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To a sequence (sn)n>o of real numbers we associate the sequence of Hankel matrices
Hn = (8i+5),0 < 4,5 < n. We prove that if the corresponding sequence of Hankel
determinants D,, = det H,, satisfy D,, > 0 for n < no while D,, = 0 for n > ng, then
all Hankel matrices are positive semi-definite, and in particular (s,) is the sequence
of moments of a discrete measure concentrated in ng points on the real line. We stress
that the conditions D,, > 0 for all n do not imply the positive semi-definiteness of the
Hankel matrices.
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1. Introduction and results

Given a sequence of real numbers (sp)n>0, it was proved by Hamburger [4] that it
can be represented as

sn:/oo " du(z), n>0 (1)

—00

with a positive measure p on the real line, if and only if all the Hankel matrices
Hn:(sl-Fj)aOSZv]Sn? TLZO (2)

are positive semi-definite. The sequences (1) are called Hamburger moment se-
quences or positive definite sequences on Ng = {0, 1, ...} considered as an additive
semigroup under addition, cf. [2].

Given a Hamburger moment sequence it is clear that all the Hankel determinants
D,, = |H,| are non-negative. It is also easy to see (cf. Lemma 2.1 and its proof)
that only two possibilities can occur: Either D, > 0 for n = 0,1,... and in this
case any p satisfying (1) has infinite support, or there exists ng such that D,, > 0
for n < ng and D, = 0 for n > ng. In this latter case p from (1) is uniquely
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determined and is a discrete measure concentrated in ng points on the real axis.
(If ng = 0 and D,, = 0 for all n, then p = 0 is concentrated in the empty set.)
The purpose of the present paper is to prove the following converse result:

THEOREM 1.1 Let (sy,) be a real sequence and assume that the sequence of Hankel
determinants Dy, = |Hy| satisfy D, > 0,n < ng, D, = 0,n > ng. Then (s,) is
a Hamburger moment sequence (and then necessarily the moments of a uniquely
determined measure |1 concentrated in ng points).

Remark 1 1t follows from a general theorem about the leading principal minors
of real symmetric matrices, that if D,, > 0 for n < ng, then the Hankel matrix H,,
is positive definite. For a proof see e.g. [2, p.70]. On the other hand, one cannot
conclude that H,, is positive semi-definite, if it is just known that D,, > 0 for n <
ng. For the sequence 1,1,1,1,0,0,... we have Dy = D3 =1,D; =Dy =D, =0
for n > 4, but the Hankel matrix Hs has a negative eigenvalue. It therefore seems
to be of interest that Theorem 1.1 holds.!

Remark 2 1t follows from the proof of Theorem 1.1 that the uniquely determined
measure p is concentrated in the zeros of the polynomial p,, given by (7).

Remark 3 Under the assumptions of Theorem 1.1 the infinite Hankel matrix
7'[(X): (Si—|—j)7 03%]

has rank ng, cf. Chapter XV, Section 10 in [3].
The following example illustrates Theorem 1.1.

ExaMPLE 1 Let a > 1 and define s9,, = s9,01 = a’*,n =0, 1,.... Then the Hankel
determinants are Dy = 1,D1 = a — 1 and D,, = 0 for n > 2 because the first and
third row are proportional. Therefore (s,) is a Hamburger moment sequence, and
the measure is

Ja-—1 Va+1
n = 2\/21 57\/54‘72\/6 (5\/5

Here and in the following d, denoted the Dirac measure with mass 1 concentrated
in x € R.

Similarly, for 0 < a <1, sg =1, 59,1 = S2,, = a@”*,n > 1 is a Hamburger moment
sequence of the measure

1—+/a 1++/a
n = 5 5_\/54‘ 9 5\/6

2. Proofs

Consider a discrete measure

j=1

IThe authors thank Alan Sokal for having mentioned the question.
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where m; > 0 and 71 < w9 < ... < x, are n points on the real axis. Denote the
moments

n

sk—/xkdu(m)—ijmé?, k=0,1,..., (4)

=1

and let Hy, Dy denote the corresponding Hankel matrices and determinants. The
following Lemma is well-known, but for the benefit of the reader we give a short
proof.

LEMMA 2.1 The Hankel determinants Dy of the moment sequence (4) satisfy
Dy >0 for k <n and Dy =0 for k > n.

Proof. Let
n
P(x) = Z a;x’
j=0
be the monic polynomial (i.e., a, = 1) of degree n with zeros x1,...,x,. If a =
(ag, - . .,ay) is the row vector of coefficients of P(z), then we have

/P2(m) du(z) = aHal =0,

where ¢ denotes transpose, so a’ is a column vector. It follows that D,, = 0. If p > 1

and 0, is the zero vector in RP, then also
(a,0p)Hptp(a, Op)t =0,

and it follows that D, 4, =0 for all p > 1.
On the other hand, if a Hamburger moment sequence (1) has Dy = 0 for some
k, then there exists b = (b, ...,b;) € R¥T1\ {0} such that bH; = 0. Defining

we find
0 = bH;b' = / Q*(x) du(z),

showing that u is concentrated in the zeros of ). Therefore pu is a discrete measure
having at most k& mass-points. This remark shows that the Hankel determinants of
(4) satisfy Dy > 0 for k < n. O

LEMMA 2.2  Consider n + 1 non-negative integers 0 < ¢1 < ca < ... < Cpr1, let
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p > 1 be an integer and define the (n+ 1) X (n + p)-matriz of moments (4)

ey Sei+1 7t Sei+ntp—1
Sco Sco+1 7t Scantp-1
Hn+1,n+p = . .
Scpi1 Senp1+1 "7 Scppitntp—1

For any (p — 1) x (n + p)-matriz Ap_1 n4+p we have

Hn+1,n+p

D=
Ap—l,n+p

=0.

Proof. By multilinearity of a determinant as function of the rows we have

= J
D = E mj, --omy xSt
n )
4 ' J1 In+1 ;1 In+1 Ap—l,n—{—p
Jryendni1=1

where J is the (n + 1) X (n + p)-matrix with rows
(1,le,x§l,...,x§l+f7‘1) 1=1,2,....,n+1,

and since there are n points x1, . .., Ty, two of these rows will always be equal. This
shows that each determinant in the sum vanishes and therefore D = 0. ]

With n,p as above we now consider a determinant of a matrix (a;;),0 < 4,j <
n + p of size n + p 4+ 1 of the following special form

S0 " Sn—1 Sp " Snip-1 Sn4p
Sp—1°"* S2pn—2 S2n—1 " S2n4p—2 S2n4p—1
Myip=1| 50 -+ Son-1 Son "+ S2nip-1 T ,
Sn41 " Son S2n41 " x1 Gn+1,n+p
Sp4p " S2ndp—1 Tp - Anipntp—1 Andpntp

which has Hankel structure to begin with, i.e., a; ; = s;4; for i+j < 2n+p—1. The
elements s, are given by (4). For simplicity we have called anyjnip—j = j,J =
0,1,...,p.

LEMMA 2.3
P
My yp = (_1)p(p+1)/2anl H(xj — S2n4p)-
§=0
In particular, the determinant is independent of a; ; with i+ j > 2n +p+ 1.

Proof. We first observe that the determinant vanishes if we put g = s2,,4p, because
then the first n + 1 rows in M,,, have the structure of the matrix of Lemma 2.2
withe;j=7-1,7=1,...,n+ 1.
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Next we expand the determinant after the last column leading to

n-+p

Myip =) (=) Py 4,
1=0

where ; is the element in row number [ + 1 and the last column, and A; is the
corresponding minor, i.e., the determinant obtained by deleting row number [ + 1
and the last column. Notice that A; = 0 for [ = n+ 1,...,n + p because of
Lemma 2.2. Therefore the numbers a, 4k ,4p with £ = 1,...,p do not contribute
to the determinant.

For [ =0,...,n the determinant A; has the form

Scl N SclJrn [ Scl+n+p71
862 oo 302+n o 502+n+p71
Scn N Sanrn [ scn+n+p71

Sn+1 " S2n41 a1

3n+p NN :L'p [ an+p,n+p71

for integers c; satisfying 0 <c; <... < ¢, < n.

Each of these determinants vanish for 1 = s2,,1, again by Lemma 2.2, so conse-
quently M,, 4, also vanishes for x; = s2,4,. As above we see that the determinant
does not depend on a4k nip—1 for k=2,...,p.

The argument can now be repeated and we see that M,,, vanishes for x;, = s2,4p
when £ =0,...,p.

This implies that

p
Mpip = K H(l’j — S2ntp);
§=0

where K is the coefficient to zgx1 ... ), when the determinant is written as

n+p
Myqp = Z sign(o) H aj.o(5)>
o 7=0
and the sum is over all permutations o of 0,1,...,n + p.

The terms containing the product zozi ...z, requires the permutations o in-
volved to satisfy o(n+1) =n+p—1,l =0,...,p. This yields a permutation of
n,n+1,...,n+ p reversing the order hence of sign (—1)p(p+1)/2, while o yields an
arbitrary permutation of 0,1,...,n — 1. This shows that K = (—1)P@+t1)/2pD, ;.

O

Proof of Theorem 1.1.

The proof of Theorem 1.1 is obvious if ng = 0, and if ng = 1 the proof is more
elementary than in the general case, so we think it is worth giving it separately.
Without loss of generality we assume sg = Dy = 1, and call s; = a. From D1 =0
we then get that s, = a?, and we have to prove that s, = a” for n > 3.
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Suppose now that it has been established that s, = aF for k < n, where n > 2.
By assumption we have

1 a - a" 1 a"
a a* -+ a" Sn+1
0=D,=| : : (5)
a1l A" e s9n_9 Son1
a" Sp41 v San—1 Son

Expanding the determinant after the last column, we notice that only the first two

terms will appear because the minors for the elements s,,4;,j = 2,...,n have two
proportional rows (1,a,...,a" ') and (a,a?,...,a"). Therefore
a a® a™ 1 a - a™!
2 3 2 3
a a Sn+1 a a Sn+1
Dy = (—1)"*2a" (~1)™ s | ,
a" Spy1 Son—1 a Spy1 v S2n—1
hence
1 a a1t
a2 a3 .. Sn+l

a" Spq1 v Sop—1

The last n x n-determinant is expanded after the last column and the same proce-
dure as before leads to

1 a - a"?
3 4
a a ... 8 1
-1 1 2 n-+
D, = (1)1 (" = sp11)
a" Spi1 v Sap—2

Going on like this we finally get

1 a

_ (_1\nFn=D)442 (ntl n—1
D, ( 1) (a 5n+1) a™ Snt1

_ (_1)n(n+1)/2 (an—I—l _ 5n+1)n,

and since D,, = 0 we obtain that s,4+1 = a1

We now go to the general case, where ng > 2 is arbitrary.
We have already remarked that the Hankel matrix H,,—1 is positive definite, and
we claim that H,, is positive semi-definite. In fact, if for ¢ > 0 we define

Sk(€> = Sk, k 7é 2”07 S2nq (8) = S2n, +é, (6)

and denote the corresponding Hankel matrices and determinants Hy(g), Di(e),
then

Hi(e) = Hg, 0 < k <ng, Dp,(e) =Dy, +eDp,—1 =€Dp,—1 > 0.
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This shows that #,,(g) is positive definite and letting e tend to 0 we obtain that
H, is positive semi-definite.

The positive semi-definiteness of the Hankel matrix #,, makes it possible to
define a semi-inner product on the vector space II,,, of polynomials of degree < ng
by defining (27, z%) = s, 0 < j, k < ng. The restriction of (-,-) to Il,,—1 is an
ordinary inner product and the formulas

80 Sl e Sn
po(z) =1, pu(x)=| = * |, 1<n<ng (7)
Sn—1S8n " S2n—1
1 :L‘ e xn

define orthogonal polynomials, cf. [1, Ch. 1]. While p,,(z)//Dy,—1D,, are orthonor-
mal polynomials for n < ng, it is not possible to normalize p,, since D,, = 0.
The theory of Gaussian quadratures remains valid for the polynomials p,,n < ng,
cf. [1, Ch.1], so p,, has ng simple real zeros and there is a discrete measure p
concentrated in these zeros such that

sk:/mkdu(x), 0<k<2ny—1. (8)

To finish the proof of Theorem 1.1 we introduce the moments

S = /l‘k du(z), k>0 9)

of p and shall prove that s = 5 for all £ > 0. We already know this for k& < 2ny,
and we shall now prove that sg,, = S2,,. Since p is concentrated in the zeros of
Dn, We get

[ 2, duta) =0, (10)

If (D},) denotes the sequence of Hankel determinants of the moment sequence
(5), we get from Lemma 2.1 that Dy = 0 for k > ny.

Expanding the determinants D, and Eno after the last column and using that
they are both equal to 0, we get

32n0Dn071 = §2ngDn0717
hence sgp, = 52p, .

Assume now that s = 5 for k < 2ng+ p — 1 for some p > 1, and let us prove

that S2no+p = §2n0+p-
The Hankel determinant D, , is then a special case of the determinant M, 4,
of Lemma 2.3, and it follows that

Dyytp = (—1)p(p+1)/2Dno—1 (S2n0+p — §2no+p)p+1

Since Dy, 4, = 0 by hypothesis, we conclude that s2,,4+p = S2p04p. U
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3. Applications to Stieltjes moment sequences

A sequence of real numbers (s;,),>0 is called a Stieltjes moment sequence, if it can
be represented as

Sn :/ " du(x), n>0 (11)
0

with a positive measure p on the half-line [0, 00). In this case the shifted sequence
(Sn+1)n>0 is @ moment sequence of the positive measure x du(z). The fundamental
work of Stieltjes [5] characterized Stieltjes moment sequences by positive semi-
definiteness of the Hankel matrices

Hp = (5i45),0<i,5 <n, HP =(si4j+1),0<i,j<n, n>0. (12)

In the language of Hamburger moment sequences this shows that (sp)n>0 is a
Stieltjes moment sequence if and only if (s,)p>0 and (sp+1)n>0 are Hamburger
moment sequences. It is remarkable that Hamburger’s work appeared a quarter of
a century after Stieltjes’ work.

In the following we also need the Hankel determinants

DV = 1P|, n>0. (13)

If the discrete measure p given by (3) is concentrated on the half-line, i.e., 0 < 21 <

To < ... < T, then by Lemma 2.1 the Hankel determinants DS)
measure

of the discrete

xdu(x) = Z m;x 0y,
j=1

satisfy
pV>00<k<n, DM =0 k>n
if 0 < x1, and
DY>o00<k<n-1, DM =0k>n—1
if x1 =0.

A Stieltjes version of Theorem 1.1 takes the form

THEOREM 3.1 Let (s,) be a real sequence such that the Hankel determinants
(1) '
D, Dy’ satisfy

Dy, >0, n<ng,Dy, =0, n>ny, D,(f) > 0, n<n1,D£L1):O, n>n;j.

Then (s,) is a Stieltjes moment sequence of a measure

= Z M0z, (14)
j=1



July 10, 2014

Linear and Multilinear Algebra berg-szwarc

withm; >0 and 0 <z <22 < ... < T,
If 1 =0 then ny = ng — 1, and if x1 > 0 then n1 = nyg.

Proof. By Theorem 1.1 we get that (s,) and (s,+1) are Hamburger moment se-
quences. By Stieltjes’ Theorem (s;,) is a Stieltjes moment sequence and by Theo-
rem 1.1 the representing measure is necessarily of the form (14). O

Remark 4 The case 1 > 0 is Theorem 18 in Chapter XV, Section 16 of [3],
obtained in a different way. The conditions of Theorem 18 are:

(i) The matrices Hp,—1, 7-[,(110)_1 are positive definite,
(ii) The infinite matrix Ho, has rank nyg.

These conditions are easily seen to be equivalent to the conditions of Theorem 3.1
in the case x; > 0. In fact, by Theorem 7, Chapter XV, Section 10 in [3], (ii)

implies that the rank of Hg})) is < ng, but since 7—[5110)71 is positive definite by (i),
the rank cannot be < ng.
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