The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function *

Christian Berg ${ }^{\dagger}$ and Antonio J. Durán ${ }^{\ddagger}$
\dagger Institut for Matematiske Fag. Københavns Universitet
Universitetsparken 5; DK-2100 København ø, Denmark. berg@math.ku.dk
\ddagger Departamento de Análisis Matemático. Universidad de Sevilla
Apdo (P. O. BOX) 1160. 41080 Sevilla. Spain. duran@us.es

January 25, 2008

Abstract

We study the fixed point for a non-linear transformation in the set of Hausdorff moment sequences, defined by the formula: $T\left(\left(a_{n}\right)\right)_{n}=1 /\left(a_{0}+\right.$ $\left.\cdots+a_{n}\right)$. We determine the corresponding measure μ, which has an increasing and convex density on $] 0,1[$, and we study some analytic functions related to it. The Mellin transform F of μ extends to a meromorphic function in the whole complex plane. It can be characterized in analogy with the Gamma function as the unique log-convex function on] $-1, \infty$ [satisfying $F(0)=1$ and the functional equation $1 / F(s)=1 / F(s+1)-F(s+1), s>$ -1 .

2000 Mathematics Subject Classification: primary 44A60; secondary 30D05. Keywords: Hausdorff moment sequence, iteration of rational functions

1 Introduction and main results

Hausdorff moment sequences are sequences of the form $\int_{0}^{1} t^{n} d \nu(t), n \geq 0$, where ν is a positive measure on $[0,1]$. Hausdorff moment sequences were characterized as completely monotonic sequences in a fundamental paper by Hausdorff,

[^0]see [17]. For a recent study of Hausdorff moment sequences see [14],[15]. Hausdorff moment sequences can also be characterized as bounded Stieltjes moment sequences, where Stieltjes moment sequences are of the form $\int_{0}^{\infty} t^{n} d \nu(t), n \geq 0$ for a positive measure ν on $[0, \infty[$. For a treatment of these concepts and the more general Hamburger moment problem see the monograph by Akhiezer [1].

In [8] the authors introduced a non-linear multiplicative transformation from Hausdorff moment sequences to Stieltjes moment sequences. In [9] we introduced a non-linear transformation T of the set of Hausdorff moment sequences into itself by the formula:

$$
\begin{equation*}
T\left(\left(a_{n}\right)\right)_{n}=1 /\left(a_{0}+a_{1}+\cdots+a_{n}\right), \quad n \geq 0 \tag{1.1}
\end{equation*}
$$

The corresponding transformation of positive measures on $[0,1]$ is denoted \widehat{T}. We recall from [9] that if $\nu \neq 0$, then $\widehat{T}(\nu)(\{0\})=0$ and

$$
\begin{equation*}
\int_{0}^{1} \frac{1-t^{z+1}}{1-t} d \nu(t) \int_{0}^{1} t^{z} d \widehat{T}(\nu)(t)=1 \text { for } \Re z \geq 0 \tag{1.2}
\end{equation*}
$$

Assuming $\Re z>0$ we can consider $t^{z}=\exp (z \log t)$ as a continuous function on $[0,1]$ with value 0 for $t=0$. Likewise $\left(1-t^{z}\right) /(1-t)$ is a continuous function for $t \in[0,1]$ with value z for $t=1$. If $\Re z=0, z \neq 0$ the function t^{z} is only considered for $t>0$, so it is important that $\widehat{T}(\nu)$ has no mass at zero. Finally $t^{0} \equiv 1$. It is clear that if ν is a probability measure, then so is $\widehat{T}(\nu)$, and in this way we get a transformation of the convex set of normalized Hausdorff moment sequences (i.e. $a_{0}=1$) as well as a transformation of the set of probability measures on $[0,1]$. By Kakutani's theorem the transformation has a fixed point, and by (1.1) it is clear that a fixed point $\left(m_{n}\right)_{n}$ is uniquely determined by the recursive equation

$$
\begin{equation*}
m_{0}=1, \quad\left(1+m_{1}+\cdots+m_{n}\right) m_{n}=1, \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
m_{n+1}^{2}+\frac{m_{n+1}}{m_{n}}-1=0 \tag{1.4}
\end{equation*}
$$

giving

$$
m_{1}=\frac{-1+\sqrt{5}}{2}, \quad m_{2}=\frac{\sqrt{22+2 \sqrt{5}}-\sqrt{5}-1}{4}, \cdots
$$

The purpose of this paper is to study the Hausdorff moment sequence $\left(m_{n}\right)_{n}$ and to determine its associated probability measure μ, called the fixed point measure.

We already know that $\mu(\{0\})=0$ because $\mu=\widehat{T}(\mu)$, but it is also convenient to notice that $\mu(\{1\})=0$. It is clear that $\left(m_{n}\right)_{n}$ decreases to $c=\mu(\{1\}) \geq 0$, hence $m_{0}+m_{1}+\ldots+m_{n} \geq(n+1) m_{n}$. By (1.3) we get $1 \geq(n+1) m_{n}^{2} \geq(n+1) c^{2}$, showing that $c=0$.

In Section 4 we prove much more, namely

$$
\begin{equation*}
m_{n} \sim 1 / \sqrt{2 n} \text { for } n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

We will study μ by determining what we call the Bernstein transform

$$
\begin{equation*}
f(z)=\mathcal{B}(\mu)(z)=\int_{0}^{1} \frac{1-t^{z}}{1-t} d \mu(t), \quad \Re z>0 \tag{1.6}
\end{equation*}
$$

as well as the Mellin transform

$$
\begin{equation*}
F(z)=\mathcal{M}(\mu)(z)=\int_{0}^{1} t^{z} d \mu(t), \quad \Re z>0 . \tag{1.7}
\end{equation*}
$$

These functions are clearly holomorphic in the half-plane $\Re z>0$ and continuous in $\Re z \geq 0$, the latter because $\mu(\{0\})=0$.

As a first result we prove:
Theorem 1.1. The functions f, F can be extended to meromorphic functions in \mathbb{C} and they satisfy

$$
\begin{gather*}
f(z+1) F(z)=1, \quad z \in \mathbb{C} \tag{1.8}\\
f(z)=f(z+1)-\frac{1}{f(z+1)}, \quad z \in \mathbb{C} \tag{1.9}
\end{gather*}
$$

They are holomorphic in $\Re z>-1$. Furthermore $z=-1$ is a pole of f and F.
The fixed point measure μ has the properties

$$
\begin{equation*}
\int_{0}^{1} t^{x} d \mu(t)<\infty, \quad x>-1 ; \quad \int_{0}^{1} \frac{d \mu(t)}{t}=\infty \tag{1.10}
\end{equation*}
$$

Proof. By (1.2) with ν replaced by the fixed point measure μ we get $f(z+$ 1) $F(z)=1$ for $\Re z \geq 0$, showing in particular that $f(z+1)$ and $F(z)$ are different from zero for $\Re z \geq 0$. For $\Re z \geq 0$ we get by (1.6)

$$
f(z+1)-f(z)=\int_{0}^{1} \frac{t^{z}-t^{z+1}}{1-t} d \mu(t)=\int_{0}^{1} t^{z} d \mu(t)=F(z)=\frac{1}{f(z+1)},
$$

which shows (1.9) for these values of z.
We remark that $\Re f(z)>0$ and in particular $f(z) \neq 0$ for $\Re z>0$. This follows by (1.6) because $\Re\left(t^{z}\right) \leq\left|t^{z}\right|<1$ for $0<t<1$ and $\Re z>0$.

We next use equation (1.9) to define $f(z)$ for $\Re z \geq-1$, yielding a holomorphic continuation of f to the open half-plane $\Re z>-1$ because $f(z+1) \neq 0$.

Using equation (1.9) once more we obtain a meromorphic extension of f to the half-plane $\Re z>-2$. There will be poles at points z for which $f(z+1)=0$, in particular for $z=-1$ because $f(0)=0$.

Repeated use of equation (1.9) makes it possible to obtain a meromorphic extension to \mathbb{C}. At each step, z will be a pole if $z+1$ is a zero or a pole.

At this stage we cannot give a complete picture of the poles of f, but we return to that in Theorem 1.4.

Having extended f to a meromorphic function in \mathbb{C} such that (1.9) holds, we extend F to a meromorphic function in \mathbb{C} such that equation (1.8) holds.

Let us notice that also F has no poles in $\Re z>-1$ because $f(z+1) \neq 0$. Moreover $z=-1$ is a pole of F because $f(0)=0$.

By a classical result (going back to Landau for Dirichlet series), see [23, p. 58], we then get equation (1.10).

The function f can be characterized in analogy with the Bohr-Mollerup theorem about the Gamma function, cf. [2]. More precisely we have:

Theorem 1.2. The Bernstein transform (1.6) of the fixed point measure is a function $f:] 0, \infty[\rightarrow] 0, \infty[$ with the following properties
(i) $f(1)=1$,
(ii) $\log (1 / f)$ is convex,
(iii) $f(s)=f(s+1)-1 / f(s+1), \quad s>0$.

Conversely, if $\tilde{f}:] 0, \infty[\rightarrow] 0, \infty[$ satisfies (i)-(iii), then it is equal to f and for $0<s \leq 1$ we have

$$
\begin{equation*}
\tilde{f}(s)=\lim _{n \rightarrow \infty} \psi^{\circ n}\left(\frac{1}{m_{n-1}}\left(\frac{m_{n-1}}{m_{n}}\right)^{s}\right) \tag{1.11}
\end{equation*}
$$

where ψ is the rational function $\psi(z)=z-1 / z$. In particular (1.11) holds for f.
Here and elsewhere we use the notation for composition of mappings $\psi^{01}(z)=$ $\psi(z), \psi^{\circ n}(z)=\psi\left(\psi^{\circ(n-1)}(z)\right), n \geq 2$. Theorem 1.2 will be proved in Section 3. Using the relation $f(s+1) F(s)=1$ it is clear that Theorem 1.2 can be reformulated to a characterization of F :

Theorem 1.3. There exists one and only one function $F:]-1, \infty[\rightarrow] 0, \infty[$ with the following properties
(i) $F(0)=1$,
(ii) F is log-convex,
(iii) $1 / F(s)=1 / F(s+1)-F(s+1), \quad s>-1$,
namely F is the Mellin transform

$$
F(s)=\int_{0}^{1} t^{s} d \mu(t), \quad s>-1
$$

of the fixed point measure.

Let \mathcal{H} denote the set of normalized Hausdorff moment sequences considered as a subset of $[0,1]^{\mathbb{N}_{0}}$ with the product topology, $\mathbb{N}_{0}=\{0,1, \ldots\}$. In Section 2 we prove that the fixed point $\mathbf{m}=\left(m_{n}\right)_{n}$ is attractive in the sense that for each $\mathbf{a}=\left(a_{n}\right)_{n} \in \mathcal{H}$ the sequence of iterates $T^{\circ n}(\mathbf{a})$ converges to \mathbf{m} in \mathcal{H}. Focusing on probability measures we see that every probability measure τ on $[0,1]$ belongs to the domain of attraction of the fixed point measure μ in the sense that $\lim _{n \rightarrow \infty} \widehat{T}{ }^{\circ n}(\tau)=\mu$ weakly. For $q \in \mathbb{R}$ we denote by δ_{q} the probability measure with mass 1 concentrated at the point q. By specializing the iteration using $\tau=\delta_{0}$ we prove the following result:

Theorem 1.4. Let f and F be the meromorphic functions in \mathbb{C} extending (1.6) and (1.7) respectively. The zeros and poles of f are all simple and are contained in $]-\infty, 0]$. The zeros of f are denoted $\xi_{0}=0$ and $\xi_{p, k}, p=1,2, \ldots, k=1, \ldots, 2^{p-1}$ with $-p-1<\xi_{p, 1}<\xi_{p, 2}<\cdots<\xi_{p, 2^{p-1}}<-p$.

The poles of f are $-l, \xi_{p, k}-l, l=1,2, \ldots$ with p, k as above.
Defining

$$
\begin{equation*}
\rho_{0}=\frac{1}{f^{\prime}(0)} ; \quad \rho_{p, k}=\frac{1}{f^{\prime}\left(\xi_{p, k}\right)}, \tag{1.12}
\end{equation*}
$$

then $\rho_{0}, \rho_{p, k}>0$.
The following representations hold

$$
\begin{equation*}
F(z)=\frac{\rho_{0}}{z+1}+\sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \frac{\rho_{p, k}}{z+1-\xi_{p, k}} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z)=z \sum_{l=1}^{\infty}\left[\frac{\rho_{0}}{l(z+l)}+\sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \frac{\rho_{p, k}}{\left(l-\xi_{p, k}\right)\left(z+l-\xi_{p, k}\right)}\right] . \tag{1.14}
\end{equation*}
$$

The fixed point measure μ has an increasing and convex density \mathcal{D} with respect to Lebesgue measure on $] 0,1[$ and it is given by

$$
\begin{equation*}
\mathcal{D}(t)=\rho_{0}+\sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \rho_{p, k} t^{-\xi_{p, k}} . \tag{1.15}
\end{equation*}
$$

While clearly $\mathcal{D}(0)=\rho_{0}$, we prove in Theorem 3.9 that

$$
\mathcal{D}(t) \sim 1 / \sqrt{2 \pi(1-t)}, \quad t \rightarrow 1
$$

It is possible to obtain expressions for $\xi_{p, k}$ and $\rho_{p, k}$ in terms of the moments $\left(m_{n}\right)$. This is quite technical and is given in Theorem 3.8.

We recall that a function φ is called a Stieltjes transform if it can be written in the form

$$
\begin{equation*}
\left.\left.\varphi(z)=a+\int_{0}^{\infty} \frac{d \sigma(x)}{x+z}, \quad z \in \mathbb{C} \backslash\right]-\infty, 0\right] \tag{1.16}
\end{equation*}
$$

where $a \geq 0$ and σ is a positive measure on $[0, \infty[$ such that (1.16) makes sense, i.e. $\int 1 /(x+1) d \sigma(x)<\infty$.

It is clear that if $\sigma \neq 0$ then φ is strictly decreasing on $] 0, \infty[$ with $a=$ $\lim _{s \rightarrow \infty} \varphi(s)$. Furthermore, φ is holomorphic in $\left.\left.\mathbb{C} \backslash\right]-\infty, 0\right]$ with

$$
\frac{\Im \varphi(z)}{\Im z}<0 \text { for } z \in \mathbb{C} \backslash \mathbb{R}
$$

so in particular φ is never zero in $\mathbb{C} \backslash]-\infty, 0]$. The Stieltjes transforms we are going to consider will be meromorphic in \mathbb{C}. The function (1.16) is meromorphic precisely when the measure σ is discrete and the set of mass-points have no finite accumulation points, i.e. if and only if

$$
\varphi(z)=a+\sum_{p=0}^{\infty} \frac{\sigma_{p}}{z+\eta_{p}}
$$

with $\sigma_{p}>0,0 \leq \eta_{0}<\eta_{1}<\eta_{2}<\ldots \rightarrow \infty$.
For results about Stieltjes transforms see [10]. Stieltjes transforms are closely related to Pick functions, cf. [1],[16]. We recall that a Pick function is a holomorphic function $\varphi: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}$ satisfying

$$
\frac{\Im \varphi(z)}{\Im z} \geq 0 \text { for } z \in \mathbb{C} \backslash \mathbb{R}
$$

so if $\varphi \neq 0$ is a Stieltjes transform, then $1 / \varphi$ is a Pick function. Notice that $z /(z+a)$ is a Pick function for any $a>0$.

Corollary 1.5. In the notation of Theorem $1.4 f(z) / z$ and $F(z)$ are Stieltjes transforms and f is a Pick function.

We have used the name Bernstein transform for (1.6). In general, if ν is a positive finite measure on $] 0,1]$, we call

$$
\begin{equation*}
\mathcal{B}(\nu)(z)=\int_{0}^{1} \frac{1-t^{z}}{1-t} d \nu(t) \tag{1.17}
\end{equation*}
$$

the Bernstein transform of ν, because it is a Bernstein function in the terminology of [10]. In fact we can write

$$
\mathcal{B}(\nu)(z)=\nu(\{1\}) z+\int_{0}^{\infty}\left(1-e^{-x z}\right) d \lambda(x), \quad \Re z \geq 0
$$

where λ is defined as the image measure of $(1-t)^{-1}(\nu \mid] 0,1[)$ under $\log (1 / x)$ mapping $] 0,1[$ onto $] 0, \infty[$. We recall that λ is called the Lévy measure of the Bernstein function. It follows that $\mathcal{B}(\nu)^{\prime}$ is a completely monotonic function. Bernstein functions are very important in the theory of Lévy processes, see [11].

In section 4 we prove that $\left(m_{n}\right)_{n}$ is infinitely divisible in the sense that $\left(m_{n}^{\alpha}\right)_{n}$ is a Hausdorff moment sequence for all $\alpha>0$.

2 An iteration leading to the fixed point measure

For $n=0,1, \ldots$ we denote the moments of $\mu_{n}=\widehat{T}{ }^{\circ n}\left(\delta_{0}\right)$ by $\left(m_{n, k}\right)_{k}$, i.e.

$$
\int_{0}^{1} t^{k} d \widehat{T}^{\circ n}\left(\delta_{0}\right)(t)=m_{n, k},
$$

hence for $n \geq 1$

$$
\begin{equation*}
m_{n, k}=\left(m_{n-1,0}+m_{n-1,1}+\cdots+m_{n-1, k}\right)^{-1} \tag{2.1}
\end{equation*}
$$

Notice that $m_{n, 0}=1$ for all n and $m_{0, k}=\delta_{0 k}, m_{1, k}=1, m_{2, k}=1 /(k+1)$ for all k.

Lemma 2.1. For fixed $k=0,1, \ldots$ we have

$$
\begin{aligned}
& m_{0, k} \leq m_{2, k} \leq m_{4, k} \leq \ldots \\
& m_{1, k} \geq m_{3, k} \geq m_{5, k} \geq \ldots
\end{aligned}
$$

and these sequences have the same limit

$$
\lim _{n \rightarrow \infty} m_{2 n, k}=\lim _{n \rightarrow \infty} m_{2 n+1, k}=m_{k}
$$

where $\left(m_{k}\right)_{k}$ is the fixed point given by (1.3).
Furthermore, $\lim _{k \rightarrow \infty} m_{n, k}=0$ for $n \geq 2$, implying that $\mu_{n}=\widehat{T}^{\circ n}\left(\delta_{0}\right)$ has no mass at $t=1$ for $n \geq 2$.
Proof. Since the result is trivial for $k=0$, we assume that $k \geq 1$ and have

$$
0=m_{0, k}<m_{2, k}=\frac{1}{k+1} ; \quad 1=m_{1, k}>m_{3, k}=\frac{1}{\mathcal{H}_{k+1}}
$$

where $\mathcal{H}_{p}=1+\frac{1}{2}+\cdots+\frac{1}{p}$ is the p^{\prime} th harmonic number. We now get

$$
\frac{1}{m_{4, k}}=\sum_{j=0}^{k} m_{3, j}<k+1
$$

hence $m_{4, k}>m_{2, k}$. We next use this to conclude

$$
\frac{1}{m_{5, k}}=\sum_{j=0}^{k} m_{4, j}>\sum_{j=0}^{k} m_{2, j}=\frac{1}{m_{3, k}}
$$

hence $m_{5, k}<m_{3, k}$. It is clear that this procedure can be continued and reformulated to a proof by induction.

Defining

$$
m_{k}^{\prime}=\lim _{n \rightarrow \infty} m_{2 n, k}, \quad m_{k}^{\prime \prime}=\lim _{n \rightarrow \infty} m_{2 n+1, k},
$$

we get the following relations from (2.1)

$$
\begin{equation*}
m_{k}^{\prime}=\left(1+m_{1}^{\prime \prime}+\cdots+m_{k}^{\prime \prime}\right)^{-1}, \quad m_{k}^{\prime \prime}=\left(1+m_{1}^{\prime}+\cdots+m_{k}^{\prime}\right)^{-1}, \quad k \geq 1 \tag{2.2}
\end{equation*}
$$

because clearly $m_{0}^{\prime}=m_{0}^{\prime \prime}=m_{0}=1$. It follows easily by induction using (2.2) that $m_{k}^{\prime}=m_{k}^{\prime \prime}=m_{k}$ for all k.

Since $m_{2 n, k} \leq m_{k}$ we get $\lim _{k \rightarrow \infty} m_{2 n, k}=0$. Furthermore, for $n \geq 1$

$$
\frac{1}{m_{2 n+1, k}}=\sum_{j=0}^{k} m_{2 n, j} \geq \sum_{j=0}^{k} m_{2, j}=\mathcal{H}_{k+1}
$$

and hence $\lim _{k \rightarrow \infty} m_{2 n+1, k}=0$.
We recall that \mathcal{H} denotes the set of normalized Hausdorff moment sequences $\mathbf{a}=\left(a_{n}\right)_{n}$. The mapping $\nu \rightarrow\left(\int x^{n} d \nu(x)\right)_{n}$ from the set of probability measures ν on $[0,1]$ to \mathcal{H} is a homeomorphism between compact sets, when the set of probability measures carries the weak topology and \mathcal{H} carries the topology inherited from $[0,1]^{\mathbb{N}_{o}}$ equipped with the product topology.

Defining an order relation \leq on \mathcal{H} by writing $\mathbf{a} \leq \mathbf{b}$ if $a_{k} \leq b_{k}$ for $k=0,1, \ldots$, we easily get the following Lemma:

Lemma 2.2. The transformation $T: \mathcal{H} \rightarrow \mathcal{H}$ is decreasing, i.e.

$$
\mathbf{a} \leq \mathbf{b} \Rightarrow T(\mathbf{a}) \geq T(\mathbf{b}) .
$$

Theorem 2.3. For every $\mathbf{a} \in \mathcal{H}$ we have

$$
\lim _{n \rightarrow \infty} T^{\circ n}(\mathbf{a})=\mathbf{m}
$$

where $\mathbf{m}=\left(m_{n}\right)_{n}$ is the fixed point.
Proof. For $0 \leq q \leq 1$ we write $\underline{\boldsymbol{q}}=\left(q^{n}\right)_{n}$, hence $\underline{\mathbf{0}} \leq \mathbf{a} \leq \underline{\mathbf{1}}$ for every $\mathbf{a} \in \mathcal{H}$. By Lemma 2.2 we get

$$
\begin{gathered}
T^{\circ(2 n)}(\underline{\mathbf{0}}) \leq T^{\circ(2 n)}(\mathbf{a}) \leq T^{\circ(2 n)}(\underline{\mathbf{1}})=T^{\circ(2 n+1)}(\underline{\mathbf{0}}) \\
T^{\circ(2 n+1)}(\underline{\mathbf{0}}) \geq T^{\circ(2 n+1)}(\mathbf{a}) \geq T^{\circ(2 n+1)}(\underline{\mathbf{1}})=T^{\circ(2 n+2)}(\underline{\mathbf{0}}),
\end{gathered}
$$

and since $\lim _{n \rightarrow \infty} T^{\circ n}(\underline{\mathbf{0}})=\mathbf{m}$ by Lemma 2.1, we get

$$
\lim _{n \rightarrow \infty} T^{\circ(2 n)}(\mathbf{a})=\lim _{n \rightarrow \infty} T^{\circ(2 n+1)}(\mathbf{a})=\mathbf{m} .
$$

 measure τ on $[0,1]$. Specializing this to $\tau=\delta_{0}$ and using formula (1.2), we obtain:

Corollary 2.4. The iterated sequence $\mu_{n}=\widehat{T}^{\circ n}\left(\delta_{0}\right)$ of measures converges weakly to the fixed point measure μ and

$$
\begin{equation*}
\int_{0}^{1} \frac{1-t^{z+1}}{1-t} d \mu_{n}(t) \int_{0}^{1} t^{z} d \mu_{n+1}(t)=1, \quad \Re z \geq 0, n=0,1, \ldots \tag{2.3}
\end{equation*}
$$

We have $\mu_{0}=\delta_{0}, \mu_{1}=\delta_{1}, \mu_{2}=\chi_{] 0,1[}(t) d t$, where $\chi_{] 0,1[}(t)$ denotes the indicator function for the interval $] 0,1\left[\right.$. The Bernstein transform of the measure μ_{2} is

$$
\begin{equation*}
\mathcal{B}\left(\mu_{2}\right)(z)=\int_{0}^{1} \frac{1-t^{z}}{1-t} d t=\sum_{l=1}^{\infty}\left(\frac{1}{l}-\frac{1}{z+l}\right)=\Psi(z+1)+\gamma, \tag{2.4}
\end{equation*}
$$

where γ is Euler's constant and $\Psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$ is the Digamma function.
The measure μ_{3} has been calculated in [9] and the result is

$$
\mu_{3}=\left(\sum_{p=0}^{\infty} \alpha_{p} t^{-\xi_{p}}\right) \chi_{] 0,1[}(t) d t
$$

where $0=\xi_{0}>\xi_{1}>\xi_{2}>\ldots$ satisfy $-p-1<\xi_{p}<-p$ for $p=1,2, \ldots$ and $\alpha_{p}>0, p=0,1, \ldots$ More precisely, it was proved that ξ_{p} is the unique solution $x \in]-p-1,-p$ [of the equation $\Psi(1+x)=-\gamma$. Writing $\xi_{p}=-p-1+\delta_{p}$, we have $0<\delta_{p+1}<\delta_{p}<\frac{1}{2}, \delta_{p} \sim 1 / \log p, p \rightarrow \infty$. Furthermore, $\alpha_{p}=1 / \Psi^{\prime}\left(1+\xi_{p}\right) \sim$ $1 / \log ^{2} p$. Since $\sum \alpha_{p} /\left(1-\xi_{p}\right)=1$, we have the crude estimate $\alpha_{p}<p+2$.

We shall now prove that all the measures $\mu_{n}, n \geq 4$ have a form similar to that of μ_{3}.

Lemma 2.5. For $n \geq 3$ the measure μ_{n} has the form

$$
\begin{equation*}
\mu_{n}=\left(\rho_{0}^{(n)}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n, p)} \rho_{p, k}^{(n)} t^{-\xi_{p, k}^{(n)}}\right) \chi_{] 0,1[}(t) d t \tag{2.5}
\end{equation*}
$$

where for each $p \geq 1$
(i) $1 \leq N(n, p) \leq 2^{p-1}$,
(ii) $-p-1<\xi_{p, 1}^{(n)}<\xi_{p, 2}^{(n)}<\ldots<\xi_{p, N(n, p)}^{(n)}<-p$,
(iii) $0<\rho_{0}^{(n)}<1,0<\rho_{p, k}^{(n)}<p+2, \quad k=1, \ldots, N(n, p)$.

Proof. The result for $n=3$ follows from the description above from [9] with $\rho_{0}^{(3)}=\alpha_{0}, N(3, p)=1, \rho_{p, 1}^{(3)}=\alpha_{p}, \xi_{p, 1}^{(3)}=\xi_{p}$.

Assume now that the result holds for μ_{n} and let us prove it for μ_{n+1}. For $\Re z>0$ we then have

$$
\begin{gathered}
f_{n}(z):=\mathcal{B}\left(\mu_{n}\right)(z)=\int_{0}^{1} \frac{1-t^{z}}{1-t} d \mu_{n}(t)=\sum_{l=0}^{\infty} \int_{0}^{1}\left(t^{l}-t^{z+l}\right) d \mu_{n}(t) \\
=\sum_{l=0}^{\infty}\left[\rho_{0}^{(n)} \int_{0}^{1}\left(t^{l}-t^{z+l}\right) d t+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n, p)} \rho_{p, k}^{(n)} \int_{0}^{1}\left(t^{\left.\left.l-\xi_{p, k}^{(n)}-t^{z+l-\xi_{p, k}^{(n)}}\right) d t\right]}\right.\right. \\
=z \sum_{l=1}^{\infty}\left[\frac{\rho_{0}^{(n)}}{l(z+l)}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n, p)} \frac{\rho_{p, k}^{(n)}}{\left(l-\xi_{p, k}^{(n)}\right)\left(z+l-\xi_{p, k}^{(n)}\right)}\right]
\end{gathered}
$$

This shows that $f_{n}(z) / z$ is a Stieltjes transform and a meromorphic function in \mathbb{C} with poles at the points

$$
-l, \xi_{p, k}^{(n)}-l, \quad l=1,2, \ldots, p=1,2, \ldots, k=1, \ldots, N(n, p)
$$

so in the interval $]-p-1,-p]$ we have the poles

$$
\begin{equation*}
-p, \xi_{p-l, k}^{(n)}-l, k=1, \ldots, N(n, p-l), l=1, \ldots, p-1 . \tag{2.6}
\end{equation*}
$$

Since $f_{n}(x) / x$ is strictly decreasing between the poles, we conclude that there is precisely one simple zero between two consecutive poles. Let $N(n+1, p)$ denote the number of zeros of f_{n} in $]-p-1,-p\left[\right.$ and let $\xi_{p, k}^{(n+1)}$ denote the zeros numbered such that

$$
-p-1<\xi_{p, 1}^{(n+1)}<\xi_{p, 2}^{(n+1)}<\ldots<\xi_{p, N(n+1, p)}^{(n+1)}<-p
$$

In addition also $z=0$ is a zero of f_{n}. There are no zeros or poles in $\left.\left.\mathbb{C} \backslash\right]-\infty, 0\right]$ because $f_{n}(z) / z$ is a Stieltjes transform.

We are now ready to prove equation (2.5) and (i)-(iii) with n replaced by $n+1$.
(i). By (2.6) we get

$$
N(n+1, p) \leq 1+\sum_{l=1}^{p-1} N(n, p-l) \leq 1+\sum_{l=1}^{p-1} 2^{p-l-1}=2^{p-1} .
$$

(ii) is clear by definition, when we have proved that the measure μ_{n+1} has the form (2.5) using the numbers $\xi_{p, k}^{(n+1)}$.
(iii). By a classical result, see [19],[18],,[4], $1 / f_{n}(z)$ is a Stieltjes transform because $f_{n}(z) / z$ is so, i.e.

$$
\frac{1}{f_{n}(z)}=\frac{\rho_{0}^{(n+1)}}{z}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n+1, p)} \frac{\rho_{p, k}^{(n+1)}}{z-\xi_{p, k}^{(n+1)}},
$$

with $\rho_{0}^{(n+1)}, \rho_{p, k}^{(n+1)}>0$. There is no constant term in the Stieltjes representation because $f_{n}(x) \rightarrow \infty$ for $x \rightarrow \infty$. In fact, by Lemma 2.1 we get

$$
\lim _{x \rightarrow \infty} f_{n}(x)=\int_{0}^{1} \frac{d \mu_{n}(t)}{1-t}=\sum_{k=0}^{\infty} m_{n, k}=\lim _{k \rightarrow \infty} \frac{1}{m_{n+1, k}}=\infty
$$

Note that

$$
\begin{equation*}
\rho_{0}^{(n+1)}=\frac{1}{f_{n}^{\prime}(0)}, \quad \rho_{p, k}^{(n+1)}=\frac{1}{f_{n}^{\prime}\left(\xi_{p, k}^{(n+1)}\right)} \tag{2.7}
\end{equation*}
$$

By (2.3) we get

$$
\int_{0}^{1} t^{z} d \mu_{n+1}(t)=\frac{1}{f_{n}(z+1)}=\frac{\rho_{0}^{(n+1)}}{z+1}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n+1, p)} \frac{\rho_{p, k}^{(n+1)}}{z+1-\xi_{p, k}^{(n+1)}}
$$

which shows that

$$
\mu_{n+1}=\left(\rho_{0}^{(n+1)}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n+1, p)} \rho_{p, k}^{(n+1)} t^{-\xi_{p, k}^{(n+1)}}\right) \chi_{] 0,1[}(t) d t
$$

which is (2.5) with n replaced by $n+1$.
Since μ_{n+1} is a probability measure we get

$$
\rho_{0}^{(n+1)}<1, \quad \rho_{p, k}^{(n+1)} \int_{0}^{1} t^{-\xi_{p, k}^{(n+1)}} d t<1
$$

hence

$$
\rho_{p, k}^{(n+1)}<1-\xi_{p, k}^{(n+1)}<p+2 .
$$

Corollary 2.6. For $n \geq 0$ let $\mu_{n}=\widehat{T}$ on $\left(\delta_{0}\right)$. The functions $f_{n}=\mathcal{B}\left(\mu_{n}\right)$ are meromorphic Pick functions and the functions $F_{n}=\mathcal{M}\left(\mu_{n}\right)$ are meromorphic Stieltjes transforms satisfying

$$
\begin{equation*}
f_{n}(z+1) F_{n+1}(z)=1, \quad z \in \mathbb{C} . \tag{2.8}
\end{equation*}
$$

All zeros and poles of f_{n} are contained in $\left.]-\infty, 0\right]$.

Proof. We have $f_{0}(z)=1, f_{1}(z)=z, F_{0}(z)=0, F_{1}(z)=1, F_{2}(z)=1 /(z+1)$ and for $n \geq 2$ the result follows from Lemma 2.5 and its proof.

In order to obtain a limit result for $n \rightarrow \infty$ in Corollary 2.6 we need the following:

Lemma 2.7. Let $\left(\varphi_{n}\right)_{n}$ be a sequence of Stieltjes transforms of the form

$$
\varphi_{n}(z)=\int_{0}^{\infty} \frac{d \sigma_{n}(x)}{x+z}, \quad n=1,2, \ldots
$$

and assume that $\varphi_{n}(z) \rightarrow \varphi(z)$ uniformly on compact subsets of $\Re z>0$ for some holomorphic function φ on the right half-plane.

Then φ is a Stieltjes transform

$$
\varphi(z)=a+\int_{0}^{\infty} \frac{d \sigma(x)}{x+z}
$$

and $\lim _{n \rightarrow \infty} \sigma_{n}=\sigma$ vaguely. Furthermore, $\varphi_{n}(z) \rightarrow \varphi(z)$ uniformly on compact subsets of $\mathbb{C} \backslash]-\infty, 0]$.

Proof. Since

$$
\int_{0}^{\infty} \frac{d \sigma_{n}(x)}{x+1}=\varphi_{n}(1) \rightarrow \varphi(1)
$$

there exists a constant $K>0$ such that $\int 1 /(x+1) d \sigma_{n}(x) \leq K$ for all n. Let σ be a vague accumulation point for $\left(\sigma_{n}\right)_{n}$. Replacing $\left(\sigma_{n}\right)_{n}$ by a subsequence we can assume without loss of generality that $\sigma_{n} \rightarrow \sigma$ vaguely. By standard results in measure theory, cf. [7, Prop. 4.4], we have

$$
\int_{0}^{\infty} \frac{d \sigma(x)}{x+1} \leq K, \quad \lim _{n \rightarrow \infty} \int f d \sigma_{n}=\int f d \sigma
$$

for any continuous function $f:[0, \infty[\rightarrow \mathbb{C}$ which is $o(1 /(x+1))$ for $x \rightarrow \infty$. In particular

$$
\left.\left.\varphi_{n}^{\prime}(z)=-\int_{0}^{\infty} \frac{d \sigma_{n}(x)}{(x+z)^{2}} \rightarrow-\int_{0}^{\infty} \frac{d \sigma(x)}{(x+z)^{2}}, \quad z \in \mathbb{C} \backslash\right]-\infty, 0\right]
$$

showing that

$$
\varphi^{\prime}(z)=-\int_{0}^{\infty} \frac{d \sigma(x)}{(x+z)^{2}}, \quad \Re z>0
$$

hence

$$
\varphi(z)=a+\int_{0}^{\infty} \frac{d \sigma(x)}{x+z}, \quad \Re z>0
$$

for some constant a. Using $\varphi(x)=\lim _{n \rightarrow \infty} \varphi_{n}(x) \geq 0$ for $x>0$, we get $a \geq$ 0 , showing that φ is a Stieltjes transform. By uniqueness of a and σ in the
representation of φ as a Stieltjes transform, we conclude that the accumulation point σ is unique, hence $\lim _{n \rightarrow \infty} \sigma_{n}=\sigma$ vaguely.

It is now easy to see that $\left(\varphi_{n}(z)\right)_{n}$ is uniformly bounded on compact subsets of $\mathbb{C} \backslash]-\infty, 0]$, and the last assertion of Lemma 2.7 is a consequence of the Stieltjes-Vitali theorem.

Proof of Theorem 1.4.
From Lemma 2.5 follows that the Mellin transform $\mathcal{M}\left(\mu_{n}\right)(z)$ coincides on $\Re z \geq 0$ with the meromorphic function

$$
\frac{\rho_{0}^{(n)}}{z+1}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n, p)} \frac{\rho_{p, k}^{(n)}}{z+1-\xi_{p, k}^{(n)}}=\int_{0}^{\infty} \frac{d \sigma_{n}(x)}{x+z}
$$

where σ_{n} is the discrete measure

$$
\sigma_{n}=\rho_{0}^{(n)} \delta_{1}+\sum_{p=1}^{\infty} \sum_{k=1}^{N(n, p)} \rho_{p, k}^{(n)} \delta_{1-\xi_{p, k}^{(n)}} .
$$

Since $\mathcal{M}\left(\mu_{n}\right)(z) \rightarrow \mathcal{M}(\mu)(z)$ uniformly on compact subsets of $\Re z>0$ by Corollary 2.4, it follows by Lemma 2.7 that $\mathcal{M}(\mu)$ is a Stieltjes transform

$$
\mathcal{M}(\mu)(z)=a+\int_{0}^{\infty} \frac{d \sigma(x)}{x+z}
$$

and $\sigma_{n} \rightarrow \sigma$ vaguely. Since $\mathcal{M}(\mu)(k)=m_{k} \rightarrow 0$ as $k \rightarrow \infty$, we get $a=0$. Using that σ_{n} has at most 2^{p-1} mass points in $[p+1, p+2], p=1,2, \ldots$ and that $\rho_{p, k}^{(n)}<p+2$ by Lemma 2.5, we can write

$$
\sigma=\rho_{0} \delta_{1}+\sum_{p=1}^{\infty} \sum_{k=1}^{N_{p}} \rho_{p, k} \delta_{1-\xi_{p, k}},
$$

with $\rho_{0} \geq 0,0<\rho_{p, k} \leq p+2$ and $-p-1 \leq \xi_{p, 1}<\xi_{p, 2}<\cdots<\xi_{p, N_{p}}<-p$, where $N_{p} \leq 2^{p-1}$. At this stage we cannot confirm that $\rho_{0}>0,-p-1<\xi_{p, 1}, N_{p}=2^{p-1}$ and that $\xi_{p, k}$ are the zeros of f. The function

$$
\begin{equation*}
\frac{\rho_{0}}{z+1}+\sum_{p=1}^{\infty} \sum_{k=1}^{N_{p}} \frac{\rho_{p, k}}{z+1-\xi_{p, k}} \tag{2.9}
\end{equation*}
$$

is a meromorphic extension of $\mathcal{M}(\mu)$ and therefore equal to the meromorphic function F of Theorem 1.1. This shows that μ has the density

$$
\begin{equation*}
\mathcal{D}(t)=\rho_{0}+\sum_{p=1}^{\infty} \sum_{k=1}^{N_{p}} \rho_{p, k} t^{-\xi_{p, k}} \tag{2.10}
\end{equation*}
$$

which is clearly increasing and convex since $-\xi_{p, k} \geq 1$. Finally, by (2.10) the Bernstein transform $\mathcal{B}(\mu)$ has the meromorphic extension

$$
\begin{equation*}
z \sum_{l=1}^{\infty}\left[\frac{\rho_{0}}{l(z+l)}+\sum_{p=1}^{\infty} \sum_{k=1}^{N_{p}} \frac{\rho_{p, k}}{\left(l-\xi_{p, k}\right)\left(z+l-\xi_{p, k}\right)}\right] \tag{2.11}
\end{equation*}
$$

which is a Pick function. The function given by (2.11) equals the meromorphic function f of Theorem 1.1. By Lemma 2.7 applied to the Stieltjes transforms $f_{n}(z) / z$, we conclude that $f_{n}(z) \rightarrow f(z)$ uniformly on compact subsets of $\left.\mathbb{C} \backslash\right]-$ $\infty, 0]$.

We already know from Theorem 1.1 that F has a pole at $z=-1$ and hence $\rho_{0}>0$. The remaining poles of F are $\xi_{p, k}-1$, so by formula (1.8) the zeros of f are $z=0$ and $z=\xi_{p, k}$. By the expression (2.11) for f the poles of f are $-l, \xi_{p, k}-l$ and therefore $-p-1<\xi_{p, 1}, p=1,2, \ldots$.

We have now proved that the zeros and poles of f are all simple and are contained in $]-\infty, 0]$. Since $f(z+1) F(z)=1$ we get by (2.9) that

$$
\frac{1}{f(z)}=\frac{\rho_{0}}{z}+\sum_{p=1}^{\infty} \sum_{k=1}^{N_{p}} \frac{\rho_{p, k}}{z-\xi_{p, k}}
$$

which shows equation (1.12).
To finish the proof we shall establish that $N_{p}=2^{p-1}$.
From the functional equation (1.9) and the fact that f is strictly increasing between the poles, we see the following about the generation of zeros and poles of f :

1. If $z+1$ is regular point, then $f(z+1)= \pm 1$ if and only if $f(z)=0$.
2. If $z+1$ is regular point, then $f(z+1)=0$ if and only if z is a pole. In the affirmative case $\operatorname{Res}(f, z)=-1 / f^{\prime}(z+1)$.
3. If $z+1$ is a pole then z is a pole with the same residue as in $z+1$.
4. For a pole β let α_{β} be the smallest zero in $] \beta, \infty\left[\right.$. Then $\left.f(] \beta, \alpha_{\beta}[)=\right]-\infty, 0[$ and there exists a unique point x_{*} in $] \beta, \alpha_{\beta}\left[\right.$ such that $f\left(x_{*}\right)=-1$.
5. For a pole β let γ_{β} be the biggest zero in $]-\infty, \beta\left[\right.$. Then $\left.f(] \gamma_{\beta}, \beta[)=\right] 0, \infty[$ and there exists a unique point x^{*} in $] \gamma_{\beta}, \beta\left[\right.$ such that $f\left(x^{*}\right)=1$.

From 1.-5. we deduce that f has the following properties. Since $f(0)=0$ we see that f has poles at $z=-1,-2, \ldots$ in accordance with (2.11). There are no poles in $]-2,-1[$ since f is regular in $]-1,0[$ and non-zero. Notice that f is strictly increasing on $]-1, \infty[$ mapping this interval onto the whole real line by (2.11). There is a unique point $\left.x_{*} \in\right]-1,0\left[\right.$ such that $f\left(x_{*}\right)=-1$, hence
$x_{*}-1$ is a zero and $x_{*}-2, x_{*}-3, \ldots$ are poles. In $\left.]-3,-2\right]$ there are two poles namely $x_{*}-2$ and -2 and since f is strictly increasing between consecutive poles we have two zeros in $]-3,-2[$. By induction it is easy to see that there are exactly 2^{p-1} poles in each interval $\left.]-p-1,-p\right]$ and 2^{p-1} zeros in the open interval $]-p-1,-p\left[, p \geq 1\right.$. This shows that $N_{p}=2^{p-1}$. Note that $\xi_{1,1}=x_{*}-1$.

Figure 1: The graph of f with vertical lines at the poles

We give some further information about the poles of f.
We call the negative integers poles of the first generation of f and say that a pole of f is of the l-th generation, $l \geq 2$, if it is generated by a zero $\xi_{l-1, k}$, i.e. the pole is of the form $\xi_{l-1, k}-m$, for some integer $m \geq 1$. Then it can easily be proved by induction on p that:

1. In $]-p-1,-p$] there is one pole of the first generation (namely, $-p$), one pole of the second generation (namely $\xi_{1,1}-p+1$), and for $l=3, \ldots, p, 2^{l-2}$ poles of the l-th generation (so that the total number of poles is $1+\sum_{l=2}^{p} 2^{l-2}=$ 2^{p-1}).
2. For each interval $[-p-1,-p]$, the poles of one generation separate the set of poles of lower generations, and the zeros $\xi_{p, k}, k=1, \ldots, 2^{p-1}$, separate
the set of all poles. That means that the set of poles of generation less than or equal to l separate the zeros $\xi_{p, k}, k=1, \ldots, 2^{p-1}$, in groups of 2^{p-l} consecutive elements.
3. For $l \geq 2$ the poles in $]-p-1,-p[$ of the l-th generation are zeros of $f(z+p-l+1)$ but they are still poles of $f(z+j)$ if $0 \leq j \leq p-l$.

3 Iteration of the rational function ψ

In this section we will prove Theorem 1.2 and discuss the relationship with the classical study of iteration of rational functions of degree ≥ 2, cf. e.g. [3].

We have already introduced the rational function ψ by

$$
\begin{equation*}
\psi(z)=z-\frac{1}{z} . \tag{3.1}
\end{equation*}
$$

It is a mapping of $\mathbb{C} \backslash\{0\}$ onto \mathbb{C} with a simple pole at $z=0$. Moreover, $\psi(0)=\psi(\infty)=\infty$. It is two-to-one with the exception that $\psi(z)= \pm 2 i$ has only one solution $z= \pm i$. It is strictly increasing on the half-lines $]-\infty, 0[$ and $] 0, \infty[$, mapping each of them onto \mathbb{R}. The functional equation (1.9) can be written

$$
\begin{equation*}
f(z)=\psi(f(z+1)) \tag{3.2}
\end{equation*}
$$

We notice that ψ and hence all iterates $\psi^{o n}$ are Pick functions. It is convenient to define $\psi^{\circ 0}(z)=z$. We claim that the Julia set is $J(\psi)=\mathbb{R}^{*}$, and the Fatou set is $F(\psi)=\mathbb{C} \backslash \mathbb{R}$. This is because ψ is conjugate to the rational function

$$
R(z)=\frac{3 z^{2}+1}{z^{2}+3}
$$

i.e. $g \circ R=\psi \circ g$, where g is the Möbius transformation $g(z)=i(1+z) /(1-z)$. Note that g is the Cayley transformation mapping the unit circle \mathbb{T} onto \mathbb{R}^{*}. In [3, p.200] the Julia set of R is determined as $J(R)=\mathbb{T}$, and the assertion follows.

The sequence $\left(\lambda_{n}\right)_{n}$ is defined in terms of $\left(m_{n}\right)_{n}$ from (1.3) by

$$
\begin{equation*}
\lambda_{0}=0, \quad \lambda_{n+1}=1 / m_{n}, \quad n \geq 0 \tag{3.3}
\end{equation*}
$$

By (1.7) and (1.8) we clearly have

$$
\begin{equation*}
m_{n}=F(n), \lambda_{n}=f(n), \quad n \geq 0 \tag{3.4}
\end{equation*}
$$

hence by (3.2)

$$
\begin{equation*}
\lambda_{n}=\psi\left(\lambda_{n+1}\right), \quad n \geq 0, \tag{3.5}
\end{equation*}
$$

which can be reformulated to

$$
\begin{equation*}
\lambda_{n+1}=\frac{1}{2}\left(\lambda_{n}+\sqrt{\lambda_{n}^{2}+4}\right), \quad n \geq 0 . \tag{3.6}
\end{equation*}
$$

The following result is easy and the proof is left to the reader.

Lemma 3.1. Defining

$$
\begin{equation*}
Y_{n}=\left(\psi^{\circ n}\right)^{-1}(\{0\})=\left\{z \in \mathbb{C} \mid \psi^{\circ n}(z)=0\right\}, \tag{3.7}
\end{equation*}
$$

i.e.

$$
Y_{0}=\{0\}, \quad Y_{1}=\{-1,1\}, \quad Y_{2}=\{(\pm 1 \pm \sqrt{5}) / 2\}, \ldots
$$

we have for $n \geq 1$
(i) $\psi\left(Y_{n}\right)=Y_{n-1}, Y_{n}=\psi^{0-1}\left(Y_{n-1}\right)$,
(ii) The set of poles of $\psi^{\circ n}$ is $\cup_{j=0}^{n-1} Y_{j}$,
(iii) Y_{n} consists of 2^{n} real numbers and is symmetric with respect to zero.
(iv) The function $\psi^{\text {on }}$ is strictly increasing from $-\infty$ to ∞ in each of the 2^{n} intervals in which $\cup_{j=0}^{n-1} Y_{j}$ divides \mathbb{R}. There is exactly one zero of $\psi^{\circ n}$ in each of these intervals, and these zeros form the set Y_{n}.

We write $Y_{n}=\left\{\alpha_{n, k}: k=1, \ldots, 2^{n}\right\}$ arranged in increasing order $(n \geq 1)$:

$$
\alpha_{n, 1}<\alpha_{n, 2}<\cdots<\alpha_{n, 2^{n-1}}<0<\alpha_{n, 2^{n-1}+1}<\cdots<\alpha_{n, 2^{n}} .
$$

It is easy to see that $-\alpha_{n, 1}=\alpha_{n, 2^{n}}=\lambda_{n}$ for $n \geq 0$.
Proposition 3.2. The set

$$
\cup_{p=0}^{\infty} Y_{p}=\left\{\alpha_{p, k} \mid p \geq 0, k=1, \ldots, 2^{p}\right\}
$$

is dense in \mathbb{R}.
Proof. The set in question is the so-called backward orbit of 0 for ψ, and since $0 \in J(\psi)$ the result follows by [3, Theorem 4.2.7].

We next give some asymptotic properties of the sequence $\left(\lambda_{n}\right)_{n}$ and the function f :

Lemma 3.3. 1. $\sqrt{n} \leq \lambda_{n} \leq \sqrt{2 n}, n \geq 0$.
2. $\left(\lambda_{n}\right)_{n}$ is an increasing divergent sequence and $\lambda_{n+1} / \lambda_{n}$ is decreasing with $\lim _{n \rightarrow \infty} \frac{\lambda_{n+1}}{\lambda_{n}}=1$.
3. $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}^{2}-\lambda_{n}^{2}\right)=2$.
4. $\lim _{n \rightarrow \infty} \frac{\lambda_{n}^{2}}{n}=2$.
5. $\lim _{n \rightarrow \infty} \frac{\lambda_{n}^{2}-2 n}{\log n}=-\frac{1}{2}$.
6. $\lim _{s \rightarrow \infty} f(s) / \sqrt{2 s}=1$.
7. $\lim _{s \rightarrow \infty} f^{\prime}(s) \sqrt{2 s}=1$.

Proof. 1. These inequalities follow easily from (3.6) using induction on n.
2. The sequence $\left(\lambda_{n}\right)_{n}$ increases to infinity since it is the reciprocal of the Hausdorff moment sequence $\left(m_{n}\right)_{n}$. By the Cauchy-Schwarz inequality $m_{n}^{2} \leq$ $m_{n-1} m_{n+1}$, which proves that $\left(\lambda_{n+1} / \lambda_{n}\right)_{n}$ is decreasing. The limit follows now easily from (3.6).
3. Using (3.5) we can write

$$
\lambda_{n+1}^{2}-\lambda_{n}^{2}=\frac{\lambda_{n+1}+\lambda_{n}}{\lambda_{n+1}}=1+\frac{\lambda_{n}}{\lambda_{n+1}},
$$

and it suffices to apply part 2 .
4. is a consequence of part 3 and the following version of the Stolz criterion going back to [21]:
Lemma 3.4. Let $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$ be real sequences, where $\left(b_{n}\right)_{n}$ is strictly increasing tending to infinity. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L .
$$

5. follows by using again the Stolz criterion and taking into account that

$$
\begin{aligned}
& \frac{\lambda_{n+1}^{2}-\lambda_{n}^{2}-2}{\log \frac{n+1}{n}}=\frac{\lambda_{n+1}^{2}-\lambda_{n}^{2}-2 \lambda_{n+1}^{2}+2 \lambda_{n+1} \lambda_{n}}{\log \frac{n+1}{n}} \\
& \quad=-\frac{\left(\lambda_{n+1}-\lambda_{n}\right)^{2}}{\log \frac{n+1}{n}}=-\frac{1}{n \log \frac{n+1}{n}} \frac{n}{\lambda_{n+1}^{2}} \rightarrow-\frac{1}{2} .
\end{aligned}
$$

6. Since f is increasing and $f(n)=\lambda_{n}$, the assertion follows from part 4 .
7. We write $f(n+1)-f(n)=f^{\prime}\left(t_{n}\right)$, for a certain $t_{n} \in(n, n+1)$. Since f^{\prime} is decreasing ($f^{\prime}(s)$ is completely monotonic), part 7 follows if we prove that $f^{\prime}\left(t_{n}\right) \sqrt{2 t_{n}}$ tends to 1 as n tends to ∞. However, using the recursion formula for $\left(\lambda_{n}\right)_{n}$, we get

$$
f^{\prime}\left(t_{n}\right) \sqrt{2 t_{n}}=\left(\lambda_{n+1}-\lambda_{n}\right) \sqrt{2 t_{n}}=\frac{\sqrt{2(n+1)}}{\lambda_{n+1}} \frac{\sqrt{2 t_{n}}}{\sqrt{2(n+1)}},
$$

and it suffices to apply part 4.

Proof of Theorem 1.2.

We have already proved the properties (i) and (iii). To see (ii) we notice that $f=\mathcal{B}(\mu)$ is a Bernstein function, and therefore $1 / f$ is completely monotonic. Every completely monotonic function is logarithmically convex. For these statements see e.g. [10, §14].

Suppose next that \tilde{f} is a function satisfying (i)-(iii). Since $\tilde{f}(1)=1=\lambda_{1}$, we see by (iii) and (3.5) that $\tilde{f}(n)=\lambda_{n}$ for $n \geq 1$. Equation (1.11) is equivalent with

$$
\begin{equation*}
\tilde{f}(s)=\lim _{n \rightarrow \infty} \psi^{\circ n}\left(\lambda_{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s}\right) \tag{3.8}
\end{equation*}
$$

and if we prove this equation for $0<s \leq 1$, then \tilde{f} is uniquely determined on] 0,1] and hence by (iii) for all $s>0$.

We prove that the limit in (3.8) exists and coincides with $\tilde{f}(s)$ for $0<s \leq 1$. This is clear for $s=1$ since $\psi^{\circ n}\left(\lambda_{n+1}\right)=1$ for $n \geq 0$.

For any convex function ϕ on $] 0, \infty[$ we have for $0<s \leq 1$ and $n \geq 2$

$$
\phi(n)-\phi(n-1) \leq \frac{\phi(n+s)-\phi(n)}{s} \leq \phi(n+1)-\phi(n) .
$$

By taking $\phi=\log (1 / \tilde{f})$, which is convex by assumption, we get

$$
\log \frac{\lambda_{n-1}}{\lambda_{n}} \leq \frac{1}{s} \log \frac{\tilde{f}(n)}{\tilde{f}(n+s)} \leq \log \frac{\lambda_{n}}{\lambda_{n+1}}
$$

that is

$$
\left(\frac{\lambda_{n-1}}{\lambda_{n}}\right)^{s} \leq \frac{\lambda_{n}}{\tilde{f}(n+s)} \leq\left(\frac{\lambda_{n}}{\lambda_{n+1}}\right)^{s}
$$

which finally gives:

$$
\lambda_{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s} \leq \tilde{f}(n+s) \leq \lambda_{n}\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)^{s}, \quad 0<s<1
$$

Using that ψ is increasing on $] 0, \infty\left[\right.$, we get by applying $\psi^{\circ n}$ to the previous inequality

$$
\psi^{\circ n}\left(b_{n}(s)\right) \leq \tilde{f}(s)=\psi^{\circ n}(\tilde{f}(n+s)) \leq \psi^{\circ n}\left(a_{n}(s)\right)
$$

where we have introduced

$$
a_{n}(s)=\lambda_{n}\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)^{s}, \quad b_{n}(s)=\lambda_{n}\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s} .
$$

It is now enough to prove that

$$
\lim _{n \rightarrow \infty}\left(\psi^{\circ n}\left(a_{n}(s)\right)-\psi^{\circ n}\left(b_{n}(s)\right)=0\right.
$$

By applying the mean value theorem, we get for a certain $w \in] b_{n}(s), a_{n}(s)$ [that

$$
\begin{gathered}
\psi^{\circ n}\left(a_{n}(s)\right)-\psi^{\circ n}\left(b_{n}(s)\right)=\left(a_{n}(s)-b_{n}(s)\right)\left(\psi^{\circ n}\right)^{\prime}(w) \\
=\left(a_{n}(s)-b_{n}(s)\right) \psi^{\prime}\left(\psi^{\circ n-1}(w)\right) \psi^{\prime}\left(\psi^{\circ n-2}(w)\right) \cdots \psi^{\prime}(w) .
\end{gathered}
$$

Since $\lambda_{n}<b_{n}(s)<w<a_{n}(s)$, we get $\lambda_{n-k}<\psi^{\circ k}\left(b_{n}(s)\right)<\psi^{\circ k}(w), k=$ $0,1, \ldots, n$, hence

$$
\begin{aligned}
& \mid \psi^{\circ n}\left(a_{n}(s)\right)-\psi^{\circ n}\left(b_{n}(s) \mid\right. \\
& \quad \leq\left|a_{n}(s)-b_{n}(s)\right| \prod_{k=0}^{n-1}\left|\psi^{\prime}\left(\psi^{\circ k}(w)\right)\right| \\
& \quad \leq\left|a_{n}(s)-b_{n}(s)\right| \prod_{k=0}^{n-1}\left(1+\frac{1}{\lambda_{n-k}^{2}}\right) \\
& \quad=\lambda_{n}\left(\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)^{s}-\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s}\right) \prod_{k=1}^{n}\left(1+\frac{1}{\lambda_{k}^{2}}\right) \\
& \quad \leq \lambda_{n}\left(\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)^{s}-\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s}\right) \prod_{k=1}^{n}\left(1+\frac{1}{k}\right) \\
& \quad=(n+1) \lambda_{n}\left(\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)^{s}-\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s}\right),
\end{aligned}
$$

where we have used $\sqrt{k} \leq \lambda_{k}$ from Lemma 3.3 part 1 .
Using that $\left(x^{s}-y^{s}\right) \leq s(x-y)$ for $1<y<x$ and $0<s \leq 1$, we get

$$
\left|\psi^{\circ n}\left(a_{n}(s)\right)-\psi^{\circ n}\left(b_{n}(s)\right)\right| \leq s(n+1) \lambda_{n}\left(\frac{\lambda_{n}}{\lambda_{n-1}}-\frac{\lambda_{n+1}}{\lambda_{n}}\right)
$$

and by (3.6) we finally get

$$
\begin{aligned}
& \mid \psi^{\circ n}\left(a_{n}(s)\right)-\psi^{\circ n}\left(b_{n}(s) \mid\right. \\
& \leq \frac{1}{2} s(n+1) \lambda_{n}\left(\left(1+\sqrt{1+\frac{4}{\lambda_{n-1}^{2}}}\right)-\left(1+\sqrt{1+\frac{4}{\lambda_{n}^{2}}}\right)\right) \\
& =\frac{1}{2} s(n+1) \lambda_{n}\left(\sqrt{1+\frac{4}{\lambda_{n-1}^{2}}}-\sqrt{1+\frac{4}{\lambda_{n}^{2}}}\right) \\
& =\frac{2 s(n+1) \lambda_{n}\left(\frac{1}{\lambda_{n-1}^{2}}-\frac{1}{\lambda_{n}^{2}}\right)}{\sqrt{1+\frac{4}{\lambda_{n-1}^{2}}}+\sqrt{1+\frac{4}{\lambda_{n}^{2}}}} \leq \frac{s(n+1)}{\lambda_{n} \lambda_{n-1}^{2}}\left(\lambda_{n}^{2}-\lambda_{n-1}^{2}\right),
\end{aligned}
$$

which tends to zero by part 2,3 and 4 of Lemma 3.3.
For each real number s, we define the sequence $\left(\lambda_{n}(s)\right)_{n}$ by $\lambda_{0}(s)=s$ and

$$
\begin{equation*}
\lambda_{n+1}(s)=\frac{\lambda_{n}(s)+\sqrt{\lambda_{n}(s)^{2}+4}}{2}, \quad n \geq 0 \tag{3.9}
\end{equation*}
$$

Notice that $\lambda_{n+1}(s)$ is the positive root of $z^{2}-\lambda_{n}(s) z-1=0$ and that

$$
\begin{equation*}
\psi\left(\lambda_{n+1}(s)\right)=\lambda_{n}(s) \tag{3.10}
\end{equation*}
$$

Therefore, if $s \in Y_{l}$ then $\lambda_{n}(s) \in Y_{l+n}$, and for $s=0$ we have $\lambda_{n}(0)=\lambda_{n}, n \geq 0$. Furthermore, $\lambda_{n}\left(\lambda_{l}(s)\right)=\lambda_{n+l}(s)$.

Definition 3.5. For integers $k, l \geq 0$ we denote by $r(k, l)$ the unique solution $x \in\left\{1,2, \ldots, 2^{l}\right\}$ of the congruence equation $x \equiv k \bmod 2^{l}$.

Lemma 3.6. For $p \geq 1, k=1,2, \ldots, 2^{p}$ we have
(i) $\psi\left(\alpha_{p, k}\right)=\alpha_{p-1, r(k, p-1)}$.
(ii) $\psi^{o l}\left(\alpha_{p, k}\right)=\alpha_{p-l, r(k, p-l)}$ for $l=0,1, \ldots, p$.

Proof. Since $\psi\left(Y_{p}\right)=Y_{p-1}$ and ψ is strictly increasing mapping $]-\infty, 0[$ onto \mathbb{R}, we see that

$$
\psi\left(\alpha_{p, k}\right)=\alpha_{p-1, k}, \quad k=1,2, \ldots, 2^{p-1}
$$

and since similarly ψ maps $] 0, \infty[$ onto \mathbb{R} we get

$$
\psi\left(\alpha_{p, k}\right)=\alpha_{p-1, j}, \quad k=2^{p-1}+j, j=1,2, \ldots, 2^{p-1}
$$

In the first case $k=r(k, p-1)$ and in the second case $j=r(k, p-1)$ so the assertion (i) follows.

The assertion (ii) is clear for $l=0$ and $l=p$ and follows for $l=1$ by (i). Assuming (ii) for some l such that $1 \leq l \leq p-2$ we get by (i)

$$
\psi^{\circ}(l+1)\left(\alpha_{p, k}\right)=\psi\left(\alpha_{p-l, r(k, p-l)}\right)=\alpha_{p-l-1, j},
$$

where $j:=r(r(k, p-l), p-l-1)$. By definition

$$
\begin{gathered}
k \equiv r(k, p-l) \quad \bmod 2^{p-l}, 1 \leq r(k, p-l) \leq 2^{p-l} \\
j \equiv r(k, p-l) \quad \bmod 2^{p-l-1}, 1 \leq j \leq 2^{p-l-1} .
\end{gathered}
$$

The first congruence also holds $\bmod 2^{p-l-1}$, hence $j \equiv k \bmod 2^{p-l-1}$ and finally $j=r(k, p-l-1)$.

Corollary 3.7. For a zero $\xi_{p, k}$ of f we have
(i) $f\left(\xi_{p, k}+l\right)=\alpha_{l, r(k, l)}, l=0,1, \ldots, p$,
(ii) $f\left(\xi_{p, k}+l\right)=\lambda_{l-p}\left(\alpha_{p, k}\right), l=p+1, p+2, \ldots$, where $\lambda_{n}(s)$ is defined in (3.9).

Proof. We first prove (i) for $l=p$, i.e. that $f\left(\xi_{p, k}+p\right)=\alpha_{p, k}$ since $r(k, p)=k$. Note that by (3.2) we have

$$
\psi^{\circ p}\left(f\left(\xi_{p, k}+p\right)\right)=f\left(\xi_{p, k}\right)=0
$$

hence $f\left(\xi_{p, k}+p\right) \in Y_{p}$. On the other hand $\left.\xi_{p, k}+p \in\right]-1,0[$, and since f is strictly increasing satisfying $f(]-1,0[)=]-\infty, 0\left[\right.$, we see that $f\left(\xi_{p, k}+p\right), k=$
$1,2, \ldots, 2^{p-1}$ describe 2^{p-1} negative numbers in Y_{p} in increasing order. Therefore, $f\left(\xi_{p, k}+p\right)=\alpha_{p, k}, k=1,2, \ldots, 2^{p-1}$.

By Lemma 3.6 and (3.2) we then get for $0 \leq l \leq p$

$$
f\left(\xi_{p, k}+l\right)=\psi^{\circ(p-l)}\left(f\left(\xi_{p, k}+p\right)\right)=\psi^{\circ(p-l)}\left(\alpha_{p, k}\right)=\alpha_{l, r(k, l)} .
$$

Clearly $0<f\left(\xi_{p, k}+p+1\right) \in Y_{p+1}$ and $\alpha_{p, k}=\psi\left(f\left(\xi_{p, k}+p+1\right)\right)$, hence $f\left(\xi_{p, k}+\right.$ $p+1)=\lambda_{1}\left(\alpha_{p, k}\right)$ by definition of $\lambda_{1}(s)$. The assertion (ii) follows easily by induction.

Theorem 3.8. The numbers $\xi_{p, k}, \rho_{p, k}, p \geq 1, k=1, \ldots, 2^{p-1}$ and ρ_{0} from Theorem 1.4 are given by the following formulas:

$$
\begin{gather*}
\xi_{p, k}=\lim _{N \rightarrow \infty} \sqrt{2 N}\left(\sum_{l=1}^{p} \frac{1}{\alpha_{l, r(k, l)}}+\sum_{l=1}^{N-p} \frac{1}{\lambda_{l}\left(\alpha_{p, k}\right)}-\lambda_{N}\right), \tag{3.11}\\
\rho_{p, k}=\prod_{l=1}^{p}\left(1+\frac{1}{\alpha_{l, r(k, l)}^{2}}\right)^{-1} \lim _{N \rightarrow \infty} \sqrt{2 N} \prod_{l=1}^{N}\left(1+\frac{1}{\lambda_{l}^{2}\left(\alpha_{p, k}\right)}\right)^{-1}, \tag{3.12}\\
\rho_{0}=\lim _{N \rightarrow \infty} \sqrt{2 N} \prod_{l=1}^{N}\left(1+\frac{1}{\lambda_{l}^{2}}\right)^{-1} \tag{3.13}
\end{gather*}
$$

Proof. By applying N times the functional equation (1.9) for the function f and using Corollary 3.7, we have for $p<N$:

$$
\begin{array}{r}
0=f\left(\xi_{p, k}\right)=f\left(\xi_{p, k}+N\right)-\sum_{l=1}^{N} \frac{1}{f\left(\xi_{p, k}+l\right)} \\
=f\left(\xi_{p, k}+N\right)-\left(\sum_{l=1}^{p} \frac{1}{\alpha_{l, r(k, l)}}+\sum_{l=1}^{N-p} \frac{1}{\lambda_{l}\left(\alpha_{p, k}\right)}\right) .
\end{array}
$$

Writing

$$
y_{N, p, k}=\sum_{l=1}^{p} \frac{1}{\alpha_{l, r(k, l)}}+\sum_{l=1}^{N-p} \frac{1}{\lambda_{l}\left(\alpha_{p, k}\right)},
$$

we get $f\left(\xi_{p, k}+N\right)=y_{N, p, k}$. For $N \rightarrow \infty$ it follows by part 6 of Lemma 3.3 that $y_{N, p, k} \sim \sqrt{2 N}$. Since f is a strictly increasing bijection of $(-1,+\infty)$ onto \mathbb{R}, we can consider its inverse f^{-1}. Then we have $N=f^{-1}\left(\lambda_{N}\right)$, hence $\xi_{p, k}=$ $f^{-1}\left(y_{N, p, k}\right)-f^{-1}\left(\lambda_{N}\right)$. Since $\xi_{p, k}$ is negative and f is increasing, we deduce that $y_{N, p, k}<\lambda_{N}$. This gives for a certain number $\left.\sigma_{N, p, k} \in\right] y_{N, p, k}, \lambda_{N}[$ that

$$
\xi_{p, k}=f^{-1}\left(y_{N, p, k}\right)-f^{-1}\left(\lambda_{N}\right)=\left(f^{-1}\right)^{\prime}\left(\sigma_{N, p, k}\right)\left(y_{N, p, k}-\lambda_{N}\right)=\frac{y_{N, p, k}-\lambda_{N}}{f^{\prime}\left(\eta_{N, p, k}\right)}
$$

where we have written $\eta_{N, p, k}=f^{-1}\left(\sigma_{N, p, k}\right)$. Clearly $\left.\eta_{N, p, k} \in\right] \xi_{p, k}+N, N[$.
Taking into account that $\lim _{s \rightarrow \infty} f^{\prime}(s) \sqrt{2 s}=1$ (part 7 of Lemma 3.3), we have

$$
\xi_{p, k}=\lim _{N} \sqrt{2 N}\left(y_{N, p, k}-\lambda_{N}\right),
$$

that is, (3.11) holds.
The number $f^{\prime}\left(\xi_{p, k}\right)$ can be computed as follows: Deriving the functional equation (1.9) for f, we get

$$
f^{\prime}(z)=f^{\prime}(z+1)\left(1+\frac{1}{f^{2}(z+1)}\right)
$$

hence by iteration

$$
\begin{equation*}
f^{\prime}(z)=f^{\prime}(z+N) \prod_{l=1}^{N}\left(1+\frac{1}{f^{2}(z+l)}\right) . \tag{3.14}
\end{equation*}
$$

Using Corollary 3.7 and $\lim _{s \rightarrow \infty} f^{\prime}(s) \sqrt{2 s}=1$, (Lemma 3.3, part 7) we get for $z=\xi_{p, k}$

$$
f^{\prime}\left(\xi_{p, k}\right)=\prod_{l=1}^{p}\left(1+\frac{1}{\alpha_{l, r(k, l)}^{2}}\right) \lim _{N \rightarrow \infty} \frac{1}{\sqrt{2 N}} \prod_{l=1}^{N}\left(1+\frac{1}{\lambda_{l}^{2}\left(\alpha_{p, k}\right)}\right),
$$

and since $\rho_{p, k}=1 / f^{\prime}\left(\xi_{p, k}\right)$ by (1.12), we see that (3.12) holds.
Applying (3.14) for $z=0$, we get

$$
f^{\prime}(0)=f^{\prime}(N) \prod_{l=1}^{N}\left(1+\frac{1}{\lambda_{l}^{2}}\right),
$$

and (3.13) follows by (1.12) and $\lim _{N \rightarrow \infty} f^{\prime}(N) \sqrt{2 N}=1$.
We give some values of the numbers of Theorem 3.8:

$\rho_{0}=0.68 \ldots$	$\xi_{0}=0$
$\rho_{1,1}=0.14 \ldots$	$\xi_{1,1}=-1.46 \ldots$
$\rho_{2,1}=0.06 \ldots$	$\xi_{2,1}=-2.61 \ldots$
$\rho_{2,2}=0.05 \ldots$	$\xi_{2,2}=-2.33 \ldots$

Theorem 3.9. The density \mathcal{D} given by (1.15) satisfies

$$
\mathcal{D}(t) \sim \frac{1}{\sqrt{2 \pi(1-t)}} \text { for } t \rightarrow 1
$$

Proof. By formula (1.8) and Lemma 3.3 part 6 we get

$$
F(s)=\int_{0}^{1} t^{s} \mathcal{D}(t) d t \sim \frac{1}{\sqrt{2 s}}, \quad s \rightarrow \infty
$$

or

$$
\int_{0}^{\infty} e^{-u s} \mathcal{D}\left(e^{-u}\right) e^{-u} d u \sim \frac{1}{\sqrt{2 s}}, \quad s \rightarrow \infty .
$$

By the Karamata Tauberian theorem, cf. [12, Theorem 1.7.1'], we get

$$
\int_{0}^{t} \mathcal{D}\left(e^{-u}\right) e^{-u} d u \sim \sqrt{\frac{2 t}{\pi}}, \quad t \rightarrow 0
$$

and since \mathcal{D} is increasing we can use the Monotone Density theorem, cf. [12, Theorem 1.7.2b], to conclude that

$$
\mathcal{D}\left(e^{-u}\right) e^{-u} \sim \frac{1}{\sqrt{2 \pi u}}, \quad u \rightarrow 0
$$

which is equivalent to the assertion.

4 Miscellaneous about the fixed point

The fixed point sequence $\left(m_{n}\right)_{n}$ given by (1.3) satisfies $m_{n+1}=\Phi\left(m_{n}\right)$ with

$$
\Phi(x)=\frac{\sqrt{4 x^{2}+1}-1}{2 x}, \quad x>0 .
$$

This makes it possible to express $\left(m_{n}\right)_{n}$ as iterates of Φ, viz.

$$
m_{n}=\Phi^{\circ n}(1) .
$$

From Lemma 3.3 part 4 we get the asymptotic behaviour of m_{n} as

$$
m_{n} \sim \frac{1}{\sqrt{2 n}}, \quad n \rightarrow \infty
$$

This behaviour can also be deduced from a general result about iteration, cf. [13, p.175]. The authors want to thank Bruce Reznick for this reference as well as the following description of $\left(m_{n}\right)_{n}$.

Proposition 4.1. Define $\left.\left.h_{n} \in\right] 0, \pi / 4\right]$ by $\tan h_{n}=m_{n}$ and let

$$
G(x)=\frac{1}{2} \arctan (2 \tan x), \quad|x|<\frac{\pi}{2} .
$$

Then

$$
h_{n}=G^{\circ n}\left(\frac{\pi}{4}\right) .
$$

Proof. We have

$$
\tan h_{n}=m_{n}=\frac{m_{n+1}}{1-m_{n+1}^{2}}=\frac{\tan h_{n+1}}{1-\tan ^{2} h_{n+1}}=\frac{1}{2} \tan \left(2 h_{n+1}\right),
$$

hence $h_{n+1}=G\left(h_{n}\right)$ and the assertion follows.
A Hausdorff moment sequence $\left(a_{n}\right)_{n}$ is called infinitely divisible if $\left(a_{n}^{\alpha}\right)_{n}$ is a Hausdorff moment sequence for all $\alpha>0$. If $a_{n}=\int_{0}^{1} t^{n} d \nu(t), n \geq 0$ then $\left(a_{n}\right)_{n}$ is infinitely divisible if and only if ν is infinitely divisible for the product convolution $\tau \diamond \nu$ of measures $[0, \infty[$ defined by

$$
\int g d \tau \diamond \nu=\iint g(s t) d \tau(s) d \nu(t) .
$$

For a general study of these concepts see [22],[5],[6]. In case the measure ν does not charge 0 , the notion is the classical infinite divisibility on the locally compact group $] 0, \infty[$ under multiplication.

Proposition 4.2. Hausdorff moment sequences of the form (1.1) are infinitely divisible.

Proof. Let $\nu \neq 0$ be a positive measure on $[0,1]$ and let $a_{n}=\int t^{n} d \nu(t), n \geq 0$ be the corresponding Hausdorff moment sequence. Let $\alpha>0$ be fixed. We shall prove that $\left(\left(a_{0}+a_{1}+\cdots+a_{n}\right)^{-\alpha}\right)_{n}$ is a Hausdorff moment sequence.

For $0<c<1$ we denote by $\nu_{c}=\nu \mid\left[0, c\left[+\nu(\{1\}) \delta_{c}\right.\right.$, where the first term denotes the restriction of ν to $\left[0, c\left[\right.\right.$. Then $\lim _{c \rightarrow 1} \nu_{c}=\nu$ weakly and in particular for each $n \geq 0$

$$
a_{n}(c):=\int_{0}^{1} t^{n} d \nu_{c}(t) \rightarrow a_{n} \text { for } c \rightarrow 1 .
$$

It therefore suffices to prove that

$$
\begin{equation*}
\left(\left(a_{0}(c)+a_{1}(c)+\cdots+a_{n}(c)\right)^{-\alpha}\right)_{n} \tag{4.1}
\end{equation*}
$$

is a Hausdorff moment sequence. By a simple calculation we find

$$
\begin{aligned}
\left(\sum_{k=0}^{n} a_{k}(c)\right)^{-\alpha} & =\left(\int_{0}^{1} \frac{1-t^{n+1}}{1-t} d \nu_{c}(t)\right)^{-\alpha} \\
& =\left(\int_{0}^{1} \frac{d \nu_{c}(t)}{1-t}-\int_{0}^{1} t^{n} \frac{t d \nu_{c}(t)}{1-t}\right)^{-\alpha}=H\left(\tau_{n}\right)
\end{aligned}
$$

where

$$
\tau_{n}=\int_{0}^{1} t^{n} \frac{t d \nu_{c}(t)}{1-t}, \quad H(z)=\left(\int_{0}^{1} \frac{d \nu_{c}(t)}{1-t}-z\right)^{-\alpha} .
$$

The function H is clearly holomorphic in

$$
|z|<\int_{0}^{1} \frac{d \nu_{c}(t)}{1-t}
$$

with non-negative coefficients in the power series. Applying Lemma 2.1 in [9], shows that (4.1) is a Hausdorff moment sequence.

Corollary 4.3. The fixed point sequence $\left(m_{n}\right)_{n}$ is infinitely divisible.
Remark 4.4. By Corollary 4.3 the fixed point measure μ is infinitely divisible for the product convolution. The image measure η of μ under $\log (1 / t)$ is an infinitely divisible probability measure in the ordinary sense, because $\log (1 / t)$ maps products to sums. The measure η has the density

$$
\begin{equation*}
\mathcal{D}\left(e^{-u}\right) e^{-u}=\rho_{0} e^{-u}+\sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \rho_{p, k} e^{-u\left(1-\xi_{p, k}\right)}, \quad u>0 \tag{4.2}
\end{equation*}
$$

with respect to Lebesgue measure on the half-line. Since (4.2) is clearly a completely monotonic density, the infinite divisibility of η is also a consequence of the Goldie-Steutel theorem, see [20, Theorem 10.7]. These remarks also show that Corollary 4.3 can be inferred from the complete monotonicity of (4.2) via the Goldie-Steutel theorem. The formula

$$
\int_{0}^{\infty} e^{-u s} d \eta(u)=\int_{0}^{1} t^{s} d \mu(t)=F(s)=e^{-\log f(s+1)}, \quad s \geq 0
$$

shows that $\log f(s+1)$ is the Bernstein function associated with the convolution semigroup $\left(\eta_{t}\right)_{t>0}$ of probability measures on the half-line such that $\eta_{1}=\eta$, see [10, p. 68].

Remark 4.5. Let \mathcal{H}_{I} denote the set of normalized infinitely divisible Hausdorff moment sequences. By Proposition 4.2 we have $T(\mathcal{H}) \subseteq \mathcal{H}_{I}$. We claim that this inclusion is proper. In fact, it is easy to see that $T: \mathcal{H} \rightarrow T(\mathcal{H})$ is one-to-one, and that

$$
T^{-1}(\mathbf{b})_{n}=\frac{1}{b_{n}}-\frac{1}{b_{n-1}}, \quad n \geq 1
$$

for $\mathbf{b}=\left(b_{n}\right)_{n} \in T(\mathcal{H})$. It follows that

$$
T(\mathcal{H})=\left\{\mathbf{b} \in \mathcal{H} \left\lvert\,\left(\frac{1}{b_{n}}-\frac{1}{b_{n-1}}\right)_{n} \in \mathcal{H}\right.\right\}
$$

(Here $1 / b_{n}-1 / b_{n-1}=1$ for $n=0$.) Then $\mathbf{b} \in \mathcal{H}_{I} \backslash T(\mathcal{H})$ if we define $b_{n}=$ $1 /(n+1)^{2}$.

The functions f, F being holomorphic in $\Re z>-1$ with a pole at $z=-1$, they have power series expansions

$$
\begin{equation*}
F(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad f(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, \quad|z|<1, \tag{4.3}
\end{equation*}
$$

and the radius of convergence is 1 for both series.
Proposition 4.6. The coefficients in (4.3) are given for $n \geq 1$ by

$$
\begin{aligned}
a_{n} & =\frac{1}{n!} \int_{0}^{1}(\log t)^{n} d \mu(t)=(-1)^{n}\left(\rho_{0}+\sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \frac{\rho_{p, k}}{\left(1-\xi_{p, k}\right)^{n+1}}\right) \\
b_{n} & =-\frac{1}{n!} \int_{0}^{1} \frac{(\log t)^{n}}{1-t} d \mu(t) \\
& =(-1)^{n-1}\left(\rho_{0} \zeta(n+1,0)+\sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \rho_{p, k} \zeta\left(n+1,-\xi_{p, k}\right)\right)
\end{aligned}
$$

where

$$
\zeta(s, a)=\sum_{n=1}^{\infty} \frac{1}{(n+a)^{s}}, \quad s>1, a>-1
$$

is the Hurwitz zeta function.
Proof. The formula for a_{n} follows from (1.7) and (1.13), and the formula for b_{n} follows from (1.6) and (1.14).

Acknowledgment. The authors wish to thank Henrik L. Pedersen for help with producing the graph of f.

References

[1] Akhiezer, N. I., The classical moment problem. Oliver and Boyd, Edinburgh, 1965.
[2] Artin, E., The Gamma Function. Holt, Rinehart and Winston, New York, 1964.
[3] Beardon, A. F., Iteration of rational functions. Graduate Texts in Mathematics vol. 132. Springer-Verlag, Berlin-Heidelberg-New York, 1991.
[4] Berg, C., Quelques remarques sur le cône de Stieltjes. In: Séminaire de Théorie du potentiel, Paris n.5. Lecture Notes in Mathematics 814. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[5] Berg, C., On powers of Stieltjes moment sequences, I, J. Theoret. Probab. 18 No. 4 (2005), 871-889.
[6] Berg, C., On powers of Stieltjes moment sequences, II, J. Comput. Appl. Math. 199 (2007), 23-38.
[7] Berg, C., Christensen, J. P. R. and Ressel, P., Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics vol. 100. Springer-Verlag, Berlin-Heidelberg-New York, 1984.
[8] Berg, C., Durán, A. J., A transformation from Hausdorff to Stieltjes moment sequences. Ark. Mat. 42 (2004), 239-257.
[9] Berg, C., Durán, A. J., Some transformations of Hausdorff moment sequences and Harmonic numbers. Canad. J. Math. 57 (2005), 941-960.
[10] Berg, C., Forst, G., Potential theory on locally compact abelian groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 87. SpringerVerlag, Berlin-Heidelberg-New York, 1975.
[11] Bertoin, J., Lévy processes. Cambridge University Press, Cambridge, 1996.
[12] Bingham, N.H., Goldie, C. M. and Teugels, J. L., Regular variation. Cambridge University Press, Cambridge, 1987.
[13] De Bruijn, N. G., Asymptotic methods in analysis. North-Holland Publishing Company, Amsterdam, 1958.
[14] Diaconis, P., Freedman, D., The Markov moment problem and de Finetti's theorem. I, Math. Z. 247 (2004), 183-199.
[15] Diaconis, P., Freedman, D., The Markov moment problem and de Finetti's theorem. II, Math. Z. 247 (2004), 201-212.
[16] Donoghue Jr., W.F., Monotone Matrix Functions and Analytic Continuation. Springer-Verlag, Berlin-Heidelberg-New York, 1974.
[17] Hausdorff, F., Momentenprobleme für ein endliches Intervall, Math. Z. 16 (1923) 220-248.
[18] Itô, M., Sur les cônes convexes de Riesz et les noyaux complètement sousharmoniques. Nagoya Math. J. 55 (1974), 111-144.
[19] Reuter, G.E.H., Über eine Volterrasche Integralgleichung mit totalmonotonem Kern. Arch. Math. 7 (1956), 59-66.
[20] Steutel, F. W., Van Harn, K., Infinite divisibility of probability distributions on the real line. Marcel Dekker, Inc., New York, Basel 2004.
[21] Stolz, O., Ueber die Grenzwerthe der Quotienten. Math. Annalen 14 (1878), 231-240.
[22] Tyan, S., The structure of Bivariate distribution functions and their relation to Markov processes. Ph. D. Thesis, Princeton University 1975.
[23] Widder, D. V., The Laplace Transform. Princeton University Press, Princeton, 1941.

[^0]: *This work was initiated during the visit of the second author to the University of Copenhagen partially supported by D.G.E.S, ref. BFM2003-6335-C03-01, FQM-262 (Junta de Andalucía), and by grant 21-03-0324 from the Danish Natural Science Research Council.

