
On in�nitely divisible solutions to indeterminatemoment problemsChristian BergJanuary 8, 2001Abstra
tFor a 
onvolution semigroup of measures with moments of any order weprove that the n'th moment is a polynomial of degree at most n in the timeparameter. Spe
ial fo
us is on the 
ase where the measures are indeterminate,in parti
ular the log-normal and the q-Laguerre 
ase.1991 Mathemati
s Subje
t Classi�
ation: primary 44A60, se
ondary 60E07, 33D45.Keywords: Moment problem, in�nitely divisible probability, q-Laguerre weight.1 Introdu
tion and resultsThis paper treats only the se
ond part of the le
ture given at the \InternationalWorkshop on Spe
ial Fun
tions, Asymptoti
s, Harmoni
 Analysis and Mathemati
alPhysi
s", Hong Kong June 21-25, 1999.1In the �rst part of the le
ture we 
onsidered a �xed indeterminate momentsequen
e (sn) and the set V of solutions � to the moment equationsZ xn d�(x) = sn; n = 0; 1; : : : : (1.1)The n'th moment of a solution � will be denoted sn(�).Let (�t)t2I be a one-parameter family of solutions in V . The basi
 assumptionsare that I is an interval and the mapping t 7! �t of I into V is 
ontinuous, when Vis equipped with the weak topology. It is well-known that V is a 
ompa
t 
onvexset in this topology, so for any probability measure � on I the ve
tor integral � =R �t d�(t) belongs to V . In the le
ture we showed how this simple result 
an be usedto 
al
ulate solutions to the following moment problems: log-normal, generalized1Pro
eedings of the International Workshop \Spe
ial Fun
tions ", Hong Kong June 21-25, 1999.Ed. C. Dunkl, M. Ismail, R. Wong. World S
ienti�
, Singapore 2000, pp. 31-41.1



Stieltjes-Wigert or q-Laguerre and dis
rete q-Hermite II. The results have appearedin [7℄. See also [6℄ for some 
al
ulation of moments and [1℄ for the general theory.In the se
ond part of the le
ture we 
onsidered probabilities with moments ofany order and whi
h are in�nitely divisible. A probability � with these properties
an be imbedded in a 
onvolution semigroup (�t)t>0 su
h that �1 = �. For thepre
ise 
onditions assumed for a 
onvolution semigroup see se
tion 2 below. Weshall prove that all the measures in the 
onvolution semigroup have moments of anyorder, and the n'th moment sn(�t) of �t is a polynomial in t of degree at most nwithout 
onstant term if n � 1. The 
oeÆ
ients of this polynomial 
an be expressedin terms of the values at zero of the derivatives of the negative de�nite fun
tion ofthe 
onvolution semigroup. These derivatives are 
losely related to the momentsof the L�evy measure for the 
onvolution semigroup. For 
onvolution semigroupssupported by the half-line and not equal to the trivial semigroup ("bt)t>0 of uniformmotion the n'th moment is a polynomial of degree n with positive 
oeÆ
ients. Hereand in the following "a denotes the unit mass at the point a.The set V of solutions to an indeterminate moment problem 
an 
ontain no, oneor in�nitely many in�nitely divisible distributions, other possibilities do not happen.The o

uren
e of the two last 
ases depends on the determina
y/indetermina
y ofthe L�evy measure ([16℄).The log-normal distribution with parameter � > 0 has density on ℄0;1[ givenby d�(x) = (2��2)� 12x�1 exp��(log x)22�2 � : (1.2)It is indeterminate and in�nitely divisible. As far as the author knows the 
onvolu-tion roots of this distribution are not expli
itely known. We show that they are alsoindeterminate probabilities as a 
onsequen
e of the fa
t that there are more thanone in�nitely divisible distribution in the set V . This is be
ause the densities!
(x) = x
�1M
(q;�q 12�
x;�q 12+
=x; q)1 (1.3)are in�nitely divisible, as we shall see below, and they have the same momentssn = q� 12n2as (1.2) when q = exp(��2). The latter follows from the Askey-Roy beta-integral,[4℄, [3℄. See also [7℄. For the notation above 
on
erning q-spe
ial fun
tions we referto [15℄, [17℄. The parameter 
 is real, but sin
e !
+1(x) = !
(x) we may restri
t 
 tothe interval [0; 1[. The 
onstantM
 normalizing !
 to a probability 
an be expressedusing the �-fun
tion and Ja
kson's �q-fun
tion and is given in [7℄. The density (1.3)for 
 = 12 was given by Askey in [2℄.Another important 
lass of indeterminate and in�nitely divisible distributions is
onne
ted to the q-Laguerre moment problem with momentssn(�; q) = q��n�(n+12 )(q�+1; q)n; (1.4)2



where 0 < q < 1, � > �1.We shall see below that the densityk� x�(�x; q)1 ; (1.5)whi
h has the moments (1.4), is in�nitely divisible. The measure (1.5) 
orrespondsto 
 = �+ 1 in the one-parameter family of densitiesq
(�+ 12 )M
 x
�1 (q�+1;�q=x; q)1(q;�q�+1�
x;�q
��=x; q)1 (1.6)all having the q-Laguerre moments, 
f. [7℄. This family is also periodi
 in 
 withperiod 1. We have only been able to prove that the spe
ial 
ase (1.5) is in�nitelydivisible.It is well-known that the log-normal 
ase is a limiting 
ase of q-Laguerre for �tending to in�nity, 
f. [2℄.At the end of the paper we give eviden
e to the following 
onje
ture about
onvolution semigroups (�t)t>0 with moments of any order: Either all the measures�t are determinate or all the measures are indeterminate.2 Convolution semigroups of measures with mo-ments of any orderIn 1977 O. Thorin, 
f. [19℄, established that the log-normal distribution (1.2) isin�nitely divisible. This is probably the �rst known expli
it example of an indeter-minate and in�nitely divisible probability measure. The existen
e of su
h measureswas noti
ed in Heyde [16℄. We re
all that a probability measure � on R is 
alled in-�nitely divisible, if � has n'th probability roots under 
onvolution for any n, i.e. forany n 2 N there shall exist a probability � su
h that ��n = �. It is well-known thatsu
h an n'th root is uniquely determined and that � has arbitrary positive 
onvolu-tion roots. This means that there exists a (uniquely determined) family (�t)t>0 ofprobabilities with � = �1 su
h that (�t)t>0 is a 
onvolution semigroup, i.e. has theproperties �t � �s = �t+s; (2.1)t 7! �t is weakly 
ontinuous for t > 0; (2.2)limt!0 �t = "0 weakly. (2.3)3



We re
all the L�evy-Khin
hine formula for the Fourier transform of a 
onvolutionsemigroup, 
f. Luka
s [18℄,�̂t(x) = Z 1�1 e�ixyd�t(y) = e�t (x); t > 0; x 2 R; (2.4) (x) = �x2 + i�x + Z 1�1(1� e�ixy � ixy1 + y2 )d�(y); x 2 R; (2.5)where � � 0; � 2 R, and � is a non-negative measure on R n f0g satisfyingZ 1�1 y21 + y2d�(y) <1: (2.6)Condition (2.6) implies that �(Rn℄�1; 1[) <1. The fun
tion  and the measure� are 
alled the negative de�nite fun
tion and the L�evy measure for the 
onvolutionsemigroup.Conversely, given � � 0; � 2 R and a non-negative measure � on Rnf0g satisfying(2.6), there exists a uniquely determined 
onvolution semigroup (�t)t>0 su
h that(2.4) and (2.5) hold. Any non-negative measure � on R n f0g satisfying (2.6) will be
alled a L�evy measure.Con
erning the existen
e of moments of all orders for the measures in a 
onvo-lution semigroup we prove:Theorem 2.1 For a 
onvolution semigroup (�t)t>0 as above the following 
onditionsare equivalent:(i) �t0 has moments of all orders for some t0 > 0,(ii) �t has moments of all orders for all t > 0,(iii)  2 C1(R),(iv) R1�1 y2n d�(y) <1 for n = 1; 2; : : : .In 
ase (i)-(iv) hold, then sn(�t) is a polynomial of degree � n in t without
onstant term (for n � 1), the 
oeÆ
ients of whi
h are uniquely determined by thesequen
e ( (n)(0)).Proof: We shall use the fa
t that a probability has moments of every order ifand only if its Fourier transform is a C1-fun
tion, 
f. e.g. [18℄. From this theequivalen
e of (i)-(iii) is straight-forward.Suppose next that (i)-(iii) hold. We establish by indu
tion that sn(�t) for n � 1is a polynomial of degree � n in t without 
onstant term. Di�erentiating (2.4) atx = 0 we 
learly get s1(�t) = �it 0(0);4



so the result holds for n = 1. Di�erentiating (2.4) n + 1 times we �nd(�i)n+1sn+1(�t) = dn+1dxn+1fe�t (x)gx=0 = dndxnf�t 0(x)e�t (x)gx=0= �t nXk=0 �nk� dkdxkfe�t (x)gx=0 (n�k+1)(0)= �t nXk=0 �nk�(�i)ksk(�t) (n�k+1)(0);whi
h is a polynomial as required, if we assume the result up to order n.Sin
e t�1�tj (R n f0g) 
onverges vaguely on R n f0g to the L�evy measure � fort! 0, 
f. [9℄, we get for n � 1Z 1�1 y2n d�(y) � lim inft!0 t�1 Z 1�1 y2n d�t(y) = ddtfs2n(�t)gt=0 <1;whi
h shows that (iv) holds.Suppose �nally that (iv) holds. The assumption R y2 d�(y) <1 implies that  is C2 with derivatives 0(x) = Z 1�1 iy(e�ixy � 11 + y2 ) d�(y) + 2�x+ i� 00(x) = Z 1�1 y2e�ixy d�(y) + 2�;and sin
e the �nite measure y2� has moments of all even orders and hen
e of allorders, we see that  is C1 and 0(0) = i Z 1�1 y31 + y2 d�(y) + i�; 00(0) = Z 1�1 y2 d�(y) + 2�; (n)(0) = (�i)n�2 Z 1�1 yn d�(y); n � 3:�Remark 2.2 (a) De�ning�n = �in+1 (n+1)(0); n � 0; (2.7)we see from above that �n is real and�n = sn�1(2�"0 + y2�); n � 1; �0 = Z 1�1 y31 + y2 d�(y) + �: (2.8)5



The �rst moments are s1(�t) = �0ts2(�t) = �1t + �20t2s3(�t) = �2t + 3�0�1t2 + �30t3:Writing sn(�t) = nXk=0 
n;ktk; n � 0; (2.9)we have 
0;0 = 1; 
n;0 = 0 for n � 1 and it is easy to see that
n;n = �n0 ; 
n;1 = �n�1: (2.10)In general the 
oeÆ
ients 
n;k satisfy the re
urren
e equation
n+1;l+1 = nXk=l 
k;l�nk��n�k; n; l � 0: (2.11)(b) The assumption (iv) for n = 1 is of 
ourse stronger than (2.6). On the otherhand, if (2.6) holds, 
ondition (iv) 
an be repla
ed by(iv0) Zjyj�1 y2n d�(y) <1; n � 1:Example 2.3 The degree of sn(�t) 
an be stri
tly less than n as the �rst of thefollowing examples show.(a) The Gaussian semigroup�t = 1p4�t exp(�x24t )dx;s2n(�t) = (2n)!n! tn; s2n+1(�t) = 0:(b) The drift semigroup �t = "�t; sn(�t) = �ntn; � 2 R:(
) The �-semigroup �t = 1�(t)xt�1e�x1℄0;1[(x)dx;sn(�t) = �(n+ t)�(t) = (t)n:(d) The Poisson semigroup �t = e�t 1Xk=0 tkk!"k;6



sn(�t) = e�t 1Xk=0 kntkk! = e�tLn(et);where L is the di�erential operator Lf(x) = xf 0(x).For symmetri
 semigroups like (a) it is 
lear that s2n+1(�t) = 0, and it 
an beproved by indu
tion that s2n(�t) is of degree n unless �t is redu
ed to "0.For 
onvolution semigroups (�t)t>0 supported by the half-line [0;1[ we have alsomore information as indi
ated by the examples (b)-(d).Proposition 2.4 Let (�t)t>0 be a 
onvolution semigroup of measures supported by[0;1[ and with moments of all orders. Then sn(�t) is a polynomial (2.9) of degreen with 
n;k > 0 for k = 1; : : : ; n; unless �t = "bt for some b � 0.Proof: The result 
an be dedu
ed from (2.8) and (2.11), but it is perhaps moreinstru
tive to make use of the Lapla
e transformation. The Lapla
e transform of anarbitrary 
onvolution semigroup (�t)t>0 on [0;1[ has the formL�t(s) = Z 10 e�sy d�t(y) = e�tf(s); t > 0; (2.12)where the Bernstein fun
tion f asso
iated with (�t)t>0 is given asf(s) = bs + Z 10 (1� e�sy) d�(y): (2.13)Here b � 0 and the L�evy measure � is 
on
entrated on ℄0;1[ and satis�es theintegrability 
ondition Z 10 y1 + y d�(y) <1;
f. [9℄. Note that the negative de�nite fun
tion is  (x) = f(ix). In the present 
ase,where all the measures have moments of any order, the L�evy measure satis�esZ 10 yn d�(y) <1; n � 1:Therefore f 2 C1([0;1[) and�n = (�1)nf (n+1)(0) = sn(b"0 + yd�(y)) <1for n � 0. It follows that �n > 0 for all n � 0, unless � = 0 in whi
h 
ase �t = "bt.The assertion now follows from the re
ursion formula (2.11). �To dis
uss the indetermina
y of the measures in a 
onvolution semigroup withmoments of any order, we shall say that a L�evy measure � on Rnf0g is indeterminate,if there exists a L�evy measure ~� on R n f0g with � 6= ~� and su
h thatZ 1�1 yn d�(y) = Z 1�1 yn d~�(y) for n � 2: (2.14)7



Theorem 2.5 (Heyde [16℄). Let (�t)t>0 be a 
onvolution semigroup with momentsof any order and indeterminate L�evy measure. Then the semigroup is indeterminatein the sense that all the measures �t are indeterminate.Proof: Let  and � denote the negative de�nite fun
tion and the L�evy measurefor (�t)t>0 and let ~� 6= � satisfy (2.14). Let ~ be de�ned by (2.5) with � repla
edby ~� and � repla
ed by ~�, the latter de�ned so that  0(0) = ~ 0(0). Then  6= ~ and (n)(0) = ~ (n)(0) for n � 1. Letting (~�t)t>0 be the 
onvolution semigroup asso
iatedwith ~ , it follows from (2.8) and (2.11) that sn(�t) = sn(~�t) but �t 6= ~�t for t > 0.�Remark 2.6 (a) The theorem shows that there exist as many indeterminate 
on-volution semigroups as indeterminate measures. In fa
t, if � is any indeterminatemeasure with moments of all orders and with no mass at zero, then � = y�2� is anindeterminate L�evy measure.(b) The 
onverse of Theorem 2.5 is not true, although it is 
laimed in [16, Theo-rem 2℄. Lemma 2.2 in [5℄ 
an be used to give a 
ounterexample. In fa
t, the Lemmaasserts the existen
e of a determinate probability � su
h that y2� is determinateand ��3 is indeterminate. Sin
e the measure � is 
onstru
ted to have no mass at 0,it is a determinate L�evy measure. The 
onvolution semigroup�t = e�t 1Xn=0 tnn!��n; t > 0is indeterminate sin
e ea
h �t majorizes a multiple of ��3.(
) Let (�t)t>0 be an indeterminate 
onvolution semigroup with a determinateL�evy measure, and let Vt be the set of measures with the same moments as �t. Thenfor ea
h t the set Vt 
ontains only one in�nitely divisible measure.(d) In [16℄ Heyde gives an example of an indeterminate measure � su
h that V
ontains no in�nitely divisible measures.Theorem 2.7 The densities (1.2) and (1.3) with log-normal moments sn = q�n2=2are all in�nitely divisible. In parti
ular all positive 
onvolution roots of these mea-sures are in�nitely divisible.Proof: The in�nite divisibility of (1.2) was proved �rst by Thorin in [19℄. Heintrodu
ed the sub
lass of in�nitely divisible distributions 
alled generalized gamma
onvolutions and proved that the log-normal distribution belongs to this sub
lassT . Bondesson found in [10℄ a sub
lass B � T given as all the probability densitieson ℄0;1[ whi
h are pointwise limits of densities of the formCx��1 NYi=1(1 + 
ix)�
i ; �; 
i; 
i > 0: (2.15)8



In later papers [11℄,[12℄ Bondesson found an extremely elegant 
hara
terization ofB as the probability densities f on ℄0;1[ su
h that, for ea
h u, f(uv)f(u=v) is
ompletely monotone as a fun
tion of w = v + v�1. Using this result Bondessongave a simple proof that (1.2) belongs to the 
lass B, see [11℄,[12℄. The density (1.3)also belongs to the 
lass B and is therefore a generalized gamma 
onvolution and inparti
ular in�nitely divisible. In fa
t the probability densityC(n; 
)x
�1f(�q 12�
x;�q 12+
=x; q)ng�1 = C(n; 
)x
+n�1f(�q 12�
x;�q 12�
�nx; q)ng�1has the right form and 
onverges pointwise to !
(x).The set V of measures with the log-normal moments therefore 
ontains in�nitelymany in�nitely divisible measures, and the assertion follows. �By the same method as above we get:Theorem 2.8 The q-Laguerre density (1.5) belongs to the 
lass B and is in parti-
ular in�nitely divisible.Sin
e the same method does not apply to the densities (1.6), ex
ept when 
 =� + 1, we do not know if the set V of solutions with q-Laguerre moments (1.4)
ontains one or in�nitely may in�nitely divisible distributions.3 A 
onje
tureIf � and � are measures with moments of any order then the 
onvolution � � � hasalso moments of any order andsn(� � �) = nXk=0 �nk�sk(�)sn�k(�): (3.1)It was proved by Devinatz, 
f.[14℄,[5℄, that if � 6= 0 and � is indeterminate, then� � � is indeterminate. On the other hand it is possible that � is determinate but� � � is indeterminate, 
f. [5℄,[13℄.Let (�t)t>0 be a 
onvolution semigroup with moments of any order. If it isknown that �t is indeterminate it follows from the result of Devinatz that �t � �s isindeterminate for any s > 0.However, we do not need the full result of Devinatz to prove this, sin
e �̂s doesnot vanish be
ause of (2.4). We 
an simplify the argument as follows: If � has thesame moments as �t, then � � �s has the same moments as �t � �s by (3.1), and if� � �s = �t � �s, we get by Fourier transformation and 
an
elation that � = �t.The question is if it 
an happen that �t is determinate for 0 < t < t0 andindeterminate for t0 < t for some number 0 < t0 < 1. By Theorem 2.5 thiswould require the L�evy measure to be determinate. As noti
ed in [5℄ the Carleman
ondition 
annot be satis�ed for the measures �t; t < t0.9



Determina
y of a measure � depends on the behaviour of the smallest eigenvalue�n of the Hankel matrix (si+j(�))0�i;j�n: (3.2)It was proved in [8℄ that � is determinate if and only if lim�n = 0. In the spe
ial
ase of � = �t the Hankel matrix 
onsists of polynomials in t of degree at most2n, and sin
e the smallest eigenvalue is the minimum of the Hankel form on theunit sphere in C n+1 , it is easily seen that the smallest eigenvalue �n(t) is a stri
tlypositive 
ontinuous fun
tion.The existen
e of a number t0 as above would require that �n(t) 
onverges to 0 fort < t0 and to a stri
tly positive limit for t > t0. Be
ause of the polynomial behaviourof the moments we do not think that this is possible and hen
e we formulate:Conje
ture 3.1 For a 
onvolution semigroup (�t)t>0 of measures with moments ofany order there are only the possibilities:1. All the measures �t are determinate.2. All the measures �t are indeterminate.
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