Convexity of the median in the gamma distribution

Christian Berg and Henrik L. Pedersen*

September 13, 2006

Abstract

We show that the median $m(x)$ in the gamma distribution with parameter x is a strictly convex function on the positive half-line.

\section*{2000 Mathematics Subject Classification:} primary 60E05; secondary 41A60, 33B15. Keywords: median, gamma function, gamma distribution.

1 Introduction

The median of the gamma distribution with (positive) parameter x is defined implicitly by the formula

$$
\begin{equation*}
\int_{0}^{m(x)} e^{-t} t^{x-1} d t=\frac{1}{2} \int_{0}^{\infty} e^{-t} t^{x-1} d t . \tag{1}
\end{equation*}
$$

In a recent paper (see [5]) we showed the $0<m^{\prime}(x)<1$ for all $x>0$. Consequently, $m(x)-x$ is a decreasing function, which for $x=1,2, \ldots$ yields a positive answer to the Chen-Rubin conjecture. Other authors have solved this conjecture in its discrete setting (see [2], [1], [3]).

In [4] convexity of the sequence $m(n+1)$ has been established, and the natural question arises if $m(x)$ is a convex function. The main result of this paper is the following.

Theorem 1.1 The median $m(x)$ defined in (1) satisfies $m^{\prime \prime}(x)>0$. In particular it is a strictly convex function for $x>0$.

[^0]
2 Proofs

The proof is based on some results in [5], which we briefly describe. Convexity of m is studied through the function

$$
\begin{equation*}
\varphi(x) \equiv \log \frac{x}{m(x)}, \quad x>0 \tag{2}
\end{equation*}
$$

This function played a key role in [5], and we recall its crucial properties in the proposition below.

Proposition 2.1 The function $x \rightarrow x \varphi(x)$ is strictly decreasing for $x>0$ and

$$
\begin{aligned}
\lim _{x \rightarrow 0_{+}} x \varphi(x) & =\log 2 \\
\lim _{x \rightarrow \infty} x \varphi(x) & =\frac{1}{3}
\end{aligned}
$$

Remark 2.2 Proposition 2.1 is established by showing $(x \varphi(x))^{\prime}<0$. It follows that the function $\varphi(x)$ is itself strictly decreasing and $\varphi(x)<-x \varphi^{\prime}(x)$.

The starting point for proving Theorem 1.1 is the relation [5, (10)]

$$
\begin{equation*}
(x \varphi(x))^{\prime}=-e^{g(x)}(A(x)+B(x)) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
g(x) & =x\left(\varphi(x)-1+e^{-\varphi(x)}\right) \\
A(x) & =\int_{0}^{x \varphi(x)} e^{-s} e^{x\left(1-e^{-s / x}\right)}\left(1-\left(1+\frac{s}{x}\right) e^{-s / x}\right) d s \\
B(x) & =\frac{1}{2} \int_{0}^{\infty} t e^{-x t} \xi^{\prime}(t+1) d t
\end{aligned}
$$

and where ξ is a certain positive, increasing and concave function on $[1, \infty)$ satisfying $\xi^{\prime}(t+1)<8 / 135$ for $t>0$. To establish these properties of ξ is quite involved, and we refer to $[5$, Section 5$]$ for details.

Before proving the theorem we state the following lemmas, whose proofs are given later.

Lemma 2.3 For the function g we have

$$
\begin{aligned}
g(x) & <x \varphi(x) \\
-g^{\prime}(x) & <-x \varphi^{\prime}(x) \varphi(x) \quad \text { and } \\
-g^{\prime}(x) & <-x \varphi^{\prime}(x)
\end{aligned}
$$

for all $x>0$.

Lemma 2.4 We have for $x>0$

$$
\begin{aligned}
A(x) & <\frac{x \varphi(x)^{3}}{6} \\
-A^{\prime}(x) & <-\frac{1}{6} \varphi(x)^{3}-\frac{1}{2} x \varphi^{\prime}(x) \varphi(x)^{2} .
\end{aligned}
$$

Lemma 2.5 We have for $x>0$

$$
\begin{aligned}
B(x) & <\frac{4}{135 x^{2}} \\
-B^{\prime}(x) & <\frac{8}{135 x^{3}}
\end{aligned}
$$

Proof of Theorem 1.1. From equation (2) we get

$$
m^{\prime \prime}(x)=-e^{-\varphi(x)}\left(2 \varphi^{\prime}(x)+x \varphi^{\prime \prime}(x)-x \varphi^{\prime}(x)^{2}\right)
$$

so that $m^{\prime \prime}(x)>0$ is equivalent to the inequality

$$
(x \varphi(x))^{\prime \prime}<x \varphi^{\prime}(x)^{2}
$$

Differentiation of (3) yields

$$
(x \varphi(x))^{\prime \prime}=e^{g(x)}\left(-g^{\prime}(x)\right)(A(x)+B(x))+e^{g(x)}\left(-A^{\prime}(x)-B^{\prime}(x)\right)
$$

By using Lemma 2.4 and 2.5 it follows that

$$
\begin{aligned}
-A^{\prime}(x)-B^{\prime}(x) & <-\frac{1}{2} x \varphi^{\prime}(x) \varphi(x)^{2}+\frac{8}{135 x^{3}}-\frac{1}{6} \varphi(x)^{3} \\
& =-\frac{1}{2} x \varphi^{\prime}(x) \varphi(x)^{2}+\frac{\varphi(x)^{2}}{x}\left(\frac{8}{135(x \varphi(x))^{2}}-\frac{1}{6} x \varphi(x)\right)
\end{aligned}
$$

Here the expression in the brackets is positive, since $(x \varphi(x))^{3}<(\log 2)^{3}<$ $48 / 135$. Therefore, and because $\varphi(x)<-x \varphi^{\prime}(x)$,

$$
\begin{aligned}
-A^{\prime}(x)-B^{\prime}(x) & <\frac{1}{2} x \varphi^{\prime}(x)^{2} x \varphi(x)+x \varphi^{\prime}(x)^{2}\left(\frac{8}{135(x \varphi(x))^{2}}-\frac{1}{6} x \varphi(x)\right) \\
& =x \varphi^{\prime}(x)^{2}\left(\frac{8}{135(x \varphi(x))^{2}}+\frac{1}{3} x \varphi(x)\right)
\end{aligned}
$$

We also have from Lemma 2.3, 2.4 and 2.5,

$$
\begin{aligned}
-g^{\prime}(x)(A(x)+B(x)) & <-x \varphi^{\prime}(x) \varphi(x)\left(\frac{x \varphi(x)^{3}}{6}+\frac{4}{135 x^{2}}\right) \\
& <x^{2} \varphi^{\prime}(x)^{2} \varphi(x)^{2}\left(\frac{x \varphi(x)}{6}+\frac{4}{135(x \varphi(x))^{2}}\right)
\end{aligned}
$$

Combination of these inequalities yields

$$
\begin{gathered}
(x \varphi(x))^{\prime \prime}<x^{\prime}(x)^{2} e^{x \varphi(x)}\left(x \varphi(x)^{2}\left(\frac{x \varphi(x)}{6}+\frac{4}{135(x \varphi(x))^{2}}\right)\right. \\
\left.+\frac{8}{135(x \varphi(x))^{2}}+\frac{1}{3} x \varphi(x)\right) .
\end{gathered}
$$

Supposing that $x \geq 1$, it follows that

$$
\begin{aligned}
(x \varphi(x))^{\prime \prime}< & x \varphi^{\prime}(x)^{2} e^{x \varphi(x)}\left((x \varphi(x))^{2}\left(\frac{x \varphi(x)}{6}+\frac{4}{135(x \varphi(x))^{2}}\right)\right. \\
& \left.+\frac{8}{135(x \varphi(x))^{2}}+\frac{1}{3} x \varphi(x)\right) \\
= & x \varphi^{\prime}(x)^{2} e^{x \varphi(x)}\left(\frac{(x \varphi(x))^{3}}{6}+\frac{4}{135}+\frac{8}{135(x \varphi(x))^{2}}+\frac{1}{3} x \varphi(x)\right) \\
= & x \varphi^{\prime}(x)^{2} h_{1}(x \varphi(x)),
\end{aligned}
$$

where h_{1} is given by

$$
h_{1}(t)=e^{t}\left(\frac{t^{3}}{6}+\frac{4}{135}+\frac{8}{135 t^{2}}+\frac{t}{3}\right) .
$$

One can show that h_{1} attains its maximum on the interval $[1 / 3, \log 2]$ at the left end point and that $h_{1}(1 / 3)=(551 / 810) \sqrt[3]{e} \approx 0.9494$. Therefore it follows that $(x \varphi(x))^{\prime \prime}<x \varphi^{\prime}(x)^{2}$ for $x \geq 1$.

For $0<x<1$ the estimate $-g^{\prime}(x)<-x \varphi^{\prime}(x)$ from Lemma 2.3 is used and in this way we get

$$
(x \varphi(x))^{\prime \prime}<x \varphi^{\prime}(x)^{2} h_{2}(x \varphi(x))
$$

where

$$
h_{2}(t)=e^{t}\left(\frac{t^{2}}{6}+\frac{4}{135 t}+\frac{8}{135 t^{2}}+\frac{t}{3}\right) .
$$

Since $x<1$ and $x \varphi(x)$ decreases we have $x \varphi(x)>\varphi(1)=-\log \log 2$. One can show that h_{2} attains its maximum on the interval $[-\log \log 2, \log 2]$ for $t=-\log \log 2$ and that $h_{2}(-\log \log 2) \approx 0.9616$. Therefore $(x \varphi(x))^{\prime \prime}<$ $x \varphi^{\prime}(x)^{2}$ for $x<1$.

Remark 2.6 The function h_{2} becomes larger than 1 on the interval $[1 / 3, \log 2]$, so h_{2} cannot be used to obtain the inequality $(x \varphi(x))^{\prime \prime}<x \varphi^{\prime}(x)^{2}$ for all $x>0$.

Proof of Lemma 2.3. It is clear that $g(x)<x \varphi(x)$. Differentiation yields

$$
\begin{aligned}
-g^{\prime}(x) & =-\varphi(x)+\left(1-x \varphi^{\prime}(x)\right)\left(1-e^{-\varphi(x)}\right) \\
& <-\varphi(x)+\left(1-x \varphi^{\prime}(x)\right) \varphi(x)=-x \varphi^{\prime}(x) \varphi(x),
\end{aligned}
$$

where we have used $1-e^{-a}<a$ for $a>0$.
To find an estimate that is more accurate for x near 0 we use

$$
\begin{aligned}
-g^{\prime}(x) & =-x \varphi^{\prime}(x)\left(1-e^{-\varphi(x)}\right)-\varphi(x)+1-e^{-\varphi(x)} \\
& <-x \varphi^{\prime}(x)-\varphi(x)+1-e^{-\varphi(x)}<-x \varphi^{\prime}(x)
\end{aligned}
$$

Proof of Lemma 2.4. Using that $1-e^{-a}<a$ and $1-(1+a) e^{-a}<a^{2} / 2$ for $a>0$, we can estimate $A(x)$ by

$$
A(x)<\int_{0}^{x \varphi(x)} e^{-s} e^{x(s / x)}\left(\frac{s^{2}}{2 x^{2}}\right) d s=\frac{x \varphi(x)^{3}}{6} .
$$

A computation shows that

$$
\begin{aligned}
-A^{\prime}(x)= & -\left(\varphi(x)+x \varphi^{\prime}(x)\right) e^{-x \varphi(x)} e^{x\left(1-e^{-\varphi(x)}\right.}\left(1-(1+\varphi(x)) e^{-\varphi(x)}\right) \\
& -\int_{0}^{x \varphi(x)} e^{-s} e^{x\left(1-e^{-s / x}\right)}\left(1-\left(1+\frac{s}{x}\right) e^{-s / x}\right)^{2} d s \\
& +\int_{0}^{x \varphi(x)} e^{-s} e^{x\left(1-e^{-s / x}\right)} \frac{s^{2}}{x^{3}} e^{-s / x} d s \\
< & -\left(\varphi(x)+x \varphi^{\prime}(x)\right) \frac{1}{2} \varphi(x)^{2}+\int_{0}^{x \varphi(x)} s^{2} e^{-s / x} d s \frac{1}{x^{3}} \\
< & -\frac{1}{2} \varphi(x)^{3}-\frac{1}{2} x \varphi^{\prime}(x) \varphi(x)^{2}+\frac{1}{3} \varphi(x)^{3} \\
= & -\frac{1}{6} \varphi(x)^{3}-\frac{1}{2} x \varphi^{\prime}(x) \varphi(x)^{2} .
\end{aligned}
$$

Proof of Lemma 2.5. These estimates follow directly from the inequality $\xi^{\prime}(t+1)<8 / 135$.

References

[1] J. A. Adell and P. Jodrá, Sharp estimates for the median of the $\Gamma(n+$ $1,1)$ distribution, Statist. Probab. Lett., 71 (2005), 185-191.
[2] S. E. Alm, Monotonicity of the difference between median and mean of gamma distributions and of a related Ramanujan sequence, Bernoulli 9(2) (2003), 351-371.
[3] H. Alzer, Proof of the Chen-Rubin conjecture, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 4, 677-688.
[4] H. Alzer, A convexity property of the median of the gamma distribution, Statist. Probab. Lett., in press.
[5] C. Berg and H. L. Pedersen, The Chen-Rubin conjecture in a continuous setting, to appear in Methods and Applications of Analysis.
[6] J. Chen and H. Rubin, Bounds for the difference between median and mean og Gamma and Poisson distributions, Statist. Probab. Lett., 4 (1986), 281-283.

Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark.
Email: berg@math.ku.dk
Fax: +4535320704
Department of Natural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark.
Email: henrikp@dina.kvl.dk
Fax: +4535282350

[^0]: *Research supported by the Carlsberg Foundation

