On an iteration leading to a q-analogue of the Digamma function

Christian Berg* and Helle Bjerg Petersen

May 11, 2012

Abstract

We show that the q-Digamma function ψ_{q} for $0<q<1$ appears in an iteration studied by Berg and Durán. This is connected with the determination of the probability measure ν_{q} on the unit interval with moments $1 / \sum_{k=1}^{n+1}(1-q) /\left(1-q^{k}\right)$, which are q-analogues of the reciprocals of the harmonic numbers. The Mellin transform of the measure ν_{q} can be expressed in terms of the q-Digamma function. It is shown that ν_{q} has a continuous density on $] 0,1]$, which is piecewise C^{∞} with kinks at the powers of q. Furthermore, $(1-q) e^{-x} \nu_{q}\left(e^{-x}\right)$ is a standard p-function from the theory of regenerative phenomena.

2010 Mathematics Subject Classification: primary 33D05; secondary 44A60. Keywords: q-Digamma function, Hausdorff moment sequence, p-function.

1 Introduction

For a measure μ on the unit interval $[0,1]$ we consider its Bernstein transform

$$
\begin{equation*}
\mathcal{B}(\mu)(z)=\int_{0}^{1} \frac{1-t^{z}}{1-t} d \mu(t), \quad \Re z>0 \tag{1}
\end{equation*}
$$

as well as its Mellin transform

$$
\begin{equation*}
\mathcal{M}(\mu)(z)=\int_{0}^{1} t^{z} d \mu(t), \quad \Re z>0 \tag{2}
\end{equation*}
$$

These functions are clearly holomorphic in the right half-plane $\Re z>0$.

[^0]The two integral transformations are combined in the following theorem from [4] about Hausdorff moment sequences, i.e., sequences $\left(a_{n}\right)_{n \geq 0}$ of the form

$$
\begin{equation*}
a_{n}=\int_{0}^{1} t^{n} d \mu(t) \tag{3}
\end{equation*}
$$

for a positive measure μ on the unit interval.
Theorem 1.1 Let $\left(a_{n}\right)_{n \geq 0}$ be a Hausdorff moment sequence as in (3) with $\mu \neq 0$. Then the sequence $\left(T\left(a_{n}\right)\right)_{n \geq 0}$ defined by $T\left(a_{n}\right)_{n}=1 /\left(a_{0}+\ldots+a_{n}\right)$ is again a Hausdorff moment sequence, and its associated measure $\widehat{T}(\mu)$ has the properties $\widehat{T}(\mu)(\{0\})=0$ and

$$
\begin{equation*}
\mathcal{B}(\mu)(z+1) \mathcal{M}(\widehat{T}(\mu))(z)=1 \quad \text { for } \quad \Re z>0 \tag{4}
\end{equation*}
$$

This means that the measure $\widehat{T}(\mu)$ is determined as the inverse Mellin transform of the function $1 / \mathcal{B}(\mu)(z+1)$.

It follows by Theorem 1.1 that T maps the set of normalized Hausdorff moment sequences (i.e., $a_{0}=1$) into itself. By Tychonoff's extension of Brouwer's fixed point theorem, T has a fixed point $\left(m_{n}\right)$. Furthermore, it is clear that a fixed point $\left(m_{n}\right)$ is uniquely determined by the equations

$$
\begin{equation*}
\left(1+m_{1}+\ldots+m_{n}\right) m_{n}=1, \quad n \geq 1 \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
m_{n+1}^{2}+\frac{m_{n+1}}{m_{n}}-1=0 \tag{6}
\end{equation*}
$$

giving

$$
m_{1}=\frac{-1+\sqrt{5}}{2}, \quad m_{2}=\frac{\sqrt{22+2 \sqrt{5}}-\sqrt{5}-1}{4}, \ldots
$$

Similarly, \widehat{T} maps the set $M_{+}^{1}([0,1])$ of probability measures on $[0,1]$ into itself. It has a uniquely determined fixed point ω and

$$
\begin{equation*}
m_{n}=\int_{0}^{1} t^{n} d \omega(t), \quad n=0,1, \ldots \tag{7}
\end{equation*}
$$

Berg and Durán studied this fixed point in [5],[6], and it was proved that the Bernstein transform $f=\mathcal{B}(\omega)$ is meromorphic in the whole complex plane and characterized by a functional equation and a log-convexity property in analogy with Bohr-Mollerup's characterization of the Gamma function, cf. [2]. Let us also mention that ω has an increasing and convex density with respect to Lebesgue measure m on the unit interval.

An important step in the proof of these results is to establish that ω is an attractive fixed point so that in particular the iterates $\widehat{T}^{\circ n}\left(\delta_{1}\right)$ converge weakly
to ω. Here and in the following δ_{a} denotes the Dirac measure with mass 1 concentrated in $a \in \mathbb{R}$.

It is easy to see that $\widehat{T}\left(\delta_{1}\right)=m$, because

$$
T(1,1, \ldots)_{n}=\frac{1}{n+1}=\int_{0}^{1} t^{n} d t
$$

It is well-known that the Bernstein transform of Lebesgue measure m on $[0,1]$ is related to the Digamma function ψ, i.e., the logarithmic derivative of the Gamma function, since

$$
\begin{equation*}
\int_{0}^{1} \frac{1-t^{z}}{1-t} d t=\psi(z+1)+\gamma=\sum_{n=1}^{\infty} \frac{z}{n(n+z)}, \quad \Re z>0 \tag{8}
\end{equation*}
$$

cf. [10, 8.36]. Here $\gamma=-\psi(1)$ is Euler's constant.
Therefore $\nu_{1}:=\widehat{T}(m)=\widehat{T}^{\circ 2}\left(\delta_{1}\right)$ is determined by

$$
\mathcal{M}\left(\nu_{1}\right)(z)=\frac{1}{\mathcal{B}(m)(z+1)}=\frac{1}{\psi(z+2)+\gamma} .
$$

The measure $\nu_{1}=\widehat{T}(m)$ is given explicitly in [4] as

$$
\begin{equation*}
\nu_{1}=\left(\sum_{n=0}^{\infty} \alpha_{n} t^{\xi_{n}}\right) d t \tag{9}
\end{equation*}
$$

where $\xi_{0}=0, \xi_{n} \in(n, n+1), n=1,2, \ldots$ is the solution to $\psi\left(1-\xi_{n}\right)=-\gamma$ and $\alpha_{n}=1 / \psi^{\prime}\left(1-\xi_{n}\right)$. The moments of the measure ν_{1} are the reciprocals of the harmonic numbers, i.e.,

$$
\begin{equation*}
\int_{0}^{1} t^{n} d \nu_{1}(t)=\frac{1}{\mathcal{H}_{n+1}}=\left(\sum_{k=1}^{n+1} \frac{1}{k}\right)^{-1} \tag{10}
\end{equation*}
$$

The purpose of the present paper is to study the first two elements of the sequence $\widehat{T}{ }^{\circ n}\left(\delta_{q}\right)$, where $0<q<1$ is fixed. The reason for excluding $q=0$ is that $\widehat{T}\left(\delta_{0}\right)=\delta_{1}$. Since ω is an attractive fixed point, we know that the sequence converges weakly to ω.

The first step in the iteration is easy:

$$
\begin{equation*}
\widehat{T}\left(\delta_{q}\right)=(1-q) \sum_{k=0}^{\infty} q^{k} \delta_{q^{k}} \tag{11}
\end{equation*}
$$

because

$$
\begin{equation*}
\int_{0}^{1} t^{z} d \widehat{T}\left(\delta_{q}\right)(t)=\frac{1-q}{1-q^{z+1}}=(1-q) \sum_{k=0}^{\infty} q^{k} q^{k z} \tag{12}
\end{equation*}
$$

This shows that $\widehat{T}\left(\delta_{q}\right)$ is the Jackson $d_{q} t$-measure on $[0,1]$ used in the theory of q-integrals, cf. [9]. It is a q-analogue of Lebesgue measure in the sense that $d_{q} t \rightarrow m$ weakly for $q \rightarrow 1$.

It is therefore to be expected that $\nu_{q}:=\widehat{T}\left(d_{q} t\right)=\widehat{T}^{\circ 2}\left(\delta_{q}\right)$ is a q-analogue of the measure ν_{1}, and we are going to determine ν_{q}. We have

$$
\begin{equation*}
\mathcal{M}\left(\nu_{q}\right)(z)=\frac{1}{f_{q}(z+1)} \tag{13}
\end{equation*}
$$

where f_{q} is defined as the Bernstein transform of $d_{q} t$:

$$
\begin{equation*}
f_{q}(z)=\int_{0}^{1} \frac{1-t^{z}}{1-t} d_{q} t=(1-q)\left(z+\sum_{k=1}^{\infty} q^{k} \frac{1-q^{k z}}{1-q^{k}}\right) \tag{14}
\end{equation*}
$$

This formula is a q-analogue of (8) and the relationship between f_{q} and q-versions of Euler's constant and the Digamma function is given in (20).

The moments of ν_{q} are q-analogues of (10)

$$
\begin{equation*}
\int_{0}^{1} t^{n} d \nu_{q}(t)=\left(\sum_{k=0}^{n} \frac{1-q}{1-q^{k+1}}\right)^{-1} \tag{15}
\end{equation*}
$$

It is easily seen that $q \rightarrow \int_{0}^{1} t^{n} d \nu_{q}(t)$ is an increasing function mapping [0, 1$]$ onto $\left[(n+1)^{-1}, \mathcal{H}_{n+1}^{-1}\right]$.

Formally ν_{q} is the inverse Mellin transform of $1 / f_{q}(z+1)$, i.e.,

$$
\nu_{q}=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{t^{-z}}{f_{q}(z+1)} d z
$$

and we shall exploit that in section 3, where we transfer the harmonic analysis on the multiplicative group $] 0, \infty[$ to the additive group of real numbers, hence replacing the Mellin transformation by the ordinary Fourier transformation. If we denote by τ_{q} the image measure of ν_{q} under the transformation $\log (1 / t)$, we formally get

$$
\begin{equation*}
\tau_{q}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i y x} \frac{d y}{f_{q}(1+i y)} \tag{16}
\end{equation*}
$$

but since $y \rightarrow 1 / f_{q}(1+i y)$ is a square integrable and non-integrable function as shown in Section 3, this only yields that τ_{q} is a square integrable function. In Theorem 3.1 we prove that τ_{q} is the restriction to $[0, \infty$ [of a continuous symmetric positive definite function.

The main tool to obtain further regularity properties of ν_{q} will be a direct approach using convolution. In fact, we realize $(1-q) \tau_{q}$ as the convolution of an exponential density and an elementary kernel $\sum_{0}^{\infty} N^{* n}$, see (26), which makes it possible to prove that

$$
\tau_{q}(x)=e^{-\left(1+c_{q}\right) x} p_{n}(x), \quad x \in[n \log (1 / q),(n+1) \log (1 / q)], \quad n=0,1, \ldots
$$

for a certain constant c_{q}, cf. (22), and a polynomial p_{n} of degree n the coefficients of which are given explicitly as functions of q, see (31). In Remark 2.2 we point out that $(1-q) \tau_{q}(x)$ is a standard p-function in the sense of [11].

Going back to the interval $] 0,1]$ we can state our main result that ν_{q} is a C^{∞}-spline, i.e. it has a piecewise C^{∞}-density with respect to Lebesgue measure on $[0,1]$:

Theorem 1.2 The measure ν_{q} has a continuous and piecewice C^{∞}-density denoted $\nu_{q}(t)$ on $\left.] 0,1\right]$. We have

$$
\begin{equation*}
\nu_{q}(t)=t^{c_{q}} p_{n}(\log (1 / t)), \quad t \in\left[q^{n+1}, q^{n}\right], n=0,1, \ldots, \tag{17}
\end{equation*}
$$

where c_{q} is given by (22) and p_{n} is a polynomial of degree n given by (31). The derivative of ν_{q} has a jump of size $1 /\left(1-q^{n}\right)(1-q)$ at the point $q^{n}, n=1,2, \ldots$.

Remark 1.3 It follows that the behaviour of $\nu_{q}(t)$ is oscillatory, and therefore quite different from that of $\nu_{1}(t)$ given by (9), which is increasing and convex. See Figure 1 and 2 which shows the graph of $(1-q) \nu_{q}$ for $q=0.5$ and $q=0.9$.

Figure 1: The graph of $(1-q) \nu_{q}(t)$ on $\left[q^{3}, 1\right]$ for $q=0.5$

2 Proofs

Jackson's q-analogue of the Gamma function is defined as

$$
\Gamma_{q}(z)=\frac{(q ; q)_{\infty}}{\left(q^{z} ; q\right)_{\infty}}(1-q)^{1-z}
$$

Figure 2: The graph of $(1-q) \nu_{q}(t)$ on $\left[q^{3}, 1\right]$ for $q=0.9$
cf. [9], and its logarithmic derivative

$$
\begin{equation*}
\psi_{q}(z)=\frac{d}{d z} \log \Gamma_{q}(z)=-\log (1-q)+\log q \sum_{k=0}^{\infty} \frac{q^{k+z}}{1-q^{k+z}} \tag{18}
\end{equation*}
$$

has been proposed in [12] as a q-analogue of the Digamma function ψ. See also the recent paper [13]. We define the q-analogue of Euler's constant as

$$
\begin{equation*}
\gamma_{q}=-\psi_{q}(1)=\log (1-q)-\log q \sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}} \tag{19}
\end{equation*}
$$

The Bernstein transform f_{q} of $d_{q} t$ is given in (14), hence

$$
\begin{aligned}
\frac{f_{q}(z)}{1-q} & =z+\sum_{k=1}^{\infty} q^{k} \sum_{n=0}^{\infty} q^{k n}\left(1-q^{k z}\right) \\
& =z+\sum_{n=0}^{\infty}\left(\sum_{k=1}^{\infty}\left(q^{k(n+1)}-q^{k(n+1+z)}\right)\right) \\
& =z+\frac{1}{\log (1 / q)}\left(\gamma_{q}+\psi_{q}(z+1)\right)
\end{aligned}
$$

showing that

$$
\begin{equation*}
f_{q}(z)=(1-q) z+\frac{1-q}{\log (1 / q)}\left(\gamma_{q}+\psi_{q}(z+1)\right), \tag{20}
\end{equation*}
$$

so f_{q} has a close relationship with the q-Digamma function and the q-version of Euler's constant.

We will be using another expression for $f_{q}(z) /(1-q)$ derived from (14), namely

$$
\begin{equation*}
\frac{f_{q}(z)}{1-q}=z+c_{q}-\sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}} z^{k z} \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{q}=\sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}} . \tag{22}
\end{equation*}
$$

Clearly, $q /(1-q)<c_{q}<q /(1-q)^{2}$ for $0<q<1$ and $q \mapsto c_{q}$ is a strictly increasing map of $] 0,1[$ onto $] 0, \infty[$. We mention two other expressions

$$
c_{q}=\sum_{n=1}^{\infty} d(n) q^{n}=\sum_{n=1}^{\infty}\left(1-\left(q^{n} ; q\right)_{\infty}\right)
$$

where $d(n)$ is the number of divisors in n, see [8, p. 14].
In order to replace the Mellin transformation by the Laplace transformation we introduce the probability measure τ_{q} on $\left[0, \infty\left[\right.\right.$ which has ν_{q} as image measure under $t \rightarrow e^{-t}$, hence

$$
\mathcal{L}\left(\tau_{q}\right)(z)=\int_{0}^{\infty} e^{-t z} d \tau_{q}(t)=\frac{1}{f_{q}(z+1)}
$$

The analogue of Theorem 1.2 about the measure τ_{q} is given in the next theorem, which we shall prove first.

Theorem 2.1 The measure τ_{q} has a continuous density also denoted τ_{q} with respect to Lebesgue measure on $\left[0, \infty\left[\right.\right.$. It is C^{∞} in each of the open intervals $] n \log (1 / q),(n+1) \log (1 / q)[, n=0,1, \ldots$ with jump of the derivative of size

$$
\begin{equation*}
J_{n}=\frac{q^{2 n}}{\left(1-q^{n}\right)(1-q)} \tag{23}
\end{equation*}
$$

at the point $n \log (1 / q), n=1,2, \ldots$.
Furthermore, $\tau_{q}(0)=1 /(1-q)$ and $\lim _{t \rightarrow \infty} \tau_{q}(t)=0$.
Proof of Theorem 2.1. Introducing the discrete measure

$$
\mu=\sum_{k=1}^{\infty} \frac{q^{2 k}}{1-q^{k}} \delta_{k \log (1 / q)}
$$

of finite total mass

$$
\begin{equation*}
\|\mu\|_{1}=c_{q}-q /(1-q)<c_{q}, \tag{24}
\end{equation*}
$$

we can write

$$
\frac{f_{q}(z+1)}{1-q}=1+c_{q}+z-\mathcal{L}(\mu)(z)
$$

hence

$$
\begin{equation*}
\frac{1-q}{f_{q}(z+1)}=\left(\left(1+c_{q}+z\right)\left(1-\frac{\mathcal{L}(\mu)(z)}{1+c_{q}+z}\right)\right)^{-1}=\sum_{n=0}^{\infty} \frac{(\mathcal{L}(\mu)(z))^{n}}{\left(1+c_{q}+z\right)^{n+1}} \tag{25}
\end{equation*}
$$

Let ρ_{q} denote the following exponential density restricted to the positive half-line

$$
\rho_{q}(t)=\exp \left(-\left(1+c_{q}\right) t\right) Y(t)
$$

where Y is the usual Heaviside function equal to 1 for $t \geq 0$ and equal to zero for $t<0$. Its Laplace transform is given as

$$
\int_{0}^{\infty} e^{-t z} \rho_{q}(t) d t=\left(1+c_{q}+z\right)^{-1}
$$

but this shows that (25) is equivalent to the following convolution equation

$$
\begin{equation*}
(1-q) \tau_{q}=\rho_{q} * \sum_{n=0}^{\infty}\left(\mu * \rho_{q}\right)^{* n}=\sum_{n=0}^{\infty} \rho_{q}^{*(n+1)} * \mu^{* n} \tag{26}
\end{equation*}
$$

This equation expresses a factorization of $(1-q) \tau_{q}$ as the convolution of the exponential density ρ_{q} and an elementary kernel $\sum_{0}^{\infty} N^{* n}$ with $N=\mu * \rho_{q}$. For information about the basic notion of elementary kernels in potential theory, see [7, p.100]. All three measures in question τ_{q}, ρ_{q} and $\sum_{0}^{\infty}\left(\mu * \rho_{q}\right)^{* n}$ are potential kernels on \mathbb{R} in the sense of [7].

The measure $\mu^{* n}, n \geq 1$ is a discrete measure concentrated in the points $k \log (1 / q), k=n, n+1, \ldots$ The convolution powers of ρ_{q} are Gamma densities

$$
\rho_{q}^{*(n+1)}(t)=\frac{t^{n}}{n!} e^{-\left(1+c_{q}\right) t} Y(t)
$$

as is easily seen by Laplace transformation.
Clearly, $\rho_{q} * \mu$ is a bounded integrable function with

$$
\begin{equation*}
\left\|\rho_{q} * \mu\right\|_{\infty} \leq\left\|\rho_{q}\right\|_{\infty}\|\mu\|_{1}<c_{q}, \quad\left\|\rho_{q} * \mu\right\|_{1}=\left\|\rho_{q}\right\|_{1}\|\mu\|_{1}<\frac{c_{q}}{1+c_{q}} \tag{27}
\end{equation*}
$$

and then $\rho_{q} *\left(\rho_{q} * \mu\right)^{* n}, n \geq 1$ is a continuous integrable function on \mathbb{R}, vanishing for $t \leq n \log (1 / q)$ and for $t \rightarrow \infty$. Furthermore,

$$
\left\|\rho_{q} *\left(\rho_{q} * \mu\right)^{* n}\right\|_{\infty}<\left(c_{q} /\left(1+c_{q}\right)\right)^{n}
$$

and this shows that the right-hand side of (26) converges uniformly on $[0, \infty[$, so $(1-q) \tau_{q}$ has a continuous density on $[0, \infty[$ tending to 0 at infinity. Note that $(1-q) \tau_{q}(0)=\rho_{q}(0)=1$.

For $n \geq 1$ and $x \in[n \log (1 / q), \infty[$ we get

$$
\begin{aligned}
& \rho_{q}^{*(n+1)} * \mu^{* n}(x) \\
& =\int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{-\left(1+c_{q}\right)(x-t)} Y(x-t) d \mu^{* n}(t) \\
& \quad=e^{-\left(1+c_{q}\right) x} \sum_{k=n}^{\infty} \frac{(x-k \log (1 / q))^{n}}{n!} q^{-k\left(1+c_{q}\right)} Y(x-k \log (1 / q)) \mu^{* n}(k \log (1 / q))
\end{aligned}
$$

which is a finite sum, and

$$
\mu^{* n}(k \log (1 / q))=\sum_{p_{1}+\ldots+p_{n}=k} \prod_{j=1}^{n} \frac{q^{2 p_{j}}}{1-q^{p_{j}}}, k=n, n+1, \ldots
$$

In particular,

$$
\mu^{* n}(n \log (1 / q))=\left(\frac{q^{2}}{1-q}\right)^{n}, \quad \mu^{* n}((n+1) \log (1 / q))=\frac{n q^{2 n+2}}{(1-q)^{n}(1+q)}
$$

For $n \geq 0$ and $0 \leq x<(n+1) \log (1 / q)$ we then get

$$
\begin{align*}
& (1-q) \tau_{q}(x)= \tag{28}\\
& \quad e^{-\left(1+c_{q}\right) x} \sum_{j=0}^{n} q^{-j\left(1+c_{q}\right)} Y(x-j \log (1 / q)) \sum_{k=0}^{j} \frac{(x-j \log (1 / q))^{k}}{k!} \mu^{* k}(j \log (1 / q)) .
\end{align*}
$$

On $[0, \log (1 / q)]$ it is equal to $\exp \left(-\left(1+c_{q}\right) x\right)$, on $[\log (1 / q), 2 \log (1 / q)]$ it is equal to

$$
\exp \left(-\left(1+c_{q}\right) x\right)\left(1+\frac{q^{1-c_{q}}}{1-q}(x-\log (1 / q))\right)
$$

on $[2 \log (1 / q), 3 \log (1 / q)[$ it is equal to

$$
\begin{aligned}
& \exp \left(-\left(1+c_{q}\right) x\right)\left(1+\frac{q^{1-c_{q}}}{1-q}(x-\log (1 / q))+\right. \\
& \left.\quad \frac{q^{2\left(1-c_{q}\right)}}{1-q^{2}}(x-2 \log (1 / q))+\frac{q^{2\left(1-c_{q}\right)}}{2(1-q)^{2}}(x-2 \log (1 / q))^{2}\right)
\end{aligned}
$$

On $[n \log (1 / q),(n+1) \log (1 / q)], n \geq 1$ we can write

$$
\begin{align*}
& (1-q) \tau_{q}(x) \tag{29}\\
& =e^{-\left(1+c_{q}\right) x}\left(1+\sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{(x-j \log (1 / q))^{k}}{k!} \mu^{* k}(j \log (1 / q))\right),
\end{align*}
$$

because $\mu^{* 0}(j \log (1 / q))=0$ for $j \geq 1$.

This shows that

$$
\begin{equation*}
\tau_{q}(x)=e^{-\left(1+c_{q}\right) x} p_{n}(x), \quad x \in[n \log (1 / q),(n+1) \log (1 / q)], n=0,1, \ldots, \tag{30}
\end{equation*}
$$

where p_{n} is the polynomial of degree n given by

$$
\begin{equation*}
p_{n}(x)=\frac{1}{1-q}\left(1+\sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{(x-j \log (1 / q))^{k}}{k!} \mu^{* k}(j \log (1 / q))\right) . \tag{31}
\end{equation*}
$$

The derivative of the expression (29) is

$$
\begin{align*}
& -\left(1+c_{q}\right)(1-q) \tau_{q}(x) \tag{32}\\
& +e^{-\left(1+c_{q}\right) x} \sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{(x-j \log (1 / q))^{k-1}}{(k-1)!} \mu^{* k}(j \log (1 / q)),
\end{align*}
$$

and the value R_{n} at the point $x=n \log (1 / q), n \geq 1$ is

$$
\begin{aligned}
& R_{n} \\
& =q^{n\left(1+c_{q}\right)}\left[-\left(1+c_{q}\right)\left(1+\sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{((n-j) \log (1 / q))^{k}}{k!} \mu^{* k}(j \log (1 / q))\right)\right. \\
& \\
& \left.+\sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{((n-j) \log (1 / q))^{k-1}}{(k-1)!} \mu^{* k}(j \log (1 / q))\right] \\
& =q^{n\left(1+c_{q}\right)}\left[-\left(1+c_{q}\right)\left(1+\sum_{j=1}^{n-1} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{((n-j) \log (1 / q))^{k}}{k!} \mu^{* k}(j \log (1 / q))\right)\right. \\
& \\
& +\sum_{j=1}^{n-1} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{((n-j) \log (1 / q))^{k-1}}{(k-1)!} \mu^{* k}(j \log (1 / q)) \\
& \\
& \left.+q^{-n\left(1+c_{q}\right)} \mu(n \log (1 / q))\right] .
\end{aligned}
$$

The value L_{n+1} of (32) at $x=(n+1) \log (1 / q)$ is

$$
\begin{aligned}
& L_{n+1}=q^{(n+1)\left(1+c_{q}\right)} \times \\
& \quad\left[-\left(1+c_{q}\right)\left(1+\sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{((n+1-j) \log (1 / q))^{k}}{k!} \mu^{* k}(j \log (1 / q))\right)\right. \\
& \left.+\quad \sum_{j=1}^{n} q^{-j\left(1+c_{q}\right)} \sum_{k=1}^{j} \frac{((n+1-j) \log (1 / q))^{k-1}}{(k-1)!} \mu^{* k}(j \log (1 / q))\right] .
\end{aligned}
$$

The difference

$$
R_{n}-L_{n}=q^{2 n} /\left(1-q^{n}\right)
$$

is the jump of $(1-q) \tau_{q}$ at $x=n \log (1 / q)$, and this gives the jump J_{n} of (23).
To transfer the results of Theorem 2.1 to give Theorem 1.2, we use that ν_{q} is the image measure of τ_{q} under $t \mapsto e^{-t}$, hence

$$
\nu_{q}(t)=(1 / t) \tau_{q}(\log (1 / t)), 0<t \leq 1
$$

We then get

$$
\begin{aligned}
& \left.D_{+} \nu_{q}(t)\right|_{t=q^{n}} \\
& \quad=-\frac{1}{t^{2}}\left[D_{-} \tau_{q}(\log (1 / t))+\tau_{q}(\log (1 / t))\right]_{t=q^{n}} \\
& \quad=-\frac{1}{q^{2 n}}\left[D_{-} \tau_{q}(n \log (1 / q))+\tau_{q}(n \log (1 / q))\right]
\end{aligned}
$$

and similarly

$$
\left.D_{-} \nu_{q}(t)\right|_{t=q^{n}}=-\frac{1}{q^{2 n}}\left[D_{+} \tau_{q}(n \log (1 / q))+\tau_{q}(n \log (1 / q))\right]
$$

hence

$$
\left[D_{+} \nu_{q}(t)-D_{-} \nu_{q}(t)\right]_{t=q^{n}}=\frac{1}{q^{2 n}}\left(D_{+} \tau_{q}(n \log (1 / q))-D_{-} \tau_{q}(n \log (1 / q))\right)
$$

and the assertion follows.
Remark 2.2 The representation (25) and Theorem 2.1 show that $(1-q) \tau_{q}$ is a standard p-function in the terminology from the theory of regenerative phenomena. This follows from [11, Theorem 3.1], and the measure $\mu+(1 /(1-q)) \delta_{\infty}$ plays the role of the measure " μ " in [11]. The size J_{n} of the jump of the derivative at $n \log (1 / q)$ equals

$$
\mu(\{n \log (1 / q)\})=\frac{q^{2 n}}{1-q^{n}}
$$

This is in accordance with [11, Theorem 3.4].
Figure 3 and 4 show the graph of $(1-q) \tau_{q}$ for $q=0.5$ and $q=0.9$.

3 Further properties of τ_{q}

Formally, by Fourier inversion we get that

$$
\tau_{q}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i y x} \frac{d y}{f_{q}(1+i y)}
$$

Figure 3: The graph of $(1-q) \tau_{q}(x)$ on $[0,3 \log (1 / q)]$ for $q=0.5$

The function $1 / f_{q}(1+i y)$ is a non-integrable L^{2}-function, so the formula holds in the L^{2}-sense. To see this we notice that

$$
\frac{f_{q}(z)}{z}=1-q+\int_{0}^{\infty} e^{-t z} h_{q}(t) d t, \quad \Re z>0
$$

where

$$
\begin{equation*}
h_{q}(t)=(1-q) \sum_{k>t / \log (1 / q)} \frac{q^{k}}{1-q^{k}} . \tag{33}
\end{equation*}
$$

In particular

$$
\frac{f_{q}(1+i y)}{1+i y}=1-q+\int_{0}^{\infty} e^{-i t y} e^{-t} h_{q}(t) d t
$$

and since $e^{-t} h_{q}(t)$ is integrable, it follows from the Riemann-Lebesgue Lemma that we get the asymptotic behaviour

$$
\begin{equation*}
f_{q}(1+i y) \sim(1-q)(1+i y), \quad|y| \rightarrow \infty \tag{34}
\end{equation*}
$$

Furthermore, from (21) we get

$$
\Re f_{q}(1+i y)=1-q+(1-q) \sum_{k=1}^{\infty} \frac{q^{k}}{1-q^{k}}\left(1-q^{k} \cos (k y \log (q))\right),
$$

hence

$$
1 \leq \Re f_{q}(1+i y) \leq 1-q+\sum_{k=1}^{\infty} q^{k}\left(1+q^{k}\right)
$$

Figure 4: The graph of $(1-q) \tau_{q}(x)$ on $[0,3 \log (1 / q)]$ for $q=0.9$
showing that $\Re f_{q}(1+i y)$ is bounded below and above. It follows that the symmetrized density

$$
\varphi_{q}(x)= \begin{cases}\tau_{q}(x) & \text { if } x \geq 0 \tag{35}\\ \tau_{q}(-x) & \text { if } x<0\end{cases}
$$

is the Fourier transform of the non-negative integrable function

$$
\frac{2 \Re f_{q}(1+i y)}{\left|f_{q}(1+i y)\right|^{2}}
$$

and therefore $\varphi_{q}(x)$ is continuous and positive definite, so τ_{q} is the restriction to $[0, \infty[$ of such a function. Summing up we have proved

Theorem 3.1 For $x \geq 0$

$$
\tau_{q}(x)=4 \int_{0}^{\infty} \cos (x y) \frac{\Re f_{q}(1+i y)}{\left|f_{q}(1+i y)\right|^{2}} d y
$$

is the restriction of a continuous symmetric positive definite function (35). For $0<t \leq 1$

$$
t \nu_{q}(t)=4 \int_{0}^{\infty} \cos (y \log t) \frac{\Re f_{q}(1+i y)}{\left|f_{q}(1+i y)\right|^{2}} d y
$$

Remark 3.2 The function f_{q} defined in (14) is a Bernstein function in the sense of [7], but not a complete Bernstein function in the sense of [14], because $f_{q}(z) / z$ is not a Stieltjes function as shown by formula (33). This is in contrast to

$$
\lim _{q \rightarrow 1} f_{q}(z)=\psi(z+1)+\gamma
$$

which is a complete Bernstein function, cf. [4].

4 Relation to other work

The transformation T can be extended from normalized Hausdorff moment sequences to the set $\mathcal{K}=[0,1]^{\mathbb{N}}$ of sequences $\left(x_{n}\right)=\left(x_{n}\right)_{n \geq 1}$ of numbers from the unit interval $[0,1]$. This was done in [3], where $T: \mathcal{K} \rightarrow \mathcal{K}$ is defined by

$$
\begin{equation*}
\left(T\left(x_{n}\right)\right)_{n}=\frac{1}{1+x_{1}+\ldots+x_{n}}, \quad n \geq 1 \tag{36}
\end{equation*}
$$

The connection is that a normalized Hausdorff moment sequence $\left(a_{n}\right)_{n \geq 0}$ is considered as the element $\left(a_{n}\right)_{n \geq 1} \in \mathcal{K}$.

Since T is a continuous transformation of the compact convex set \mathcal{K} in the space $\mathbb{R}^{\mathbb{N}}$ of real sequences equipped with the product topology, it has a fixed point by Tychonoff's theorem, and this is $\left(m_{n}\right)_{n \geq 1}$.

There is no reason a priori that the fixed point $\left(m_{n}\right)$ of (36) should be a Hausdorff moment sequence, but as we have seen above, the motivation for the study of T comes from the theory of Hausdorff moment sequences.

Although T is not a contraction on \mathcal{K} in the natural metric

$$
d\left(\left(a_{n}\right),\left(b_{n}\right)\right)=\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right|, \quad\left(a_{n}\right),\left(b_{n}\right) \in \mathcal{K},
$$

it was proved in [3] that T maps \mathcal{K} into the compact convex subset

$$
\mathcal{C}=\left\{\left(a_{n}\right) \in \mathcal{K} \left\lvert\, a_{1} \geq \frac{1}{2}\right.\right\},
$$

and the restriction of T to \mathcal{C} is a contraction. It is therefore possible to infer that $\left(m_{n}\right)$ is an attractive fixed point from the fixed point theorem of Banach.

Acknowledgment The first author wants to thank Fethi Bouzzefour, Tunesia for having raised the question of determining the measure ν_{q}.

References

[1] Akhiezer, N. I., The classical moment problem. Oliver and Boyd, Edinburgh, 1965.
[2] Artin, E., The Gamma Function. Holt, Rinehart and Winston, New York 1964.
[3] Berg, C., Beygmohammadi, M., On a fixed point in the metric space of normalized Hausdorff moment sequences, Rend. Circ. Mat. Palermo, Serie II, Suppl. 82 (2010), 251-257.
[4] Berg, C., Durán, A. J., Some transformations of Hausdorff moment sequences and Harmonic numbers, Canad. J. Math. 57 (2005), 941-960.
[5] Berg, C., Durán, A. J., The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function, Math. Scand. 103 (2008), 11-39.
[6] Berg, C., Durán, A. J., Iteration of the rational function $z-1 / z$ and a Hausdorff moment sequence, Expo. Math. 26 (2008), 375-385.
[7] Berg, C., Forst, G., Potential theory on locally compact abelian groups. Ergebnisse der Mathematik und ihrer Grenzgebiete Band 87. SpringerVerlag, Berlin-Heidelberg-New York, 1975.
[8] Fine, N. J., Basic hypergeometric series and applications. American Mathematical Society, Providence, RI, 1988.
[9] Gasper, G., Rahman, M, Basic hypergeometric series. Cambridge University Press, Cambridge 1990, second edition 2004.
[10] Gradshteyn, I. S., Ryzhik, I. M., Table of integrals, series and products, Sixth Edition, Academic Press, New York, 2000.
[11] Kingman, J. F. C., Regenerative Phenomena. John Wiley \& Sons Ltd., London 1972.
[12] Krattenthaler, C., Srivastava, H. M., Summations for Basic Hypergeometric Series Involving a q-analogue of the Digamma Function, Computers Math. Applic. 32 (1996), 73-91.
[13] Mansour, T., Shabani, A. S., Some inequalities for the q-Digamma function, J. Inequal. Pure and Appl. Math. 10 (2009), Art. 12, 8 pp.
[14] Schilling, R., Song, R. and Vondraček, Z., Bernstein functions: Theory and Applications, de Gruyter, Berlin 2010.

Christian Berg, Helle Bjerg Petersen
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5

DK-2100 København Ø, Denmark
E-mail addresses: berg@math.ku.dk (C. Berg)
hellebp@gmail.com (H. B. Petersen).

[^0]: *Corresponding author

