2 with

κ1 = p ∗ (bδ0 + x1]0,1[(x) dν(x)), κ2 = p ∗ (x1[1,∞[(x) dν(x)),

and κ1 is a finite measure. Finally

∫ ∞

1

dκ2(x)

x
=
∫ ∞

1

(∫ ∞

0

y

x+ y
dp(x)

)
dν(y) ≤ ν([1,∞[)

a
<∞.

The function ψ given by (7) is continuous in the closed half-plane Re z ≥ 0
and holomorphic in Re z > 0 because of (19). Note that ψ(n) = − log sn by
(17). We also notice that ψ(iy) is a continuous negative definite function on
the additive group (R,+), cf. [5], because

1− e−iyx − iy(1− e−x)
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is a continuous negative definite function of y for each x ≥ 0. Therefore there
exists a unique product convolution semigroup (τc)c>0 of probabilities on ]0,∞[
such that

∫ ∞

0
tiy dτc(t) = e−cψ(iy), c > 0, y ∈ R. (20)

By a classical result, see [20, p. 58]), the holomorphy of ψ in the right half-
plane implies that tz is τc-integrable for Re z ≥ 0 and

∫ ∞

0
tz dτc(t) = e−cψ(z), c > 0,Re z ≥ 0. (21)

In particular the n’th moment is given by∫ ∞

0
tn dτc(t) = e−cψ(n) = ec log sn = scn,

so by S-determinacy of (scn) for c ≤ 2 we get ρc = τc for c ≤ 2.This is however
enough to ensure that ρc = τc for all c > 0 since (ρc) and (τc) are product
convolution semigroups. �

4 Tyan’s thesis revisited

In [19] Tyan defines a normalized Hamburger moment sequence

sn =
∫ ∞

−∞
xnµ(x), n ≥ 0

to be infinitely divisible if

(i) sn ≥ 0 for all n ≥ 0
(ii) (scn) is a Hamburger moment sequence for all c > 0.

Since the set of Hamburger moment sequences is closed under limits and pro-
ducts, we can replace (ii) by the weaker

(ii’) k
√
sn is a Hamburger moment sequence for all k = 1, 2, . . ..

Lemma 4.1 Let (sn) be an infinitely divisible Hamburger moment sequence.
Then one of the following cases hold:

• sn > 0 for all n.
• s2n > 0, s2n+1 = 0 for all n.
• sn = 0 for n ≥ 1.

13



Proof: The sequence (un) defined by

un = lim
k→∞

k
√
sn =

 1 if sn > 0

0 if sn = 0

is a Hamburger moment sequence, and since it is bounded by 1 we have

un =
∫ 1

−1
xn dµ(x)

for some probability µ on [−1, 1].

Either u2 = 1 and then µ = αδ1 + (1 − α)δ−1 for some α ∈ [0, 1], or u2 = 0
and then µ = δ0, which gives the third case of the Lemma.

In the case u2 = 1 we have u1 = 2α − 1, which is either 1 or 0 corresponding
to either α = 1 or α = 1

2
, which gives the two first cases of the Lemma. �

The symmetric case s2n > 0, s2n+1 = 0 is equivalent to studying infinitely
divisible Stieltjes moment sequences, while the third case is trivial.

Theorem 4.2 of [19] can be formulated:

Theorem 4.2 A Hamburger moment sequence (sn) such that sn > 0 for all
n is infinitely divisible if and only if the following representation holds

log sn = an+ bn2 +
∫ ∞

−∞
(xn − 1− n(x− 1)) dσ(x), n ≥ 0,

where a ∈ R, b ≥ 0 and σ is a positive measure on R \ {1} such that (1 −
x)2 dσ(x) is a measure with moments of any order. Furthermore (sn) is a
Stieltjes moment sequence if and only if σ can be chosen supported by [0,∞[.

The proof is analogous to the proof of Theorem 2.4.

Tyan also discusses infinitely divisible multidimensional moment sequences
and obtains analogous results.

5 An application to Hermite polynomials

It follows from equation (4) that

√
n! =

∫ ∞

0
un dσ(u) (22)

14



for the unique probability σ on the half-line satisfying σ�σ = exp(−t)1]0,∞[(t) dt.
Even though σ is not explicitly known, it can be used to prove that a certain
generating function for the Hermite polynomials is non-negative.

Let Hn, n = 0, 1, . . . denote the sequence of Hermite polynomials satisfying
the orthogonality relation

1√
π

∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!δnm.

The following generating function is well known:

∞∑
k=0

Hk(x)

k!
zk = e2xz−z

2

, x, z ∈ C. (23)

The corresponding orthonormal polynomials are given by

hn(x) =
Hn(x)√

2nn!
,

and they satisfy the following inequality of Szasz, cf. [17]

|hn(x)| ≤ ex
2/2, x ∈ R, n = 0, 1, . . . . (24)

Let D denote the open unit disc in the complex plane.

Theorem 5.1 The orthonormal generating function

G(t, x) =
∞∑
k=0

hk(x)t
k (25)

is continuous for (t, x) ∈ D×R and satisfies G(t, x) > 0 for −1 < t < 1, x ∈ R.

Proof: The series for the generating function (25) converges uniformly on com-
pact subsets of D× R by the inequality of Szasz (24), so it is continuous.

By (22) we find

n∑
k=0

hk(x)t
k =

∫ ∞

0

(
n∑
k=0

Hk(x)

k!
(
tu√
2
)k
)
dσ(u),

which by (23) converges to∫ ∞

0
exp(

√
2tux− t2u2/2) dσ(u) > 0 for − 1 < t < 1, x ∈ R,
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provided we have dominated convergence. This follows however from (24) be-
cause ∫ ∞

0

∣∣∣∣∣
n∑
k=0

Hk(x)

k!
(
tu√
2
)k
∣∣∣∣∣ dσ(u) ≤ ex

2/2
∫ ∞

0

( ∞∑
k=0

(|t|u)k√
k!

)
dσ(u)

= ex
2/2(1− |t|)−1 <∞.

�

6 The moment sequences (a)cn and ((a)n/(b)n)
c

For each a > 0 the sequence (a)n := a(a+ 1) · . . . · (a+ n− 1) is the Stieltjes
moment sequence of the Γ-distribution γa:

(a)n =
Γ(a+ n)

Γ(a)
=
∫
xn dγa(x) =

1

Γ(a)

∫ ∞

0
xa+n−1e−x dx.

For a = 1 we get the moment sequence n!, so the following result generalizes
Theorem 2.5 of [2].

Theorem 6.1 The sequence (a)n belongs to I for each a > 0. There exists
a unique product convolution semigroup (γa,c)c>0 such that γa,1 = γa. The
moments are given as ∫ ∞

0
xn dγa,c(x) = (a)cn, c > 0,

and ∫ ∞

0
xz dγa,c(x) =

(
Γ(a+ z)

Γ(a)

)c
, Re z > −a.

The moment sequence ((a)cn) is S-determinate for c ≤ 2 and S-indeterminate
for c > 2.

Proof: We apply Theorem 2.1 and 2.2 to the Bernstein function f(s) = a+ s
and put α = 0, β = 1. The formula for the Mellin transform follows from a
classical formula about log Γ, cf. [11, 8.3417].

We shall prove that (a)cn is S-indeterminate for c > 2. In [2] it was proved
that (n!)c is S-indeterminate for c > 2, and so are all the shifted sequences
((n+ k − 1)!)c, k ∈ N. This implies that

(k)cn =

(
(n+ k − 1)!

(k − 1)!

)c
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is S-indeterminate for k ∈ N, c > 2. To see that also (a)cn is S-indeterminate
for a /∈ N, we choose an integer k > a and factorize

(a)cn =

(
(a)n
(k)n

)c
(k)cn.

By the following theorem the first factor is a non-vanishing Stieltjes moment
sequence, and by Lemma 2.3 the product is S-indeterminate. �

For 0 < a < b we have

(a)n
(b)n

=
1

B(a, b− a)

∫ 1

0
xn+a−1(1− x)b−a−1 dx, (26)

where B denotes the Beta-function.

Theorem 6.2 Let 0 < a < b. Then ((a)n/(b)n) belongs to I and all powers of
the moment sequence are Hausdorff moment sequences. There exists a unique
product convolution semigroup (β(a, b)c)c>0 on ]0, 1] such that

∫ 1

0
xz dβ(a, b)c(x) =

(
Γ(a+ z)

Γ(a)
/
Γ(b+ z)

Γ(b)

)c
, Re z > −a.

Proof: We apply Theorem 2.1 and 2.2 to the Bernstein function f(s) = (a +
s)/(b+ s) and put α = 0, β = 1.

The Stieltjes moment sequences (((a)n/(b)n)
c)) are all bounded and hence

Hausdorff moment sequences. The measures γb,c � β(a, b)c and γa,c have the
same moments and are therefore equal for c ≤ 2 and hence for any c > 0
by the convolution equations. The Mellin transform of β(a, b)c follows from
Theorem 6.1.

�

7 The q-extension ((a; q)n/(b; q)n)
c

In this section we fix 0 < q < 1 and consider the q-shifted factorials

(z; q)n =
n−1∏
k=0

(1− zqk), z ∈ C, n = 1, 2, . . . ,∞

and (z; q)0 = 1. We refer the reader to [10] for further details about q-
extensions of various functions.
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For 0 ≤ b < a < 1 the sequence sn = (a; q)n/(b; q)n is a Hausdorff moment
sequence for the measure

µ(a, b; q) =
(a; q)∞
(b; q)∞

∞∑
k=0

(b/a; q)k
(q; q)k

akδqk , (27)

which is a probability on ]0, 1] by the q-binomial Theorem, cf. [10]. The cal-
culation of the n’th moment follows also from this theorem since

sn(µ(a, b; q)) =
(a; q)∞
(b; q)∞

∞∑
k=0

(b/a; q)k
(q; q)k

akqkn =
(a; q)∞
(b; q)∞

((b/a)aqn; q)∞
(aqn; q)∞

=
(a; q)n
(b; q)n

.

Replacing a by qa and b by qb and letting q → 1 we get the moment sequences
(a)n/(b)n, so the present example can be thought of as a q-extension of the
former. The distribution µ(qa, qb; q) is called the q-Beta law in Pakes [13]
because of its relation to the q-Beta function.

Theorem 7.1 For 0 ≤ b < a < 1 the sequence sn = (a; q)n/(b; q)n belongs to
I. The measure µ(a, b; q) is infinitely divisible with respect to the product con-
volution and the corresponding product convolution semigroup (µ(a, b; q)c)c>0

satisfies

∫
tz dµ(a, b; q)c(t) =

(
(bqz; q)∞
(b; q)∞

/
(aqz; q)∞
(a; q)∞

)c
, Re z > − log a

log q
. (28)

In particular
scn = ((a; q)n/(b; q)n)

c (29)

is the moment sequence of µ(a, b; q)c, which is concentrated on {qk | k =
0, 1, . . .} for each c > 0.

Proof: It is easy to prove that (a; q)n/(b; q)n belongs to I using Theorem 2.1
and 2.2 applied to the Bernstein function

f(s) =
1− aqs

1− bqs
= 1− (a− b)

∞∑
k=0

bkq(k+1)s,

but it will also be a consequence of the following considerations, which give
information about the support of µ(a, b; q)c.

For a probability µ on ]0, 1] let τ = − log(µ) be the image measure of µ under
− log. It is concentrated on [0,∞[ and∫ 1

0
tix dµ(t) =

∫ ∞

0
e−itx dτ(t).

This shows that µ is infinitely divisible with respect to the product convolution
if and only if τ is infinitely divisible in the ordinary sense, and in the affirmative
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case the negative definite function ψ associated to µ is related to the Bernstein
function f associated to τ by ψ(x) = f(ix), x ∈ R, cf. [5, p.69].

We now prove that µ(a, b; q) is infinitely divisible for the product convolution.
As noticed this is equivalent to proving that the measure

τ(a, b; q) :=
(a; q)∞
(b; q)∞

∞∑
k=0

(b/a; q)k
(q; q)k

akδk log(1/q),

is infinitely divisible in the ordinary sense. To see this we calculate the Laplace
transform of τ(a, b; q) and get by the q-binomial Theorem

∫ ∞

0
e−st dτ(a, b; q)(t) =

(bqs; q)∞
(b; q)∞

/
(aqs; q)∞
(a; q)∞

, s ≥ 0. (30)

Putting

fa(s) = log
(aqs; q)∞
(a; q)∞

,

we see that fa is a bounded Bernstein function of the form

fa(s) = − log(a; q)∞ − ϕa(s),

where

ϕa(s) = − log(aqs; q)∞ =
∞∑
k=1

ak

k(1− qk)
qks

is completely monotonic as Laplace transform of the finite measure

νa =
∞∑
k=1

ak

k(1− qk)
δk log(1/q).

From (30) we get ∫ ∞

0
e−st dτ(a, b; q)(t) =

(a; q)∞
(b; q)∞

eϕa(s)−ϕb(s),

and it follows that τ(a, b; q) is infinitely divisible and the corresponding con-
volution semigroup is given by the infinite series

τ(a, b; q)c =

(
(a; q)∞
(b; q)∞

)c ∞∑
k=0

ck(νa − νb)
∗k

k!
, c > 0.

Note that each of these measures are concentrated on {k log(1/q) | k =
0, 1, . . .}. The associated Lévy measure is the finite measure νa − νb concen-
trated on {k log(1/q) | k = 1, 2, . . .}. This shows that the image measures

µ(a, b; q)c = exp(−τ(a, b; q)c), c > 0
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form a product convolution semigroup concentrated on {qk | k = 0, 1, . . .}.

The product convolution semigroup (µ(a, b; q)c)c>0 has the negative definite
function f(ix), where f(s) = fa(s)− fb(s) for Re s ≥ 0, hence

∫
tix dµ(a, b; q)c(t) =

(
(bqix; q)∞
(b; q)∞

/
(aqix; q)∞
(a; q)∞

)c
, x ∈ R,

and the equation (28) follows by holomorphic continuation. Putting z = n
gives (29).

�

8 Complements

Example 8.1 Let 0 < a < b and consider the Hausdorff moment sequence
an = (a)n/(b)n ∈ I. By Remark 2.7 the moment sequence (sn) = T [(an)]
belongs to I. We find

sn =
n∏
k=1

(b)k
(a)k

=
n−1∏
k=0

(
b+ k

a+ k

)n−k
.

Example 8.2 Applying T to the Hausdorff moment sequence ((a; q)n/(b; q)n)
gives the Stieltjes moment sequence

sn =
n∏
k=1

(b; q)k
(a; q)k

=
n−1∏
k=0

(
1− bqk

1− aqk

)n−k
. (31)

We shall now give the measure with moments (31).

For 0 ≤ p < 1, 0 < q < 1 we consider the function of z

hp(z; q) =
∞∏
k=0

(
1− pzqk

1− zqk

)k
,

which is holomorphic in the unit disk with a power series expansion

hp(z; q) =
∞∑
k=0

ckz
k (32)

having non-negative coefficients ck = ck(p, q). To see this, notice that

1− pz

1− z
= 1 +

∞∑
k=1

(1− p)zk.
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For 0 ≤ b < a < 1 and γ > 0 we consider the probability measure with
support in [0, γ]

σa,b,γ =
1

hb/a(a; q)

∞∑
k=0

cka
kδγqk ,

where the numbers ck are the (non-negative) coefficients of the power series
for hb/a(z; q).

The n’th moment of σa,b,γ is given by

sn(σa,b,γ) = γn
hb/a(aq

n; q)

hb/a(a; q)
.

For γ = (b; q)∞/(a; q)∞ it is easy to see that

sn(σa,b,γ) =
n−1∏
k=0

(
1− bqk

1− aqk

)n−k
,

which are the moments (31).
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certains processus de Lévy, Stochastics and Stochastics Reports 47 (1994) 71-
101.

21



[9] P. Carmona, F. Petit and M. Yor, On the distribution and asymptotic results
for exponential functionals of Levy processes. In: M. Yor (editor),Exponential
functionals and principal values related to Brownian motion, pp. 73–121.
Biblioteca de la Revista Matemática Iberoamericana, 1997.
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