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Abstract

We show that the reciprocal of the function

f(z) =
log Γ(z + 1)
z log z

, z ∈ C\]−∞, 0],

is a Stieltjes transform. As a corollary we obtain that the derivative of
f is completely monotone, in the sense that (−1)n−1f (n)(x) ≥ 0 for all
n ≥ 1 and all x > 0. This answers a question raised by Dimitar Dimitrov
at the Fifth International Symposium on Orthogonal Polynomials, Special
Functions and Applications held in Patras in September 1999. To prove
the result we examine the imaginary part of 1/f in the upper half-plane,
in particular close to the negative real axis, where Stirling’s formula is not
valid.
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1 Introduction and results

Monotonicity properties of the function

f(x) =
log Γ(x+ 1)

x log x
, x > 0

has attracted the attention of several authors. A similar function (where Γ(x+1)
is replaced by Γ(1 + x/2)) occurred in the paper of Anderson, Vamanamurthy
and Vuorinen ([4]). In [3], Anderson and Qiu showed that f increases on the
interval [1,∞[ and they conjectured that f is concave on the interval [1,∞[. The
concavity of f on [1,∞[ was established by Elbert and Laforgia ([8]). At the
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conference in Patras in September 1999, the following conjecture about f was
made: for every n ≥ 1, the inequality

(−1)n−1f (n)(x) ≥ 0

holds for x ∈ [1,∞[. The purpose of this paper is to turn the conjecture into a
theorem. We prove:

Theorem 1.1 We have, for n ≥ 1,

(−1)n−1

(
log Γ(x+ 1)

x log x

)(n)

> 0

for x > 0.

We actually prove a stronger statement, namely that the reciprocal function
x log x/ log Γ(x + 1) is a Stieltjes transform, i.e. belongs to the Stieltjes cone S
of functions of the form

g(x) = a+

∫ ∞
0

dµ(t)

x+ t
, x > 0, (1)

where a ≥ 0 and µ is a non-negative measure on [0,∞[ satisfying∫ ∞
0

dµ(t)

1 + t
<∞.

At the end of the paper we find a and µ for the function in question, see (6)
and (7). We note that both f and its reciprocal have removable singularities at
x = 1. We obtain our results on the entire half-line ]0,∞[.

A Stieltjes transform g is easily seen to be completely monotone, i.e. satisfies

(−1)ng(n)(x) ≥ 0, x > 0, n ≥ 0. (2)

Note that strict inequality always holds in (2) unless g is constant.
In concrete cases it is often easier to establish that a function is a Stieltjes

transform than to verify complete monotonicity. This is because the Stieltjes
cone can be described via complex analysis due to its relationship with the class
of Nevanlinna-Pick functions.

In the following result given in the Addenda and Problems in Akhiezer’s
monograph [2, p.127], we denote the cut plane by

A = C\]−∞, 0].

Proposition 1.2 Let S̃ denote the set of holomorphic functions G : A → C

satisfying
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(i) =G(z) ≤ 0 for =z > 0,

(ii) G(x) ≥ 0 for x > 0.

Then {G|]0,∞[ : G ∈ S̃} = S.

A proof is written out in [5], which also contains a list of stability properties
of the cone S.

The constant a in (1) is clearly given as

a = lim
x→∞

g(x).

The measure µ can be found from the holomorphic extension of (1) to A given
by

G(z) = a+

∫ ∞
0

dµ(t)

z + t
, z ∈ A.

In fact,

− 1

π
=G(−t+ iy) = Py ∗ µ(t), t ∈ R, y > 0,

where

Py(x) =
1

π

y

x2 + y2

is the Poisson kernel for the upper half-plane H = {z = x+ iy : y > 0}. It follows
that µ is the vague limit of the sequence of measures −(1/π)=G(−t + i/n)dt as
n→∞ in the sense that

−(1/π)

∫ ∞
−∞

ϕ(t)=G(−t+ i/n)dt −→
∫ ∞
−∞

ϕ(t)dµ(t)

for all continuous functions ϕ of compact support.

Non-negative functions on the half-line ]0,∞[ with a completely monotone
derivative appears in the literature under the names of completely monotone
mappings, cf. [7] and Bernstein functions, cf. [6]. Theorem 1.1 can be rephrased
that log Γ(x+ 1)/x log x is a Bernstein function.

There is an important relation between the class S and the class B of Bernstein
functions. We state this relation as a proposition, and indicate the proof. The
relation can be interpreted as a result about potential kernels, cf. [5], [6].

Proposition 1.3 For any function g ∈ S \ {0} we have 1/g ∈ B.

Proof: Suppose that g is a non-zero Stieltjes transform. Using Proposition
1.2, it is easy to see that x→ 1/g(1/x) is again a Stieltjes transform. It therefore
has an integral representation

1/g(1/x) = a+

∫
[0,∞[

dµ(t)

x+ t
,
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but this means that 1/g(x) has the representation

1/g(x) = a+ µ({0})x+

∫
]0,∞[

(1− t

x+ t
)t dµ(1/t),

from which we deduce that 1/g is a Bernstein function. In fact

(1/g(x))′ = µ({0}) +

∫
]0,∞[

t2

(x+ t)2
dµ(1/t),

which is completely monotone. �
Theorem 1.1 will be obtained as a combination of Proposition 1.3 and Theo-

rem 1.4 below.
First we fix some notation. Throughout the paper, Log denotes the principal

logarithm, holomorphic in the cut plane A and defined in terms of the principal
argument Arg. The function log Γ denotes the holomorphic branch that is real on
the positive real axis. Such a branch exists, since Γ is holomorphic in the simply
connected domain A and has no zeros there.

Theorem 1.4 The function

g0(z) =
z Log z

log Γ(z + 1)
, z ∈ A

is a Stieltjes transform.

To see that g0 is holomorphic in A we need that log Γ(z + 1) = 0 for z ∈ A
only for z = 1, and this is proved in the Appendix. We note that z = 1 is a
removable singularity for g0 with value 1/(1− γ), where γ is Euler’s constant. It
is easy to see that g0 is positive on the positive axis.

Defining
V (z) = =g0(z),

we have a harmonic function in A. We shall show V ≤ 0 in the upper half-
plane. This will follow, if we prove that V has non-positive boundary values
(from above) on the real line, and prove that the growth of V is controlled in the
upper half-plane. Indeed, we note the following result, that can be found in [9,
p.27].

Theorem 1.5 Let u(z) be subharmonic for =z > 0 with u(z) ≤ A|z| + o(|z|)
when |z| is large. Suppose that, for each real t,

lim sup
z→t,=z>0

u(z) ≤ 0.

Then u(z) ≤ A=z for =z > 0.

We shall use this result for A = 0.
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2 Proofs

In this section we prove the difficult part of Theorem 1.4, namely V (z) ≤ 0
in the upper half-plane H, and we shall find the integral representation (1) for
x log x/ log Γ(x+ 1).

The relation

log Γ(z) = log Γ(z + k)−
k−1∑
l=0

Log(z + l) (3)

for z ∈ A and for any k ≥ 1 is going to be very useful for us. It follows from the
fact that the functions on both sides of the relation are holomorphic functions
in A, and they agree on the positive half-line by repeated applications of the
functional equation for the Gamma function.

Lemma 2.1 We have, for any k ≥ 1,

lim
z→t,=z>0

log Γ(z) = log |Γ(t)| − iπk

for t ∈]− k,−k + 1[ and

lim
z→t,=z>0

| log Γ(z)| =∞

for t = 0,−1,−2, . . . .

Proof: Suppose that t ∈ ]−k,−k + 1[. By the relation (3) we find

lim
z→t,=z>0

log Γ(z) = lim
z→t,=z>0

log Γ(z + k)− lim
z→t,=z>0

k−1∑
l=0

Log(z + l)

= log Γ(t+ k)−
k−1∑
l=0

(log |t+ l|+ iπ)

= log Γ(t+ k)−
k−1∑
l=0

log |t+ l| − ikπ

= log

∣∣∣∣ Γ(t+ k)

t(t+ 1) · · · (t+ k − 1)

∣∣∣∣− ikπ
= log |Γ(t)| − ikπ.

The other assertion follows from the fact that | log Γ(z)| ≥ log |Γ(z)|. �.

Remark 2.2 Let h be a meromorphic function in C all of whos zeros and poles
are on ]−∞, 0]. Suppose further that h is real and positive on the positive half-
line. Then an analogous conclusion holds for the holomorphic branch of log h
that is real on the positive half-line: The limit of log h at a regular point t < 0
from above is iπ multiplied by the number of zeros minus the number of poles in
]t, 0] counted with multiplicity.
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Proposition 2.3 We have

lim sup
z→t,=z>0

V (z) ≤ 0.

for all real t.

Proof: Suppose that t ∈ ]−k,−k + 1[ for some k ≥ 1. By the lemma just
stated,

log Γ(z + 1) −→ log |Γ(t+ 1)| − (k − 1)πi

as z → t within H, the upper half-plane. Therefore,

z Log z

log Γ(z + 1)
−→ t(log |t|+ iπ)(log |Γ(t+ 1)|+ (k − 1)πi)

| log |Γ(t+ 1)||2 + (k − 1)2π2
,

so that

V (z) −→ πt(log |Γ(t+ 1)|+ (k − 1) log |t|)
| log |Γ(t+ 1)||2 + (k − 1)2π2

as z → t within H. This expression is negative. For k = 1 it follows from the
fact that t+ 1 ∈ ]0, 1[ so that Γ(t+ 1) > 1. For k ≥ 2 we use

log |Γ(t+ 1)|+ (k − 1) log |t| = log |Γ(t+ k)|+ (k − 1) log |t| −
k−1∑
l=1

log |t+ l|

= log |Γ(t+ k)|+
k−1∑
l=1

log
|t|
|t+ l|

,

a positive quantity (recall that |t+ l| < |t| for l = 1, . . . , k − 1).
For t = −1,−2, . . . we have | log Γ(z + 1)| → ∞ so that V (z) → 0 as z →

t within H. For positive t we evidently have V (z) → 0; the function g0 is
holomorphic in A and is real-valued on ]0,∞[.

The case t = 0 requires a more refined analysis. Since log Γ(z + 1) is holo-
morphic at z = 0 and is zero at that point,

log Γ(z + 1) =
∞∑
n=1

anz
n

for |z| < 1. The number a1 is real and negative (it is in fact equal to −γ). We
thus get

g0(z) =
Log z∑∞

n=1 anz
n−1

= Log z
∞∑
n=0

bnz
n,

for |z| < 1 and with b0 = 1/a1. For n ≥ 1, |zn Log z| → 0 as z → 0. Therefore

lim sup
z→0,=z>0

V (z) = lim sup
z→0,=z>0

Arg z

a1

= 0.

�
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Proposition 2.4 There is a constant C > 0, such that |V (z)| ≤ C log |z| holds
for all z ∈ H of large absolute value.

Proof: Stieltjes ([11, formula 20]) found the following formula for log Γ(z) for
z in the cut plane A

log Γ(z) = log
√

2π + (z − 1/2) Log z − z + J (z).

Here

J (z) =
∞∑
n=0

h(z + n) =

∫ ∞
0

P (t)

z + t
dt,

where h(z) = (z + 1/2) Log(1 + 1/z) − 1 and P is periodic with period 1 and
P (t) = 1/2− t for t ∈ [0, 1[. The integral above is improper, and integration by
parts yields

J (z) =
1

2

∫ ∞
0

Q(t)

(z + t)2
dt,

where Q is periodic with period 1 and Q(t) = t − t2 for t ∈ [0, 1[. Using that
J (z + 1) + h(z) = J (z) it follows that

log Γ(z + 1) = log
√

2π + (z + 1/2) Log z − z + J (z).

We put Rk = {z = x+ iy ∈ C : −k ≤ x < −k+ 1, 0 < y ≤ 1 } for k ∈ Z and
R = ∪∞k=0Rk and claim that

|J (z)| ≤ π

8

for z ∈ H \R. In fact, since 0 ≤ Q(t) ≤ 1/4, we get for z = x+ iy ∈ H \R

|J (z)| ≤ 1

8

∫ ∞
0

dt

(t+ x)2 + y2
.

For x ≥ 1 we have ∫ ∞
0

dt

(t+ x)2 + y2
≤
∫ ∞

0

dt

(t+ 1)2
= 1,

and for x < 1, y ≥ 1 we have∫ ∞
0

dt

(t+ x)2 + y2
=

1

y

(
π

2
− arctan

(
x

y

))
≤ π.

This gives us

log Γ(z + 1)

z Log z
= 1 +

log
√

2π + 1/2 Log z − z + J (z)

z Log z
,
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for z ∈ H \R. In particular we see that there is a constant c > 0 such that

| log Γ(z + 1)|
|z Log z|

≥ c (4)

for all z ∈ H \R of large absolute value.
If z ∈ Rk for some k ≥ 1, we use the relation (3). We find

| log Γ(z + 1)| ≥

∣∣∣∣∣
k∑
l=1

Log(z + l)

∣∣∣∣∣− | log Γ(z + k + 1)|.

Here, x+ l < 0 for l ≤ k − 1, so that∣∣∣∣∣
k∑
l=1

Log(z + l)

∣∣∣∣∣ ≥
k∑
l=1

Arg(z + l) ≥ (k − 1)π/2.

Furthermore, z + k + 1 ∈ R−1 and on R−1, log Γ is holomorphic and is therefore
bounded by some constant M independent of k. This implies that

| log Γ(z + 1)| ≥ (k − 1)π/2−M. (5)

From this relation and |z| ≤
√
k2 + 1 we deduce that | log Γ(z+1)|/|z| ≥ const > 0

for all z ∈ R of large absolute value. Combined with (4) we conclude that

| log Γ(z + 1)| ≥ const|z|

for all z ∈ H of large absolute value. This implies in turn

|V (z)| ≤ |g0(z)| ≤ |z|(log |z|+ π)

const|z|
≤ const log |z|

as |z| → ∞ within H. �

As mentioned earlier, Theorem 1.4 follows from the above results. It may be
of interest to know the exact integral representation of g0. We have

z Log z

log Γ(z + 1)
= 1 +

∫ ∞
0

d(t) dt

t+ z
, (6)

where d(t) = −(1/π)V (−t), and V (−t) is defined for t > 0 as the limit of V (z)
as z tends to −t from above. Indeed, in Proposition 2.3 we actually showed that
V has a continuous extension down to the negative real axis. This means that
V (t + i/n) → V (t) uniformly on compact subsets of ] − ∞, 0[ as n → ∞ and
hence that the measure µ in (1) has the continuous density d(t) given by

d(t) = t
log |Γ(1− t)|+ (k − 1) log t

(log |Γ(1− t)|)2 + (k − 1)2π2
, t ∈ ]k − 1, k[ , k = 1, 2, . . . , (7)
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and d(t) = 0 for t = 1, 2, . . . . It is easily seen that d(t) tends to 1/γ for t tending
to zero. It remains to be proved that µ has no mass at zero. From (1) we get

lim
x→0+

xg(x) = µ({0}),

but from the analysis in Proposition 2.3 concerning the behaviour at t = 0, we
get that the above limit is 0 for g = g0. The constant a in (1) is 1 by Stirling’s
formula.

We studied the function g0 through its imaginary part V . We shall now find
the exact logarithmic growth of V in the upper half-plane.

Proposition 2.5 We have

lim sup
|z|→∞,=z>0

|V (z)|
log |z|

=
1

π
.

Proof: In the proof of Proposition 2.4 we obtained |g0(z)| → 1, and hence
|V (z)|/ log |z| → 0 for z tending to infinity in H \R.

For z ∈ Rk we found

| log Γ(z + 1)| ≥
k∑
l=1

Arg(z + l)−M,

where M is the maximum of | log Γ| on R−1. We claim that for every a < π there
is k0 such that

| log Γ(z + 1)| ≥ a|z|
for all k ≥ k0 and z ∈ Rk. Indeed, let a be any given number less than π.
We choose ε > 0 such that (1 + ε)(a + ε) < π and then find m0 such that
Argw ≥ (1 + ε)(a+ ε) for all m ≥ m0 and all w ∈ Rm.

For k > m0 we have

k∑
l=1

Arg(z + l) ≥
k−m0∑
l=1

Arg(z + l) ≥ (1 + ε)(a+ ε)(k −m0),

because x+ l < −m0 + 1 for z ∈ Rk and l = 1, . . . , k −m0. This gives us

| log Γ(z + 1)|
|z|

≥ (1 + ε)(a+ ε)(k −m0)

|z|
− M

|z|

for k > m0 and all z ∈ Rk.
We choose now k0 > m0 such that (k −m0)/|z| ≥ 1/(1 + ε) and M/|z| ≤ ε

for all k ≥ k0 and all z ∈ Rk. For these values of k and z we thus find

| log Γ(z + 1)|
|z|

≥ a,
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and the claim follows. It implies

|V (z)|
log |z|

≤ 1

a
+

π

a log |z|
,

for k ≥ k0 and all z ∈ Rk. Therefore,

lim sup
|z|→∞,=z>0

|V (z)|
log |z|

≤ 1

a
.

The number a could, however, be chosen as close to π as we want and thus

lim sup
|z|→∞,=z>0

|V (z)|
log |z|

≤ 1

π
.

On the other hand, the maximum of d(t) on the interval [k − 1, k] tends to
infinity as k →∞. In fact, it is known that the minimum of |Γ(1−t)| on ]k−1, k[
is less than 1 for k ≥ 4. For these values of k there exists ξk ∈ ]k − 1, k[ such
that log |Γ(1− ξk)| = 0 and hence

d(ξk) =
ξk log ξk

(k − 1)π2
>

log(k − 1)

π2
.

Therefore |V (−ξk)| = πd(ξk) > (log(k− 1))/π. Since V , as mentioned, is contin-
uous down to the negative real axis, we must therefore have (for each k ≥ 4) a
number zk ∈ Rk such that |V (zk)− V (−ξk)| ≤ 1 and hence we obtain

lim sup
k

|V (zk)|
log |zk|

≥ 1

π
.

�
Finally, we remark that the above proposition actually states that

lim inf
|z|→∞,=z>0

V (z)

log |z|
= − 1

π
,

because V is negative.

3 Appendix

We recall that log Γ was defined to be the holomorphic branch of the logarithm
of Γ that is real on the positive real axis. We now verify that this function has
no zeros in A \ {1, 2}.

We notice that the equation Γ(z) = 1 has non-real solutions in addition to
the obvious solutions on the real axis. They are found as the intersection of the
level set {|Γ(z)| = 1} and the curves where arg Γ(z) = 2πp, p being a non-zero
integer.
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Theorem 3.1 The only zeros of the holomorphic function log Γ defined in A are
1 and 2.

Proof: Clearly, the only real zeros of log Γ are at 1 and 2. To show that there
cannot be any non-real zeros amounts to showing that log Γ(z+1) has no non-real
zeros. This we proceed to verify.

From the Weierstrass product for the Gamma function we get for z ∈ A

− log Γ(z + 1) = γz +
∞∑
n=1

(
Log

(
1 +

z

n

)
− z

n

)
. (8)

Indeed, the negative of the right-hand side is a holomorphic branch of the loga-
rithm of Γ(z + 1), and it is real on the positive real axis.

Taking real parts on both sides of (8) we obtain

− log |Γ(z + 1)| = γx+
∞∑
n=1

(
log
∣∣∣1 +

z

n

∣∣∣− x

n

)
. (9)

In particular, we see that y → |Γ(x+ iy)| is strictly decreasing for y ≥ 0.
Taking imaginary parts on both sides of (8) we get

− arg Γ(z + 1) = γy +
∞∑
n=1

(
Arg

(
1 +

z

n

)
− y

n

)
,

and in particular, for x > −1,

Px(y) ≡ γy +
∞∑
n=1

(
arctan

(
y

n+ x

)
− y

n

)
= − arg Γ(z + 1). (10)

It is known that the convex function log Γ(x + 1) has its minimum on [0,∞[
at a point x0 ≈ 0.461, c.f. [10]. We have log Γ(x0 + 1) ≈ −0.121 > −1/5. Since
log Γ(z + 1) is the complex conjugate of log Γ(z + 1) for z ∈ A, it is enough to
prove that

log Γ(z + 1) 6= 0, for z = x+ iy, y > 0. (11)

This will be done in five steps:

(i) The function log Γ(z + 1) is univalent in the half-plane {<z > x0}, cf. [1],
and since it vanishes at z = 1, it does not vanish elsewhere in {<z > x0}.

(ii) In the strip 0 < <z ≤ x0 we know that |Γ(z+1)| ≤ Γ(x+1) < 1, and hence
< log Γ(z + 1) = log |Γ(z + 1)| < 0, so (11) holds.
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(iii) Suppose y ≥ 1 and −k < x ≤ −k+1, where k = 1, 2, . . . . By the functional
equation for Γ(z) we get

|Γ(z + k+ 1)| = |(z + k) · . . . · (z + 1)||Γ(z + 1)| ≥ yk|Γ(z + 1)| ≥ |Γ(z + 1)|,

but since <(z + k + 1) ∈ ]1, 2], the left-hand side in the relation above is
strictly less than 1 and again log |Γ(z + 1)| < 0.

(iv) Suppose 0 < y < 1 and −k < x ≤ −k+ 1, where k = 2, 3, . . . . From (5) we
have

| log Γ(z + 1)| ≥ (k − 1)
π

2
−M ≥ π

2
−M,

where

M = max{| log Γ(z + 1)| | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (12)

In Lemma 3.2 below we prove that M < π/2, and therefore | log Γ(z+1)| >
0.

(v) Suppose 0 < y < 1,−1 < x ≤ 0. From (10) we see that Px(y) ≥ P0(y) for
−1 < x ≤ 0, y > 0. For 0 < y < 1 we can insert the power series for the
function arctan. After reversing the resulting double sum we get

P0(y) = y

(
γ − ζ(3)

3
y2 +

ζ(5)

5
y4 − · · ·

)
.

Because ζ(x)/x is decreasing for x > 1 we therefore get

P0(y) > y

(
γ − ζ(3)

3

)
> 0, 0 < y < 1,

which shows that − arg Γ(z + 1) > 0 for z = x+ iy, where 0 < y < 1,−1 <
x ≤ 0, so (11) holds. �

Lemma 3.2 We have M < π/2, where M is given by (12).

Proof: The constant M can be evaluated using Maple and the fact that the
maximum is attained on the boundary of the square. We find M ≈ 0.72. We
shall independent of this show that M < π/2.

For 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 we have, by (10),

| log Γ(z + 1)|2 = (log |Γ(z + 1)|)2 + (Px(y))2.

The relation (9) gives us the inequality

log
1

|Γ(x+ i+ 1)|
≤ log

1

Γ(x+ 1)
+

1

2

∞∑
n=1

log

(
1 +

1

n2

)
.
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Indeed, from the elementary fact that log(a + b) ≤ log a + log(1 + b) for a ≥ 1
and b ≥ 0, we obtain (putting a = (1 + x/n)2 and b = 1/n2)

− log |Γ(x+ i+ 1)| = γx+
∞∑
n=1

(
1

2
log

((
1 +

x

n

)2

+
1

n2

)
− x

n

)
≤ γx+

∞∑
n=1

(
log
(

1 +
x

n

)
+

1

2
log

(
1 +

1

n2

)
− x

n

)
= − log Γ(x+ 1) +

1

2

∞∑
n=1

log

(
1 +

1

n2

)
.

As noted before, the function |Γ(x+iy+1)| is decreasing for positive y. Its values
are all ≤ 1 since 1 + x ∈ [1, 2]. Therefore

0 ≤ log
1

|Γ(z + 1)|
≤ log

1

|Γ(x+ i+ 1)|
≤ log

1

Γ(x+ 1)
+

1

2

∞∑
n=1

log

(
1 +

1

n2

)

≤ 1

5
+

1

2

∞∑
n=1

1

n2
=

1

5
+
π2

12
.

Here we have also used that log Γ(1 + x) ≥ −1/5 for 0 ≤ x ≤ 1.
We further get for 0 ≤ y ≤ 1

P1(y) ≤ Px(y) ≤ P0(y) ≤ γ

and
P1(y) = P0(y)− arctan(y) ≥ −π

4
,

so

(Px(y))2 ≤
(π

4

)2

.

This finally shows that M < π/2. �
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