On a fixed point in the metric space of normalized Hausdorff moment sequences

Christian Berg* and Maryam Beygmohammadi

March 18, 2010

Abstract

We show that the transformation $\left(x_{n}\right)_{n \geq 1} \rightarrow\left(1 /\left(1+x_{1}+\ldots+x_{n}\right)\right)_{n \geq 1}$ of the compact set of sequences $\left(x_{n}\right)_{n \geq 1}$ of numbers from the unit interval $[0,1]$ has a unique fixed point, which is attractive. The fixed point turns out to be a Hausdorff moment sequence studied in [3].

2010 Mathematics Subject Classification: primary 37C25; secondary 44A60. Keywords: Fixed points, Hausdorff moment sequences.

1 Introduction

Let $\mathcal{K}=[0,1]^{\mathbb{N}}$ denote the product space of sequences $\left(x_{n}\right)=\left(x_{n}\right)_{n \geq 1}$ of numbers from the unit interval $[0,1]$.

We consider a transformation $T: \mathcal{K} \rightarrow \mathcal{K}$ defined by

$$
\begin{equation*}
\left(T\left(x_{n}\right)\right)_{n}=\frac{1}{1+x_{1}+\ldots+x_{n}}, \quad n \geq 1 . \tag{1}
\end{equation*}
$$

Since T is a continuous transformation of the compact convex set \mathcal{K} in the space $\mathbb{R}^{\mathbb{N}}$ of real sequences equipped with the product topology, it has a fixed point $\left(m_{n}\right)$ by Tychonoff's extension of Brouwer's fixed point theorem. Furthermore, it is clear by (1) that the fixed point $\left(m_{n}\right)$ is uniquely determined by the equations

$$
\begin{equation*}
\left(1+m_{1}+\ldots+m_{n}\right) m_{n}=1, \quad n \geq 1 \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
m_{n+1}^{2}+\frac{m_{n+1}}{m_{n}}-1=0 \tag{3}
\end{equation*}
$$

[^0]giving
$$
m_{1}=\frac{-1+\sqrt{5}}{2}, \quad m_{2}=\frac{\sqrt{22+2 \sqrt{5}}-\sqrt{5}-1}{4}, \ldots
$$

Berg and Durán studied this fixed point in [3], and it was proved that $m_{0}=$ $1, m_{1}, m_{2}, \ldots$ is a normalized Hausdorff moment sequence, i.e., of the form

$$
\begin{equation*}
m_{n}=\int_{0}^{1} x^{n} d \tau(x) \tag{4}
\end{equation*}
$$

where τ is a probability measure on the interval $[0,1]$. For details about the measure τ, see [3] and [4]. We mention that τ has an increasing and convex density with respect to Lebesgue measure.

There is no reason a priori that the fixed point $\left(m_{n}\right)$ should be a Hausdorff moment sequence, but the motivation for the study of T came from the theory of moment sequences because of the following theorem from [2]:

Theorem 1.1 Let $\left(a_{n}\right)_{n \geq 0}$ be a Hausdorff moment sequence of a measure $\mu \neq 0$ on $[0,1]$. Then the sequence $\left(b_{n}\right)_{n \geq 0}$ defined by $b_{n}=1 /\left(a_{0}+\ldots+a_{n}\right)$ is again a Hausdorff moment sequence, and its associated measure $\nu=\widehat{T}(\mu)$ has the properties $\nu(\{0\})=0$ and

$$
\begin{equation*}
\int_{0}^{1} \frac{1-t^{z+1}}{1-t} d \mu(t) \int_{0}^{1} t^{z} d \nu(t)=1 \quad \text { for } \quad \Re z \geq 0 \tag{5}
\end{equation*}
$$

Let \mathcal{H} denote the set of normalized Hausdorff moment sequences, where we throw away the zero'th moment which is always 1 , i.e.,

$$
\begin{equation*}
\mathcal{H}=\left\{\left(a_{n}\right)_{n \geq 1} \mid a_{n}=\int_{0}^{1} x^{n} d \mu(x), \mu([0,1])=1\right\} . \tag{6}
\end{equation*}
$$

Clearly, $\mathcal{H} \subset \mathcal{K}$ and by Theorem 1.1 we have $T(\mathcal{H}) \subseteq \mathcal{H}$. It is easy to see that \mathcal{H} is a compact convex subset of \mathcal{K}, e.g., by using Hausdorff's 1921 characterization of Hausdorff moment sequences as completely monotonic sequences, i.e., sequences $\left(a_{n}\right)_{n \geq 0}$ satisfying

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{n+k} \geq 0 \quad \text { for } \quad m, n \geq 0 \tag{7}
\end{equation*}
$$

See [1] for details.
It was proved in Theorem 2.3 in [3] that $\left(m_{n}\right)$ is an attractive fixed point of the restriction of T to \mathcal{H}. This proof was a direct proof not building on any classical results on attracting fixed points. For classical fixed point theory see [5].

The purpose of the present paper is to prove the following extension of this:
Theorem 1.2 The unique fixed point $\left(m_{n}\right)$ of the transformation $T: \mathcal{K} \rightarrow \mathcal{K}$ given by (1) is attractive.

2 Proofs and complements

The product topology on the vector space $\mathbb{R}^{\mathbb{N}}$ is induced by the metric

$$
d\left(\left(a_{n}\right),\left(b_{n}\right)\right)=\sum_{n=1}^{\infty} 2^{-n} \min \left\{\left|a_{n}-b_{n}\right|, 1\right\} \quad \text { for } \quad\left(a_{n}\right),\left(b_{n}\right) \in \mathbb{R}^{\mathbb{N}},
$$

which makes it a Fréchet space.
On the compact subset $\mathcal{K}=[0,1]^{\mathbb{N}}$ the expression for the metric is simplified to

$$
\begin{equation*}
d\left(\left(a_{n}\right),\left(b_{n}\right)\right)=\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right| \quad \text { for } \quad\left(a_{n}\right),\left(b_{n}\right) \in \mathcal{K} . \tag{8}
\end{equation*}
$$

Before we find the best Lipschitz constant for T, let us introduce some notation. For $0 \leq a \leq 1$ let $\underline{a}=\left(a^{n}\right)_{n \geq 1}$, so $\underline{0}=0,0, \ldots$ and $\underline{1}=1,1, \ldots$. Clearly, $T(\underline{0})=\underline{1}, T(\underline{1})=1 / 2,1 / 3, \ldots$, while

$$
\left(T\left(\frac{1}{n+1}\right)\right)_{n}=\frac{1}{H_{n+1}}, \quad \text { where } \quad H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

The numbers H_{n} are called the harmonic numbers. In [2] it is proved that

$$
\frac{1}{H_{n+1}}=\int_{0}^{1} x^{n}\left(\sum_{p=0}^{\infty} \alpha_{p} x^{-\xi_{p}}\right) d x
$$

where $0=\xi_{0}>\xi_{1}>\xi_{2}>\ldots$ satisfy $-p-1<\xi_{p}<-p$ for $p=1,2, \ldots$ and $\alpha_{p}>0, p=0,1, \ldots$ More precisely, it is proved that ξ_{p} is the unique solution $x \in]-p-1,-p\left[\right.$ of the equation $\Psi(1+x)=-\gamma$, and $\alpha_{p}=1 / \Psi^{\prime}\left(1+\xi_{p}\right)$. Here $\Psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$ and γ is Euler's constant.

In [3] it is proved directly that $T^{n}(\underline{0})$ converges to the fixed point $\left(m_{n}\right)$, and this was used to derive that the same holds independent of where in \mathcal{H} the iteration starts.

We cannot apply Banach's fixed point theorem directly because of the following Lemma.

Lemma 2.1 The best Lipschitz constant c in

$$
d\left(T\left(a_{n}\right), T\left(b_{n}\right)\right) \leq c d\left(\left(a_{n}\right),\left(b_{n}\right)\right) \quad \text { for } \quad\left(a_{n}\right),\left(b_{n}\right) \in \mathcal{K}
$$

is $c=2$.

Proof. For $\left(a_{n}\right),\left(b_{n}\right)$ we find

$$
\begin{align*}
& d\left(T\left(a_{n}\right), T\left(b_{n}\right)\right)= \\
& \quad \sum_{k=1}^{\infty} 2^{-k} \frac{\left|\sum_{j=1}^{k}\left(b_{j}-a_{j}\right)\right|}{\left(1+a_{1}+\ldots+a_{k}\right)\left(1+b_{1}+\ldots+b_{k}\right)} \\
& \quad \leq \sum_{k=1}^{\infty} 2^{-k} \sum_{j=1}^{k}\left|a_{j}-b_{j}\right|=\sum_{j=1}^{\infty}\left|a_{j}-b_{j}\right| \sum_{k=j}^{\infty} 2^{-k}=2 d\left(\left(a_{n}\right),\left(b_{n}\right)\right), \tag{9}
\end{align*}
$$

which shows that T is Lipschitz with constant $c=2$.
Assume next that T satisfies a Lipschitz condition with constant c.
We note that

$$
d(\underline{0}, \underline{a})=\sum_{n=1}^{\infty}(a / 2)^{n}=\frac{a}{2-a} .
$$

Furthermore, $T(\underline{0})=\underline{1}$ and for $0 \leq a<1$ we have $T(\underline{a})_{n}=(1-a) /\left(1-a^{n+1}\right)$, so finally

$$
d(T(\underline{0}), T(\underline{a}))=a \sum_{n=1}^{\infty} 2^{-n} \frac{1-a^{n}}{1-a^{n+1}} .
$$

This gives

$$
\sum_{n=1}^{\infty} 2^{-n} \frac{1-a^{n}}{1-a^{n+1}} \leq c \frac{1}{2-a}, \quad 0<a \leq 1
$$

and letting $a \rightarrow 0$ we find $c \geq 2$.
Proof of Theorem 1.2.
Let us now introduce the set

$$
\mathcal{C}=\left\{\left(a_{n}\right) \in \mathcal{K} \left\lvert\, a_{1} \geq \frac{1}{2}\right.\right\},
$$

which is a compact convex subset of \mathcal{K}. We first note that $T(\mathcal{K}) \subseteq \mathcal{C}$ because for any $\left(a_{n}\right) \in \mathcal{K}$ we have $a_{1} \leq 1$, hence

$$
T\left(a_{n}\right)_{1}=\frac{1}{1+a_{1}} \geq \frac{1}{2} .
$$

By (9) we always have

$$
\begin{align*}
& d\left(T\left(a_{n}\right), T\left(b_{n}\right)\right)= \\
& \quad \sum_{k=1}^{\infty} 2^{-k} \frac{\left|\sum_{j=1}^{k}\left(b_{j}-a_{j}\right)\right|}{\left(1+a_{1}+\ldots+a_{k}\right)\left(1+b_{1}+\ldots+b_{k}\right)} \\
& \quad \leq \frac{1}{\left(1+a_{1}\right)\left(1+b_{1}\right)} \sum_{k=1}^{\infty} 2^{-k} \sum_{j=1}^{k}\left|a_{j}-b_{j}\right|=\frac{1}{\left(1+a_{1}\right)\left(1+b_{1}\right)} \sum_{j=1}^{\infty}\left|a_{j}-b_{j}\right| \sum_{k=j}^{\infty} 2^{-k} \\
& \quad=\frac{2}{\left(1+a_{1}\right)\left(1+b_{1}\right)} d\left(\left(a_{n}\right),\left(b_{n}\right)\right) . \tag{10}
\end{align*}
$$

If now $\left(a_{n}\right),\left(b_{n}\right) \in \mathcal{C}$, we have $a_{1}, b_{1} \geq \frac{1}{2}$, and hence $\frac{2}{\left(1+a_{1}\right)\left(1+b_{1}\right)} \leq \frac{8}{9}$ so that

$$
d\left(T\left(a_{n}\right), T\left(b_{n}\right)\right) \leq \frac{8}{9} d\left(\left(a_{n}\right),\left(b_{n}\right)\right) \quad \text { for } \quad\left(a_{n}\right),\left(b_{n}\right) \in \mathcal{C}
$$

showing that T is a contraction on \mathcal{C}. Since T maps \mathcal{K} into \mathcal{C} any fixed point of T on \mathcal{K} must belong to \mathcal{C}, and $T: \mathcal{C} \rightarrow \mathcal{C}$ has a unique fixed point by Banach's fixed point theorem, and this must be the sequence (m_{n}) determined by (3). We also see that for any $\xi=\left(a_{n}\right) \in \mathcal{K}$ the iterates $T^{n+1}(\xi)=T^{n}(T(\xi))$ converge to the fixed point $\left(m_{n}\right)$, which finishes the proof of Theorem 1.2.

Proposition 2.2 The compact set \mathcal{H} defined in (6) has diameter $\operatorname{diam}(\mathcal{H})=1$ and the only two points $a, b \in \mathcal{H}$ for which $d(a, b)=1$ are $\{a, b\}=\{\underline{0}, \underline{1}\}$.

Proof. It is easy to see that

$$
1=d(\underline{0}, \underline{1}) \leq \operatorname{diam}(\mathcal{H}) \leq 1,
$$

so we only have to prove that if $d(a, b)=1$ for some $a=\left(a_{n}\right), b=\left(b_{n}\right)$ from \mathcal{H}, then $\{a, b\}=\{\underline{0}, \underline{1}\}$. Supposing that

$$
\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right|=1
$$

then necessarily $\left|a_{n}-b_{n}\right|=1$ for all $n \geq 1$. In particular, for each n necessarily a_{n} and b_{n} are either 0 and 1 or these numbers reversed. Assume now that $a_{1}=$ $0, b_{1}=1$. Since $a_{n}=\int_{0}^{1} x^{n} d \mu(x)$ for a probability measure μ, the condition $a_{1}=0$ forces μ to be the Dirac measure δ_{0} with unit mass concentrated at 0 , and hence $a_{n}=0$ for all $n \geq 1$. This shows that $a=\underline{0}$ and $b=\underline{1}$.

References

[1] Akhiezer, N. I., The classical moment problem. Oliver and Boyd, Edinburgh, 1965.
[2] Berg, C., Durán, A. J., Some transformations of Hausdorff moment sequences and Harmonic numbers, Canad. J. Math. 57 (2005), 941-960.
[3] Berg, C., Durán, A. J., The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function, Math. Scand. 103 (2008), 11-39.
[4] Berg, C., Durán, A. J., Iteration of the rational function $z-1 / z$ and a Hausdorff moment sequence, Expo. Math. 26 (2008), 375-385.
[5] Smart, D. R., Fixed point theorems. Cambridge University Press, Cambridge, 1974.

Christian Berg
Institute of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 København Ø, Denmark
E-mail berg@math.ku.dk
Maryam Beygmohammadi
Department of Mathematics
Islamic Azad University-Kermanshah branch
Kermanshah, Iran
E-mail maryambmohamadi@mathdep.iust.ac.ir

[^0]: *Corresponding author

