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Abstract

For a convolution semigroup of measures with moments of any order we
prove that the n’th moment is a polynomial of degree at most n in the time
parameter. Special focus is on the case where the measures are indeterminate,
in particular the log-normal and the g-Laguerre case.
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1 Introduction and results

This paper treats only the second part of the lecture given at the “International
Workshop on Special Functions, Asymptotics, Harmonic Analysis and Mathematical
Physics”, Hong Kong June 21-25, 1999.!

In the first part of the lecture we considered a fixed indeterminate moment
sequence (s,) and the set V' of solutions x to the moment equations

/:1:" du(z) =s,, n=0,1,.... (1.1)

The n’th moment of a solution p will be denoted s, ().

Let (p¢)ier be a one-parameter family of solutions in V. The basic assumptions
are that I is an interval and the mapping ¢ — p; of I into V' is continuous, when V'
is equipped with the weak topology. It is well-known that V' is a compact convex
set in this topology, so for any probability measure 7 on I the vector integral k =
[ py d7(t) belongs to V. In the lecture we showed how this simple result can be used
to calculate solutions to the following moment problems: log-normal, generalized
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Stieltjes-Wigert or ¢-Laguerre and discrete ¢-Hermite I1. The results have appeared
in [7]. See also [6] for some calculation of moments and [1] for the general theory.

In the second part of the lecture we considered probabilities with moments of
any order and which are infinitely divisible. A probability p with these properties
can be imbedded in a convolution semigroup (j)¢>o such that u; = p. For the
precise conditions assumed for a convolution semigroup see section 2 below. We
shall prove that all the measures in the convolution semigroup have moments of any
order, and the n’th moment s,(y;) of y; is a polynomial in ¢ of degree at most n
without constant term if n > 1. The coefficients of this polynomial can be expressed
in terms of the values at zero of the derivatives of the negative definite function of
the convolution semigroup. These derivatives are closely related to the moments
of the Lévy measure for the convolution semigroup. For convolution semigroups
supported by the half-line and not equal to the trivial semigroup (£p;);>0 of uniform
motion the n’th moment is a polynomial of degree n with positive coefficients. Here
and in the following ¢, denotes the unit mass at the point a.

The set V of solutions to an indeterminate moment problem can contain no, one
or infinitely many infinitely divisible distributions, other possibilities do not happen.
The occurence of the two last cases depends on the determinacy/indeterminacy of
the Lévy measure ([16]).

The log-normal distribution with parameter o > 0 has density on ]0, oo[ given
by

_ 2\ 1 (log z)?
dy(z) = (2m0”) 22 " exp <— 52 . (1.2)
It is indeterminate and infinitely divisible. As far as the author knows the convolu-
tion roots of this distribution are not explicitely known. We show that they are also
indeterminate probabilities as a consequence of the fact that there are more than
one infinitely divisible distribution in the set V. This is because the densities

we(z) = L (1.3)

T_ T
Mc(q,—q> 2, —q>"¢/2; q) o0
are infinitely divisible, as we shall see below, and they have the same moments
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as (1.2) when ¢ = exp(—0c?). The latter follows from the Askey-Roy beta-integral,
[4], [3]. See also [7]. For the notation above concerning g-special functions we refer
to [15], [17]. The parameter c is real, but since w..(z) = w.(x) we may restrict ¢ to
the interval [0, 1[. The constant M. normalizing w, to a probability can be expressed
using the I'-function and Jackson’s I';-function and is given in [7]. The density (1.3)
for ¢ = § was given by Askey in [2].

Another important class of indeterminate and infinitely divisible distributions is
connected to the g-Laguerre moment problem with moments

n+1

sn(asq) = g () (¢4 ), (1.4)



where 0 < ¢ < 1, a > —1.
We shall see below that the density

xa

kaia

(1.5)

which has the moments (1.4), is infinitely divisible. The measure (1.5) corresponds
to ¢ = a+ 1 in the one-parameter family of densities

qc(‘”%)xc,l (¢*™, —q/2;9) s (L.6)
M, (g, —qot' =2, =%/, q) '

all having the ¢g-Laguerre moments, cf. [7]. This family is also periodic in ¢ with
period 1. We have only been able to prove that the special case (1.5) is infinitely
divisible.

It is well-known that the log-normal case is a limiting case of g-Laguerre for «
tending to infinity, cf. [2].

At the end of the paper we give evidence to the following conjecture about
convolution semigroups (j;);~o with moments of any order: Either all the measures
g are determinate or all the measures are indeterminate.

2 Convolution semigroups of measures with mo-
ments of any order

In 1977 O. Thorin, cf. [19], established that the log-normal distribution (1.2) is
infinitely divisible. This is probably the first known explicit example of an indeter-
minate and infinitely divisible probability measure. The existence of such measures
was noticed in Heyde [16]. We recall that a probability measure p on R is called in-
finitely divisible, if ;1 has n’th probability roots under convolution for any n, i.e. for
any n € N there shall exist a probability ¢ such that o*” = p. It is well-known that
such an n’th root is uniquely determined and that p has arbitrary positive convolu-
tion roots. This means that there exists a (uniquely determined) family (p);~0 of
probabilities with = py such that (u)i>o is a convolution semigroup, i.e. has the
properties

Mt * fbs = [htts, (2-1)
t — p is weakly continuous for ¢ > 0, (2.2)
11_1)% [y = €9 weakly. (2.3)



We recall the Lévy-Khinchine formula for the Fourier transform of a convolution
semigroup, cf. Lukacs [18],

f(x) = / e W (y) =e W, t>0,2€R, (2.4)
(@) :osz—i-zﬂx—l-/ (1—e ¥ — 11“’59 )d\(y), z € R, (2.5)
—o0 y?

where @ > 0,4 € R, and A is a non-negative measure on R\ {0} satisfying

/OO v 5dA(y) < oc. (2.6)

—oo Lty

Condition (2.6) implies that A(R\]—1, 1) < co. The function ¢) and the measure
A are called the negative definite function and the Lévy measure for the convolution
semigroup.

Conversely, given a > 0, # € R and a non-negative measure A on R\ {0} satisfying
(2.6), there exists a uniquely determined convolution semigroup (j;)¢~o such that
(2.4) and (2.5) hold. Any non-negative measure A on R\ {0} satisfying (2.6) will be
called a Lévy measure.

Concerning the existence of moments of all orders for the measures in a convo-
lution semigroup we prove:

Theorem 2.1 For a convolution semigroup (fu)i>o as above the following conditions
are equivalent:

(i) i, has moments of all orders for some to > 0,
(11) py has moments of all orders for all t > 0,
(iii) 1 € C=(R),

(iv) [Z y*dA(y) <oo forn=1,2,....

In case (i)-(iv) hold, then s,(u;) is a polynomial of degree < n in t without
constant term (for n > 1), the coefficients of which are uniquely determined by the
sequence (™(0)).

Proof: We shall use the fact that a probability has moments of every order if
and only if its Fourier transform is a C*°-function, cf. e.g. [18]. From this the
equivalence of (i)-(iii) is straight-forward.

Suppose next that (i)-(iii) hold. We establish by induction that s, (y;) for n > 1
is a polynomial of degree < n in t without constant term. Differentiating (2.4) at
x = 0 we clearly get

s1(me) = —ity'(0),
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so the result holds for n = 1. Differentiating (2.4) n 4+ 1 times we find

dn-l—l —t(x) _ d" / —t)(x
dx"+1 {6 }IZO - dx"{_tw (x) }I 0

- —ti(Z)j—;{ Y,k o)
- —tz( )it sutuut o)

which is a polynomial as required, if we assume the result up to order n.
Since ¢t~ (R\ {0}) converges vaguely on R\ {0} to the Lévy measure A for
t — 0, cf. [9], we get forn > 1

(=0)" snii (i) =

00 o - 00 . d
| axe) <tmintet [y dty) = s b < 0,

o —0o0

which shows that (iv) holds.
Suppose finally that (iv) holds. The assumption [ y?dA(y) < oo implies that ¢
is C? with derivatives

o . 1
Y(x) = / iy(e™"™ — T, y2) d\(y) + 2ax + if

' (x) = / ) y’e” ™ d\(y) + 20,

o0

and since the finite measure y?)\ has moments of all even orders and hence of all
orders, we see that ¢ is C'* and

0 3
v =i [ i) +is

P"(0) = /Oo y* dA(y) + 2a,

o

u©) = (-2 [ Ty, 0>

o0

UJ
Remark 2.2 (a) Defining
o = ="' t(0), n >0, (2.7)

we see from above that o, is real and

e e) 3

On = Sn_1(2a50 +y?N), n>1, o9 = / 0 —?lJ—yQ d\(y) + 5. (2.8)
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The first moments are
s1(pe) = oot
so(py) = o1t + o2t?
s3(g) = oot + 30po1 1 + opt’.
Writing

Sn(pe) = ch,ktk, n >0, (2.9)
k=0

we have cgo = 1,¢,,0 = 0 for n > 1 and it is easy to see that
Cnn = Ug, Cn,i = Onp—1- (210)

In general the coefficients ¢, j satisfy the recurrence equation

n

n
Cn+1,041 = ch,l (k) Opn—k, n,1>0. (2-11)

k=1

(b) The assumption (iv) for n = 1 is of course stronger than (2.6). On the other
hand, if (2.6) holds, condition (iv) can be replaced by

(iv") / Yy dA(y) < oo, n>1.
y|=1

Example 2.3 The degree of s, (1) can be strictly less than n as the first of the
following examples show.
(a) The Gaussian semigroup

2n)!
Son(Ht) = (n') ", Sons1(pe) = 0.

(b) The drift semigroup p; = €g, sn(pr) = p"t", [ ER
(c) The T'-semigroup

py = W.frt’le’xlmm[(x)dx,
L(n+1)
n =——— = (l)n-
salp) = St = 1)
(d) The Poisson semigroup
pe=e"'>" R
k=0



where L is the differential operator Lf(z) = zf'(x).

For symmetric semigroups like (a) it is clear that ss,.1(x¢) = 0, and it can be
proved by induction that sy, (p) is of degree n unless y; is reduced to £.

For convolution semigroups (p)~o supported by the half-line [0, co[ we have also
more information as indicated by the examples (b)-(d).

Proposition 2.4 Let (u)i~0 be a convolution semigroup of measures supported by
0, 00] and with moments of all orders. Then s,(u;) is a polynomial (2.9) of degree
n with ¢, > 0 for k=1,...,n, unless ju; = ey for some b > 0.

Proof: The result can be deduced from (2.8) and (2.11), but it is perhaps more
instructive to make use of the Laplace transformation. The Laplace transform of an
arbitrary convolution semigroup (/)0 on [0, 00| has the form

Lu(s) = / e Wdu(y)=e Y, >0, (2.12)
0

where the Bernstein function f associated with (14);>0 is given as

f(s) =bs+ / (1—e ) dA(y). (2.13)
0
Here b > 0 and the Lévy measure A is concentrated on ]0,00[ and satisfies the

integrability condition
<y
—— d\(y) < o0,
| = aw
cf. [9]. Note that the negative definite function is ¢(z) = f(iz). In the present case,
where all the measures have moments of any order, the Lévy measure satisfies

/ Yy dA\(y) < oo, n>1.
0

Therefore f € C*°([0, 0c[) and
on = (=1)"fD(0) = 5, (beg + ydA(y)) < oo

for n > 0. It follows that o, > 0 for all n > 0, unless A = 0 in which case u; = &y;.
The assertion now follows from the recursion formula (2.11). O

To discuss the indeterminacy of the measures in a convolution semigroup with
moments of any order, we shall say that a Lévy measure A on R\{0} is indeterminate,
if there exists a Lévy measure A on R\ {0} with X\ # X and such that

/_00 y"dA(y) = /_00 y" dA(y) for n > 2. (2.14)

o o



Theorem 2.5 (Heyde [16]). Let (1t)i~0 be a convolution semigroup with moments
of any order and indeterminate Lévy measure. Then the semigroup is indeterminate
in the sense that all the measures p; are indeterminate.

Proof: Let b and A\ denote the negative definite function and the Lévy measure
for (p1e)e=o and let X # X satisfy (2.14). Let 1) be defined by (2.5) with X replaced
by A and f replaced by 3, the latter defined so that P'(0) = 1;’(0). Then ¢ # ¢ and
Y™ (0) = ™ (0) for n > 1. Letting (ji;);>0 be the convolution semigroup associated
with ), it follows from (2.8) and (2.11) that s, (p;) = sn(jir) but gy # ji for ¢t > 0.
U

Remark 2.6 (a) The theorem shows that there exist as many indeterminate con-
volution semigroups as indeterminate measures. In fact, if v is any indeterminate
measure with moments of all orders and with no mass at zero, then A = y~2v is an
indeterminate Lévy measure.

(b) The converse of Theorem 2.5 is not true, although it is claimed in [16, Theo-
rem 2]. Lemma 2.2 in [5] can be used to give a counterexample. In fact, the Lemma
asserts the existence of a determinate probability A such that y?) is determinate
and A\*3 is indeterminate. Since the measure )\ is constructed to have no mass at 0,
it is a determinate Lévy measure. The convolution semigroup

is indeterminate since each j; majorizes a multiple of \*3.

(c) Let (u¢)i~0 be an indeterminate convolution semigroup with a determinate
Lévy measure, and let V; be the set of measures with the same moments as ;. Then
for each ¢ the set V; contains only one infinitely divisible measure.

(d) In [16] Heyde gives an example of an indeterminate measure u such that V/
contains no infinitely divisible measures.

Theorem 2.7 The densities (1.2) and (1.3) with log-normal moments s, = ¢~/
are all infinitely divisible. In particular all positive convolution roots of these mea-
sures are infinitely divisible.

Proof: The infinite divisibility of (1.2) was proved first by Thorin in [19]. He
introduced the subclass of infinitely divisible distributions called generalized gamma
convolutions and proved that the log-normal distribution belongs to this subclass
7. Bondesson found in [10] a subclass B C T given as all the probability densities
on ]0, oo[ which are pointwise limits of densities of the form

N
CzP=! H(l + )™ Bre, v > 0. (2.15)

=1



In later papers [11],[12] Bondesson found an extremely elegant characterization of
B as the probability densities f on ]0,00[ such that, for each u, f(uv)f(u/v) is
completely monotone as a function of w = v 4+ v~!. Using this result Bondesson
gave a simple proof that (1.2) belongs to the class B, see [11],[12]. The density (1.3)
also belongs to the class B and is therefore a generalized gamma convolution and in

particular infinitely divisible. In fact the probability density

1

C(n, )z (=7 z, —q>*/z:q)n} " = C(n, )" {(=q> 2, =7 "z q)n}

has the right form and converges pointwise to w.(x).

The set V' of measures with the log-normal moments therefore contains infinitely
many infinitely divisible measures, and the assertion follows. [

By the same method as above we get:

Theorem 2.8 The q-Laguerre density (1.5) belongs to the class B and is in parti-
cular infinitely divisible.

Since the same method does not apply to the densities (1.6), except when ¢ =
a + 1, we do not know if the set V' of solutions with ¢-Laguerre moments (1.4)
contains one or infinitely may infinitely divisible distributions.

3 A conjecture

If 1 and v are measures with moments of any order then the convolution p * v has
also moments of any order and

snle) =3 (1) sl ). B.1)

k=0

It was proved by Devinatz, cf.[14],[5], that if v # 0 and p is indeterminate, then
i * v is indeterminate. On the other hand it is possible that p is determinate but
p * 1 is indeterminate, cf. [5],[13].

Let (u¢)i>0 be a convolution semigroup with moments of any order. If it is
known that p; is indeterminate it follows from the result of Devinatz that p; * p is
indeterminate for any s > 0.

However, we do not need the full result of Devinatz to prove this, since fi; does
not vanish because of (2.4). We can simplify the argument as follows: If o has the
same moments as ji;, then o * ug has the same moments as p; * ps by (3.1), and if
O % s = g * g, we get by Fourier transformation and cancelation that o = .

The question is if it can happen that p, is determinate for 0 < ¢t < %, and
indeterminate for ¢ty < t for some number 0 < ¢35 < oo. By Theorem 2.5 this
would require the Lévy measure to be determinate. As noticed in [5] the Carleman
condition cannot be satisfied for the measures p;,t < tq.



Determinacy of a measure y depends on the behaviour of the smallest eigenvalue
A, of the Hankel matrix

(8i45(1))o<ij<n- (3.2)

It was proved in [8] that u is determinate if and only if lim A, = 0. In the special
case of u = p; the Hankel matrix consists of polynomials in ¢ of degree at most
2n, and since the smallest eigenvalue is the minimum of the Hankel form on the
unit sphere in C"*1 it is easily seen that the smallest eigenvalue A\, () is a strictly
positive continuous function.

The existence of a number ¢, as above would require that ), (¢) converges to 0 for
t < ty and to a strictly positive limit for ¢ > ¢y. Because of the polynomial behaviour
of the moments we do not think that this is possible and hence we formulate:

Conjecture 3.1 For a convolution semigroup (pu)i>0 of measures with moments of
any order there are only the possibilities:

1. All the measures j; are determinate.

2. All the measures p; are indeterminate.
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